THREE SOLUTIONS TO MIXED BOUNDARY VALUE PROBLEM DRIVEN BY $p(z)$-LAPLACE OPERATOR

CALOGERO VETRO AND FRANCESCA VETRO

Abstract

We prove the existence of at least three weak solutions to a mixed Dirichlet-Neumann boundary value problem for equations driven by the $p(z)$-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.

1. Introduction

Let $M \subset \mathbb{R}^{N}(N \geq 3)$ be an open bounded domain with smooth boundary. In this article we consider the following mixed Dirichlet-Neumann boundary value problem driven by the $p(z)$ Laplace operator:

$$
\left(P_{\xi, \mu}\right) \quad \begin{cases}-\operatorname{div}\left(|\nabla u(z)|^{p(z)-2} \nabla u(z)\right)+a(z)|u(z)|^{p(z)-2} u(z)=\xi g(z, u(z)) & \text { in } M \\ u=0 & \text { on } M_{1} \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\mu h(\gamma(u)) & \text { on } M_{2}\end{cases}
$$

where $p \in C(\bar{M})$ is a function with some regularities satisfying

$$
N<p^{-}:=\inf _{z \in M} p(z) \leq p(z) \leq p^{+}:=\sup _{z \in M} p(z)<+\infty
$$

M_{1}, M_{2} are smooth ($N-1$)-dimensional submanifolds of ∂M and Γ is a smooth ($N-2$)-dimensional submanifolds of ∂M with $M_{1} \cap M_{2}=\emptyset, \bar{M}_{1} \cup \bar{M}_{2}=\partial M, \bar{M}_{1} \cap \bar{M}_{2}=\Gamma, a \in L^{\infty}(M)$ with $a_{0}:=\operatorname{ess}_{\inf }^{z \in M} ⿵ 冂(z)>0$ is the potential function, $g: M \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function (that is, for all $z \in \mathbb{R}, z \rightarrow g(z, y)$ is measurable and for a.a. $z \in M, y \rightarrow g(z, y)$ is continuous), $h: \mathbb{R} \rightarrow \mathbb{R}$ is a nonnegative continuous function, $\gamma: W^{1, p}(M) \rightarrow L^{p}(\partial M)$ is the trace operator, $\xi>0$ and $\mu \geq 0$ are real parameters, and ν is the outer unit normal to ∂M.

We recall that the $p(z)$-Laplace operator drives processes of physical interest, as stated in Diening-Harjulehto-Hästö-Rŭzicka [7]. Existence and multiplicity results for problems involving the $p(z)$-Laplace operator were obtained by Papageorgiou-Vetro [12], Rodrigues [13], Vetro [14] (Dirichlet condition), Deng-Wang [6], Heidarkhani-Afrouzi-Hadjian [10], Pan-Afrouzi-Li [11] (Neumann condition). In [12] the authors consider a $(p(z), q(z))$-equation with reaction g which depends on the solution but does not satisfy the Ambrosetti-Rabinowitz condition. Their approach is variational based on critical point theory together with Morse theory (critical groups). These

Key words and phrases. Dirichlet-Neumann boundary value problem; $p(z)$-Laplace operator; variable exponent Sobolev space.

2010 Mathematics Subject Classification: 35J20, 35J25.
Corresponding author: Francesca Vetro (francescavetro@tdtu.edu.vn).
tools are used also in [13]. This time, the author studies a nonlinear eigenvalue problem for $p(z)$ -Laplacian-like operator, originated from a capillary phenomena. The reaction is superlinear at infinity and the author proves the existence of infinite many pairs of solutions. [14] also considers a problem driven by the $p(z)$-Laplacian-like operator. There, the reaction satisfies a sub-critical growth condition and the results deal with the existence of one and three solutions (via critical point theory). In $[10,11]$ the authors prove the existence of three solutions for $p(z)$-Laplace problems with potential function. In particular, [10] considers small perturbations of nonhomogeneous Neumann condition. A similar problem is discussed in [6], where the authors use sub-supersolution method and strong comparison principle. For mixed boundary value problems there are the recent works of Barletta-Livrea-Papageorgiou [1], Bonanno-D'Aguì-Sciammetta [2] (for the constant p-Laplace operator).

Here, we give two existence theorems of three weak solutions to problem $\left(P_{\xi, \mu}\right)$ (that is, mixed boundary value problem with variable exponent version of the p-Laplace operator), by using a variational approach and critical point theorems. Here the reaction $g: M \times \mathbb{R} \rightarrow \mathbb{R}$ is L^{1} Carathéodory (that is, g is Carathéodory and for any $s>0$ there exists $l_{s} \in L^{1}(M)$ with $|g(z, y)| \leq$ $l_{s}(z)$, for a.e. $z \in M$ and for all $\left.|y| \leq s\right)$. So, the three critical points results of Bonanno-Marano [4] and Bonanno-Candito [3] apply to energy functionals associated to problem $\left(P_{\xi, \mu}\right)$.

2. Mathematical background

Let $\left(E, E^{*}\right)$ be a Banach topological pair. Here, we use the variable exponent Lebesgue spaces $L^{p(z)}(M), L^{p(z)}(\partial M)$, and the generalized Lebesgue-Sobolev space $W^{1, p(z)}(M)$. These spaces (referring to the norms below) are separable, reflexive and uniformly convex Banach spaces (see Fan-Zhang [8]). Precisely, we have

$$
L^{p(z)}(M)=\left\{u: M \rightarrow \mathbb{R}: \mathrm{u} \text { is measurable and } \int_{M}|u(z)|^{p(z)} d z<+\infty\right\}
$$

with the norm

$$
\|u\|_{L^{p(z)}(M)}:=\inf \left\{\xi>0: \int_{M}\left|\frac{u(z)}{\xi}\right|^{p(z)} d z \leq 1\right\} \quad \text { (i.e., Luxemburg norm). }
$$

On the other hand, we have

$$
L^{p(z)}(\partial M)=\left\{u: \partial M \rightarrow \mathbb{R}: \mathrm{u} \text { is measurable and } \int_{\partial M}|u(z)|^{p(z)} d \sigma<+\infty\right\}
$$

where σ is the surface measure on ∂M. This time, we consider the norm

$$
\|u\|_{L^{p(z)}(\partial M)}:=\inf \left\{\xi>0: \int_{M}\left|\frac{u(z)}{\xi}\right|^{p(z)} d \sigma \leq 1\right\} .
$$

Also, the generalized Lebesgue-Sobolev space $W^{1, p(z)}(M)$ is defined as

$$
W^{1, p(z)}(M):=\left\{u \in L^{p(z)}(M):|\nabla u| \in L^{p(z)}(M)\right\},
$$

and we take the norm

$$
\|u\|_{W^{1, p(z)}(M)}=\|u\|_{L^{p(z)}(M)}+\||\nabla u|\|_{L^{p(z)}(M)},
$$

which is equivalent to the norm

$$
\|u\|:=\inf \left\{\xi>0: \int_{M}\left(a(z)\left|\frac{u(z)}{\xi}\right|^{p(z)}+\left|\frac{\nabla u(z)}{\xi}\right|^{p(z)}\right) d z \leq 1\right\}
$$

(for details we refer to D'Aguì-Sciammetta [5]). So, we work with the norm $\|u\|$ instead of $\|u\|_{W^{1, p(z)}(M)}$ on $W^{1, p(z)}(M)$. In proving our theorems, we make use of the following result, which links $\|u\|$ to $\rho(u)=\int_{M}\left(a(z)|u(z)|^{p(z)}+|\nabla u(z)|^{p(z)}\right) d z$ (see Fan-Zhao [9]).

Theorem 1. If $u \in W^{1, p(z)}(M)$, one has
(i) $\|u\|<1(=1,>1) \Leftrightarrow \rho(u)<1(=1,>1)$;
(ii) if $\|u\|>1$, then $\|u\|^{p^{-}} \leq \rho(u) \leq\|u\|^{p^{+}}$;
(iii) if $\|u\|<1$, then $\|u\|^{p^{+}} \leq \rho(u) \leq\|u\|^{p^{-}}$.

For notational simplicity, by E we denote the set

$$
E=W_{0, M_{1}}^{1, p}(M)=\left\{u \in W^{1, p}(M): u_{\mid M_{1}}=0\right\}
$$

where we consider the norm $\|u\|$.
We recall that a function $u \in E$ satisfying

$$
\begin{aligned}
& \int_{M}|\nabla u(z)|^{p(z)-2} \nabla u(z) \nabla v(z) d z+\int_{M} a(z)|u(z)|^{p(z)-2} u(z) v(z) d z \\
& =\xi \int_{M} g(z, u(z)) v(z) d z+\mu \int_{M_{2}} h(\gamma(u(z)) \gamma(v(z)) d z,
\end{aligned}
$$

for all $v \in E$, means a weak solution of problem $\left(P_{\xi}, \mu\right)$.
We mention the fact that $W^{1, p(z)}(M) \hookrightarrow W^{1, p^{-}}(M)$ continuously. Also, as $N<p^{-}, W^{1, p^{-}}(M) \hookrightarrow$ $C_{0}(\bar{M})$ compactly, and hence $W^{1, p(z)}(M) \hookrightarrow C_{0}(\bar{M})$ compactly (so $E \hookrightarrow C_{0}(\bar{M})$ compactly). If we put

$$
k=\sup _{u \in W^{1, p(z)}(M) \backslash\{0\}} \frac{\sup _{z \in M}|u(z)|}{\|u\|},
$$

then

$$
\begin{equation*}
\|u\|_{\infty} \leq k\|u\|, \tag{1}
\end{equation*}
$$

with $\|u\|_{\infty}$ to denote the usual norm in $L^{\infty}(M)$.
The quantity

$$
k_{b}=2^{\frac{p^{-}-1}{p^{-}}} \max \left[\left(\frac{1}{\|a\|_{1}}\right)^{\frac{1}{p^{-}}}, \frac{\operatorname{diam}(\mathrm{M})}{N^{\frac{1}{p^{-}}}}\left(\frac{p^{-}-1}{p^{-}-N} \operatorname{meas}(\mathrm{M})\right)^{\frac{p^{-}-1}{p^{-}}} \frac{\|a\|_{\infty}}{\|a\|_{1}}\right]
$$

where M is convex, $\operatorname{diam}(M)$ is the diameter of M, meas (M) is the Lebesgue measure of M, satisfies the inequality $k_{b}(1+\operatorname{meas}(M)) \geq k$. This means that $k_{b}(1+\operatorname{meas}(M))$ is an upper bound of k (see [5]).

Next, let $G: M \times \mathbb{R} \rightarrow \mathbb{R}$ be the function given as

$$
G(z, t)=\int_{0}^{t} g(z, y) d y, \quad \text { for all } t \in \mathbb{R}, z \in M
$$

and $H: \mathbb{R} \rightarrow \mathbb{R}$ be the function given as

$$
H(t)=\int_{0}^{t} h(z) d z, \quad \text { for all } t \in \mathbb{R}
$$

Our approach is variational, which means that we study the critical points of the energy functional (say I_{ξ}) associated to problem $\left(P_{\xi}, \mu\right)$. So, we introduce the functional $B: E \rightarrow \mathbb{R}$ defined by

$$
B(u)=\int_{M} G(z, u(z)) d z+\frac{\mu}{\xi} \int_{\Gamma_{2}} H(\gamma(u(z))) d \sigma, \quad \text { for all } u \in E
$$

Clearly, $B \in C^{1}(E, \mathbb{R})$ and has a compact derivative given as

$$
B^{\prime}(u)(v)=\int_{M} g(z, u(z)) v(z) d z+\frac{\mu}{\xi} \int_{\Gamma_{2}} h(\gamma(u(z))) \gamma(v(z)) d \sigma, \quad \text { for all } u, v \in E
$$

Moreover, let $A: E \rightarrow \mathbb{R}$ be the functional given as

$$
A(u)=\int_{M} \frac{1}{p(z)}\left[|\nabla u(z)|^{p(z)}+a(z)|u(z)|^{p(z)}\right] d z, \quad \text { for all } u \in E
$$

with A in $C^{1}(E, \mathbb{R})$. Note that A is Gâteaux differentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative $A^{\prime}: E \rightarrow E^{*}$ is

$$
A^{\prime}(u)(v)=\int_{M}\left[|\nabla u(z)|^{p(z)-2} \nabla u(z) \nabla v(z)+a(z)|u(z)|^{p(z)-2} u(z) v(z)\right] d z, \text { for all } u, v \in E
$$

We recall the following property of A^{\prime} (see, for example, [13, Proposition 2.6]).
Proposition 1. The functional $A^{\prime}: E \rightarrow E^{*}$ is a strictly monotone and bounded homeomorphism.
Finally, consider the functional $I_{\xi}: E \rightarrow \mathbb{R}$ defined by $I_{\xi}(u)=A(u)-\xi B(u)$ for all $u \in E$. We have

$$
\inf _{u \in E} A(u)=A(0)=B(0)=0
$$

We mention that the critical points of I_{ξ} are the weak solutions of problem $\left(P_{\xi}, \mu\right)$.

3. Three weak solutions of Bonanno-Marano type

We establish a theorem producing three weak solutions to problem $\left(P_{\xi}, \mu\right)$. So, we use the following three critical point result of Bonanno-Marano [4, Theorem 3.6].
Theorem 2. Let $\left(E, E^{*}\right)$ be a Banach topological pair with E reflexive. Let $A: E \rightarrow \mathbb{R}$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative has a continuous inverse on $E^{*}, B: E \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that $A(0)=B(0)=0$. Assume that there exist $r>0$ and $w \in E$, with $0<r<A(w)$, such that
(i) $\sigma=\frac{1}{r} \sup _{A(u) \leq r} B(u)<\frac{B(w)}{A(w)}=\rho$;
(ii) for each $\xi \in] \frac{1}{\rho}, \frac{1}{\sigma}\left[, I_{\xi}:=A-\xi B\right.$ is coercive.

Then, for each $\xi \in] \frac{1}{\rho}, \frac{1}{\sigma}\left[\right.$, I_{ξ} has at least three distinct critical points in E.
Here, we define $\eta: \bar{M} \rightarrow \mathbb{R}$ by $\eta(z)=\rho(z, \partial \bar{M})$, where ρ means the Euclidean distance. Let $D=\eta\left(z_{0}\right)$ with $z_{0} \in M$ point of maximum for η so that $\mathcal{B}\left(z_{0}, D\right)=\left\{z \in \mathbb{R}^{N}: \rho\left(z_{0}, z\right)<D\right\} \subset M$. Fixed $s \in] 1,+\infty\left[\right.$, we set $s_{D}=s^{-1}$ and $\kappa_{D}=\frac{s}{(s-1) D}\left(\right.$ note that $\left.\left(1-s_{D}\right) D \kappa_{D}=1\right)$. For each $\alpha \geq 1$, we consider a function $w_{\alpha}: M \rightarrow \mathbb{R}$ defined by

$$
w_{\alpha}(z)= \begin{cases}0 & z \in M \backslash \mathcal{B}\left(z_{0}, D\right) \tag{2}\\ \alpha & z \in \mathcal{B}\left(z_{0}, s_{D} D\right) \\ \alpha \kappa_{D}\left(D-\left|z-z_{0}\right|\right) & z \in \mathcal{B}\left(z_{0}, D\right) \backslash \mathcal{B}\left(z_{0}, s_{D} D\right)\end{cases}
$$

Now, we set $\alpha:=d \geq 1$ (so we fix $w_{d}: M \rightarrow \mathbb{R}$) and $c \geq k$ with

$$
A\left(w_{d}\right) p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z<\left(\frac{c}{k}\right)^{p^{-}} \int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z
$$

Also, we choose

$$
\xi \in \Omega:=] \frac{A\left(w_{d}\right)}{\int_{\mathcal{B}\left(x_{0}, s_{D} D\right)} G(z, d) d z}, \frac{\left(\frac{c}{k}\right) p^{p^{-}}}{p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z}[
$$

so that

$$
\begin{equation*}
\delta:=\min \left\{\frac{c^{p^{-}}-\xi p^{+} k^{p^{-}} \int_{M} \max _{|y| \leq c} G(z, y) d z}{p^{+} k^{p^{-}} \sigma\left(M_{2}\right) \max _{|y| \leq c} H(y)}, \frac{1}{2 k^{p^{-}} p^{+} \sigma\left(M_{2}\right) \lim \sup _{|y| \rightarrow+\infty} \frac{H(y)}{|y|^{p^{-}}}}\right\}, \tag{3}
\end{equation*}
$$

with $\sigma\left(M_{2}\right):=\int_{M_{2}} d \sigma$ and, as usual, we take $r / 0=+\infty$.
Our first result is the following proposition, where we use the hypothesis:
(h) $h: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\limsup _{|z| \rightarrow+\infty} \frac{H(z)}{|z|^{p^{-}}}<+\infty
$$

Recall that h is continuous, too.
Proposition 2. If (h) holds, then we can find $\delta>0$ as in (3) such that, for each $\mu \in[0, \delta]$, the functional $I_{\xi}(u)=A(u)-\xi B(u)$, for all $u \in E(\xi \in \Omega)$ is coercive whenever

$$
\limsup _{|z| \rightarrow+\infty} \frac{\sup _{y \in M} G(z, y)}{|y|^{p^{-}}}<\frac{\int_{M} \max _{|y| \leq c} G(z, y) d z}{2 c^{p^{-}} \operatorname{meas}(M)}
$$

Proof. Suppose

$$
\limsup _{|y| \rightarrow+\infty} \frac{\sup _{z \in M} G(z, y)}{|y|^{p^{-}}}>0
$$

so that we can find $l>0$ with

$$
\begin{aligned}
& \limsup _{|y| \rightarrow+\infty} \frac{\sup _{z \in M} G(z, y)}{|y|^{p^{-}}}<l<\frac{\int_{M} \max _{|y| \leq c} G(z, y) d z}{2 c^{p^{-}} \operatorname{meas}(M)} \\
\Rightarrow \quad & G(z, y) \leq l|y|^{p^{-}}+C_{l}, \quad \text { for each } y \in \mathbb{R} \text { and } z \in M\left(\text { for some } C_{l}>0\right) .
\end{aligned}
$$

Since $\left(\frac{c}{k}\right)^{p^{-}}>\xi p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z$, we have

$$
\begin{aligned}
\xi \int_{M} G(z, u(z)) d z & \leq \xi l \int_{M}|u(z)|^{p^{-}} d z+\xi C_{l} \operatorname{meas}(M) \\
& <\frac{\left(\frac{c}{k}\right)^{p^{-}}}{p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z}\left(l \int_{M}|u(z)|^{p^{-}} d z+C_{l} \operatorname{meas}(M)\right) \\
& \leq \frac{\left(\frac{c}{k}\right)^{p^{-}} \operatorname{meas}(M)}{p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z}\left(l k^{p^{-}}\|u\|^{p^{-}}+C_{l}\right) \quad \text { for all } u \in E(\text { by }(1))
\end{aligned}
$$

So, as $\delta>\mu$, we get

$$
\begin{aligned}
& 1>2 \mu k^{p^{-}} p^{+} \sigma\left(M_{2}\right) \limsup _{|y| \rightarrow+\infty} \frac{H(y)}{|y|^{p^{-}}} \\
\Rightarrow & H(y) \leq \frac{|y|^{p^{-}}}{2 \mu k^{p^{-}} p^{+} \sigma\left(M_{2}\right)}+C_{\mu}, \quad \text { for all } y \in \mathbb{R}\left(\text { for some } C_{\mu}>0\right) .
\end{aligned}
$$

By (1), we obtain

$$
\begin{align*}
\int_{M_{2}} H(\gamma(u(z))) d \sigma & \leq \frac{1}{2 \mu k^{p^{-}} p^{+} \sigma\left(M_{2}\right)} \int_{M_{2}}|u(z)|^{p^{-}} d z+C_{\mu} \sigma\left(M_{2}\right) \\
& \leq \frac{1}{2 \mu p^{+}}\|u\|^{p^{-}}+C_{\mu} \sigma\left(M_{2}\right), \quad \text { for all } u \in E \tag{5}
\end{align*}
$$

If $\|u\| \geq 1$, (4) and (5) lead to

$$
\begin{aligned}
I_{\xi}(u) & =A(u)-\xi B(u) \\
& \geq \frac{1}{p^{+}}\|u\|^{p^{-}}-\frac{\left(\frac{c}{k}\right)^{p^{-}} \operatorname{meas}(M)}{p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z}\left(l k^{p^{-}}\|u\|^{p^{-}}+C_{l}\right)-\frac{1}{2 p^{+}}\|u\|^{p^{-}}-\mu C_{\mu} \sigma\left(M_{2}\right) \\
& =\frac{1}{p^{+}}\left(\frac{1}{2}-\frac{c^{p^{-}} \operatorname{meas}(M)}{\int_{M} \max _{|y| \leq c} G(z, y) d z} l\right)\|u\|^{p^{-}}-\frac{\left(\frac{c}{k}\right)^{p^{-}} \operatorname{meas}(M)}{p^{+} \int_{M} \max _{|y| \leq c} G(z, y) d z}-\mu C_{\mu} \sigma\left(M_{2}\right) .
\end{aligned}
$$

By the choice of l, we get

$$
\begin{aligned}
& \frac{1}{2}-\frac{c^{p^{-}} \operatorname{meas}(M)}{\int_{M} \max _{|y| \leq c} G(z, y) d z} l>0 \\
\Rightarrow \quad & I_{\xi} \text { is coercive. }
\end{aligned}
$$

On the other hand, if

$$
\limsup _{|y| \rightarrow+\infty} \frac{\sup _{z \in M} G(z, y)}{|y|^{p^{-}}} \leq 0
$$

we can find a positive constant C with $G(z, y) \leq C$ for all $y \in \mathbb{R}$ and $z \in M$. So, following the same lines as above, we deduce that

$$
\begin{aligned}
& I_{\xi}(u) \geq \frac{1}{2 p^{+}}\|u\|^{p^{-}}-\frac{\left(\frac{c}{k}\right)^{p^{-}} \operatorname{meas}(M) C}{p^{+} \int_{M} a \max _{|y| \leq c} G(z, y) d z}-\mu C_{\mu} \sigma\left(M_{2}\right) \\
\Rightarrow & I_{\xi} \text { is (again) coercive. }
\end{aligned}
$$

We are ready to establish the existence of three weak solutions. To this aim we suppose that there are $d \geq 1$ and $c \geq k$ with

$$
\begin{equation*}
A\left(w_{d}\right)>\left(\frac{c}{k}\right)^{p^{-}} \tag{6}
\end{equation*}
$$

where $w_{d}: M \rightarrow \mathbb{R}$ is given as in (2), satisfying

$$
\begin{aligned}
& \left(S_{1}\right) p^{+} A\left(w_{d}\right) \int_{M} \max _{|y| \leq c} G(z, y) d z<\left(\frac{c}{k}\right)^{p^{-}} \int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z \\
& \left(S_{2}\right) \lim \sup _{|y| \rightarrow+\infty} \frac{\sup _{z \in M} G(z, y)}{\left.|y|\right|^{p^{-}}}<\frac{\int_{M} \max _{|y| \leq c} G(z, y) d z}{2{c^{p^{-}} \operatorname{meas}(M)}_{\operatorname{meas}}} \\
& \left(S_{3}\right) G(z, y)>0 \text { for all } z \in M, y \in[0, d] .
\end{aligned}
$$

Theorem 3. If $(h),\left(S_{1}\right)-\left(S_{3}\right)$ hold, then we can find $\delta>0$ as in (3) such that, for each $\mu \in[0, \delta]$, problem $\left(P_{\xi, \mu}\right)$ has at least three weak solutions in $E(\xi \in \Omega)$.
Proof. We set

$$
r:=\frac{1}{p^{+}}\left(\frac{c}{k}\right)^{p^{-}},
$$

so that, by (6), we have

$$
A\left(w_{d}\right)>\left(\frac{c}{k}\right)^{p^{-}}>r
$$

By Theorem 1, for all $u \in E$ such that $\left.\left.u \in A^{-1}(]-\infty, r\right]\right)$, we obtain

$$
\begin{aligned}
& \min \left\{\|u\|^{p^{+}},\|u\|^{p^{-}}\right\} \leq r p^{+} \\
\Rightarrow \quad & \|u\| \leq \max \left\{\left(p^{+} r\right)^{\frac{1}{p^{+}}},\left(p^{+} r\right)^{\frac{1}{p^{-}}}\right\}=\frac{c}{k}, \\
\Rightarrow \quad & \max _{z \in M}|u(z)| \leq k\|u\| \leq c \quad(\text { by }(1))
\end{aligned}
$$

Also, we have

$$
B\left(w_{d}\right)=\int_{M} G\left(z, w_{d}(z)\right) d z+\frac{\mu}{\xi} \int_{M_{2}} H\left(\gamma\left(w_{d}(z)\right)\right) d \sigma
$$

So, we deduce that

$$
\begin{aligned}
\frac{1}{r} \sup _{A(u) \leq r} B(u) & \leq \frac{\int_{M} \max _{|y| \leq c} G(z, y) d z+\frac{\mu}{\xi} \int_{M_{2}} \max _{|y| \leq c} H(y) d \sigma}{\frac{1}{p^{+}}\left(\frac{c}{k}\right)^{p^{-}}} \\
& =p^{+}\left(\frac{k}{c}\right)^{p^{-}}\left[\int_{M} \max _{|y| \leq c} G(z, y) d z+\frac{\mu}{\xi} \sigma\left(M_{2}\right) \max _{|y| \leq c} H(y)\right]
\end{aligned}
$$

Now, if $\max _{|y| \leq c} H(y)=0$, we have

$$
\frac{1}{r} \sup _{A(u) \leq r} B(u)<\frac{1}{\xi}
$$

and if $\max _{|y| \leq c} H(y)>0$, it turns out to be true as

$$
\mu<\frac{c^{p^{-}}-\xi p^{+} k^{p^{-}} \int_{M} \max _{|y| \leq c} G(z, y) d z}{p^{+} k^{p^{-}} \sigma\left(M_{2}\right) \max _{|y| \leq c} H(y)} .
$$

By $\left(S_{3}\right)$ we get

$$
\begin{aligned}
& B\left(w_{d}\right) \geq \int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z \\
\Rightarrow \quad & \frac{B\left(w_{d}\right)}{A\left(w_{d}\right)} \geq \frac{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}{A\left(w_{d}\right)}>\frac{1}{\xi} \\
\Rightarrow \quad & \frac{B\left(w_{d}\right)}{A\left(w_{d}\right)}>\frac{1}{r} \sup _{A(u) \leq r} B(u), \\
\Rightarrow \quad & \text { Theorem } 2(i) \text { is true } .
\end{aligned}
$$

By Proposition 2, we know that Theorem 2(ii) holds true. Since all the regularity hypotheses of Theorem 2 on A and B are true, then Theorem 2 gives us the existence of at least three critical points of I_{ξ}, which are three weak solutions of $\left(P_{\xi, \mu}\right)$.

4. Three weak solutions of Bonanno-Candito type

In this section, we do not use hypothesis (h) in establishing the existence of three weak solutions. Here, we assume that g and h are nonnegative. We apply the following three critical points result of Bonanno-Candito [3, Theorem 3.3].

Theorem 4. Let $\left(E, E^{*}\right)$ be a Banach pair with E reflexive. Let $A: E \rightarrow \mathbb{R}$ be a convex, coercive and continuously Gâteaux differentiable functional whose derivative has a continuous inverse on $E^{*}, B: E \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable functional whose derivative is compact with

$$
\inf _{u \in E} A(u)=A(0)=B(0)=0
$$

If there exist $r_{1}, r_{2}>0$ and $w \in E$, with $4 r_{1}<2 A(w)<r_{2}$, satisfying
(i) $\frac{1}{r_{1}} \sup _{A(u)<r_{1}} B(u)<\frac{2}{3} \frac{B(w)}{A(w)}$;
(ii) $\frac{1}{r_{2}} \sup _{A(u)<r_{2}} B(u)<\frac{1}{3} \frac{B(w)}{A(w)}$;
(iii) $\inf _{s \in[0,1]} B\left(s u_{1}+(1-s) u_{2}\right) \geq 0$, for all $u_{1}, u_{2} \in E$, with $B\left(u_{1}\right) \geq 0$ and $B\left(u_{2}\right) \geq 0$, which are local minima of $I_{\xi}=A-\xi B$, for each $\xi \in \widehat{\Omega}$, where

$$
\widehat{\Omega}:=] \frac{3}{2} \frac{A(w)}{B(w)}, \min \left\{\frac{r_{1}}{\sup _{A(u)<r_{1}} B(u)}, \frac{\frac{r_{2}}{2}}{\sup _{A(u)<r_{2}} B(u)}\right\}[,
$$

then I_{ξ} has at least three distinct critical points in $A^{-1}(]-\infty, r_{2}[)$.
Next, we suppose that there are $d \geq 1$ and $c_{1}, c_{2}>0$, with $\min \left\{c_{1}, c_{2}\right\} \geq k$, such that

$$
\frac{3}{2} \frac{A\left(w_{d}\right)}{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}<\min \left\{\frac{\left(\frac{c_{1}}{k}\right)^{p^{-}}}{p^{+} \int_{M} G\left(z, c_{1}\right) d z}, \frac{\left(\frac{c_{2}}{k}\right)^{p^{-}}}{2 p^{+} \int_{M} G\left(z, c_{2}\right) d z}\right\}
$$

where $w_{d}: M \rightarrow \mathbb{R}$ is given as in (2), satisfying
$\left(S_{1}^{\prime}\right) \frac{2}{p^{+}}\left(\frac{c_{1}}{k}\right)^{p^{-}}<A\left(w_{d}\right)<\frac{1}{2 p^{+}}\left(\frac{c_{2}}{k}\right)^{p^{-}} ;$
$\left(S_{2}^{\prime}\right) \max \left\{\frac{\int_{M} G\left(z, c_{1}\right) d z}{\left(\frac{c_{1}}{k}\right)^{p^{-}}}, \frac{2 \int_{M} G\left(z, c_{2}\right) d z}{\left(\frac{c_{2}}{k}\right)^{p^{-}}}\right\}<\frac{2}{3} \frac{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}{\Phi\left(w_{d}\right)} ;$
$\left(S_{3}^{\prime}\right) g(z, y) \geq 0$ for each $(z, y) \in M \times \mathbb{R}$.
Here, we consider

$$
\xi \in \widetilde{\Omega}:=\left[\frac{3}{2} \frac{A\left(w_{d}\right)}{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}, \frac{1}{p^{+}} \min \left\{\frac{\left(\frac{c_{1}}{k}\right)^{p^{-}}}{\int_{M} G\left(z, c_{1}\right) d z}, \frac{\left(\frac{c_{2}}{k}\right)^{p^{-}}}{2 \int_{M} G\left(z, c_{2}\right) d z}\right\}\right]
$$

so that

$$
\begin{equation*}
\delta^{*}:=\min \left\{\frac{\left(\frac{c_{1}}{k}\right)^{p^{-}}-\xi p^{+} \int_{M} G\left(z, c_{1}\right) d z}{p^{+} \sigma\left(M_{2}\right) H\left(c_{1}\right)}, \frac{\left(\frac{c_{2}}{k}\right)^{p^{-}}-2 \xi p^{+} \int_{M} G\left(z, c_{2}\right) d z}{2 p^{+} \sigma\left(M_{2}\right) H\left(c_{2}\right)}\right\} \tag{7}
\end{equation*}
$$

Theorem 5. If $\left(S_{1}^{\prime}\right)-\left(S_{3}^{\prime}\right)$ hold, then we can find $\delta^{*}>0$ as in (7) such that, for each $\mu \in\left[0, \delta^{*}[\right.$, problem $\left(P_{\xi}, \mu\right)(\xi \in \widetilde{\Omega})$ has at least three distinct weak solutions $u_{*}, u^{*}, \widetilde{u}$, whose values range is the interval $\left[0, c_{2}[\right.$.
Proof. For reader convenience we set $r_{1}:=\frac{1}{p^{+}}\left(\frac{c_{1}}{k}\right)^{p^{-}}$and $r_{2}:=\frac{1}{p^{+}}\left(\frac{c_{2}}{k}\right)^{p^{-}}$. So, by $\left(S_{1}^{\prime}\right)$ we have $4 r_{1}<2 A\left(w_{d}\right)<r_{2}$. As $\delta^{*}>\mu$ and $H(z) \geq 0$ for $z>0$, we obtain

$$
\begin{aligned}
\frac{1}{r_{1}} \sup _{A(u) \leq r_{1}} B(u) & \leq \sup _{A(u) \leq r_{1}} \frac{\int_{M} G(z, u(z)) d z+\frac{\mu}{\xi} \int_{M_{2}} H(\gamma(u(z))) d \sigma}{\frac{1}{p^{+}}\left(\frac{c_{1}}{k}\right)^{p^{-}}} \\
& =p^{+}\left(\frac{k}{c_{1}}\right)^{p^{-}}\left[\int_{M} G\left(z, c_{1}\right) d z+\frac{\mu}{\xi} \sigma\left(M_{2}\right) H\left(c_{1}\right)\right]
\end{aligned}
$$

$$
<\frac{1}{\xi}<\frac{2}{3} \frac{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}{A\left(w_{d}\right)} \leq \frac{2}{3} \frac{B\left(w_{d}\right)}{A\left(w_{d}\right)}
$$

Also, we have

$$
\begin{aligned}
\frac{2}{r_{2}} \sup _{A(u) \leq r_{2}} B(u) & \leq 2 \sup _{A(u) \leq r_{2}} \frac{\int_{M} G(z, u(z)) d z+\frac{\mu}{\xi} \int_{M_{2}} H(\gamma(u(z))) d \sigma}{\frac{1}{p^{+}}\left(\frac{c_{2}}{k}\right)^{p^{-}}} \\
& =2 p^{+}\left(\frac{k}{c_{2}}\right)^{p^{-}}\left[\int_{M} G\left(z, c_{2}\right) d z+\frac{\mu}{\xi} \sigma\left(M_{2}\right) H\left(c_{2}\right)\right] \\
& <\frac{1}{\xi}<\frac{2}{3} \frac{\int_{\mathcal{B}\left(z_{0}, s_{D} D\right)} G(z, d) d z}{A\left(w_{d}\right)} \leq \frac{2}{3} \frac{B\left(w_{d}\right)}{A\left(w_{d}\right)} \\
& \Rightarrow \frac{1}{r_{2}} \sup _{A(u) \leq r_{2}} B(u)<\frac{1}{3} \frac{B\left(w_{d}\right)}{A\left(w_{d}\right)} .
\end{aligned}
$$

This means that Theorem $4(i)$-(ii) hold true.
Next, consider two local minima of I_{ξ}, say $u_{*}, u^{*} \in E$. Clearly, u_{*}, u^{*} are critical points of I_{ξ}, and hence weak solutions of $\left(P_{\xi, \mu}\right)$. We have to show that $u_{*}, u^{*} \geq 0$. Let w be a weak solution of ($P_{\xi, \mu}$) so that

$$
\left.\int_{M}|\nabla w|^{p(z)-2}|\nabla w||\nabla v| d z+\int_{M} a(z)|w|^{p(z)-2}|w||v| d z=\xi \int_{M} g(z, w) v d z+\mu \int_{M_{2}} h(\gamma(w))\right) \gamma(v) d \sigma
$$

for all $v \in E$. So, if we choose $v=\min \{w, 0\}=w^{-} \in E$, we get

$$
\left.\int_{M}\left|\nabla w^{-}\right|^{p(z)} d z+\int_{M} a(z)\left|w^{-}\right|^{p(z)} d z=\xi \int_{M} g(z, w) w^{-} d z+\mu \int_{M_{2}} h(\gamma(w))\right) \gamma\left(w^{-}\right) d \sigma \leq 0
$$

(recall the sign assumptions on the data).
This leads to $\left\|w^{-}\right\|=0$, which is absurd, and hence u_{*}, u^{*} are nonnegative. So, we have

$$
\begin{aligned}
& s u_{*}+(1-s) u^{*} \geq 0 \quad \text { for all } s \in[0,1] \\
\Rightarrow & B\left(s u_{*}+(1-s) u^{*}\right) \geq 0 \quad \text { for all } s \in[0,1], \\
\Rightarrow & \text { Theorem } 4(i i i) \text { is true. }
\end{aligned}
$$

Since all the regularity hypotheses of Theorem 4 on A and B remain true, we conclude that $\left(P_{\xi, \mu}\right)$ has at least three distinct weak solutions for each $\xi \in \widetilde{\Omega}$.

References

[1] G. Barletta, R. Livrea, N.S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497-1516.
[2] G. Bonanno, G. D'Aguì, A. Sciammetta, Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions, Opuscula Math., 39 (2019), 159-174.
[3] Bonanno G, Candito P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Diff. Equ., (2008) 244:3031-3059.
[4] G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1-10.
[5] G. D'Aguì, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612-5619.
[6] S. G. Deng, Q. Wang, Nonexistence, existence and multiplicity of positive solutions to the p(x)-Laplacian nonlinear Neumann boundary value problem, Nonlinear Anal., 73 (2010), 2170-2183.
[7] L. Diening, P. Harjulehto, P. Hästö, M. Rŭzĭcka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, Heidelberg, 2011.
[8] X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52(2003), 1843-1852.
[9] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
[10] S. Heidarkhani G.A. Afrouzi, A. Hadjian, Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Math. Methods Appl. Sci., 38 (2015), 2589-2599.
[11] W.-W. Pan, G.A. Afrouzi, L. Li, Three solutions to a $p(x)$-Laplacian problem in weighted-variable-exponent Sobolev space, An. Şt. Univ. Ovidius Constanţa, 21 (2013), 195-205.
[12] N.S. Papageorgiou, C. Vetro, Superlinear $(p(z), q(z))$-equations, Complex Var. Elliptic Equ., 64 (2019), 8-25.
[13] M.M. Rodrigues, Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators, Mediterr. J. Math. 9 (2012), 211-223.
[14] C. Vetro, Weak solutions to Dirichlet boundary value problem driven by $p(x)$-Laplacian-like operator, Electron. J. Qual. Theory Differ. Equ., 2017:98 (2017), 1-10.
(C. Vetro) University of Palermo, Department of Mathematics and Computer Science, Via Archirafi 34, 90123 - Palermo, Italy

E-mail address: calogero.vetro@unipa.it
(F. Vetro) Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

E-mail address: francescavetro@tdtu.edu.vn

