THREE SOLUTIONS TO MIXED BOUNDARY VALUE PROBLEM DRIVEN BY p(z)-LAPLACE OPERATOR

CALOGERO VETRO AND FRANCESCA VETRO

ABSTRACT. We prove the existence of at least three weak solutions to a mixed Dirichlet-Neumann boundary value problem for equations driven by the p(z)-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.

1. INTRODUCTION

Let $M \subset \mathbb{R}^N$ $(N \geq 3)$ be an open bounded domain with smooth boundary. In this article we consider the following mixed Dirichlet-Neumann boundary value problem driven by the p(z)-Laplace operator:

$$(P_{\xi,\mu}) \begin{cases} -\operatorname{div}\left(|\nabla u(z)|^{p(z)-2}\nabla u(z)\right) + a(z)|u(z)|^{p(z)-2}u(z) = \xi \,g(z,u(z)) & \text{in } M, \\ u = 0 & \text{on } M_1, \\ |\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \mu h(\gamma(u)) & \text{on } M_2, \end{cases}$$

where $p \in C(\overline{M})$ is a function with some regularities satisfying

$$N < p^{-} := \inf_{z \in M} p(z) \le p(z) \le p^{+} := \sup_{z \in M} p(z) < +\infty,$$

 M_1, M_2 are smooth (N-1)-dimensional submanifolds of ∂M and Γ is a smooth (N-2)-dimensional submanifolds of ∂M with $M_1 \cap M_2 = \emptyset$, $\overline{M}_1 \cup \overline{M}_2 = \partial M$, $\overline{M}_1 \cap \overline{M}_2 = \Gamma$, $a \in L^{\infty}(M)$ with $a_0 := \text{ess inf}_{z \in M} a(z) > 0$ is the potential function, $g : M \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function (that is, for all $z \in \mathbb{R}, z \to g(z, y)$ is measurable and for a.a. $z \in M, y \to g(z, y)$ is continuous), $h : \mathbb{R} \to \mathbb{R}$ is a nonnegative continuous function, $\gamma : W^{1,p}(M) \to L^p(\partial M)$ is the trace operator, $\xi > 0$ and $\mu \ge 0$ are real parameters, and ν is the outer unit normal to ∂M .

We recall that the p(z)-Laplace operator drives processes of physical interest, as stated in Diening-Harjulehto-Hästö-Rŭzĭcka [7]. Existence and multiplicity results for problems involving the p(z)-Laplace operator were obtained by Papageorgiou-Vetro [12], Rodrigues [13], Vetro [14] (Dirichlet condition), Deng-Wang [6], Heidarkhani-Afrouzi-Hadjian [10], Pan-Afrouzi-Li [11] (Neumann condition). In [12] the authors consider a (p(z), q(z))-equation with reaction g which depends on the solution but does not satisfy the Ambrosetti-Rabinowitz condition. Their approach is variational based on critical point theory together with Morse theory (critical groups). These

Key words and phrases. Dirichlet-Neumann boundary value problem; p(z)-Laplace operator; variable exponent Sobolev space.

²⁰¹⁰ Mathematics Subject Classification: 35J20, 35J25.

Corresponding author: Francesca Vetro (francescavetro@tdtu.edu.vn).

C. VETRO AND F. VETRO

tools are used also in [13]. This time, the author studies a nonlinear eigenvalue problem for p(z)-Laplacian-like operator, originated from a capillary phenomena. The reaction is superlinear at infinity and the author proves the existence of infinite many pairs of solutions. [14] also considers a problem driven by the p(z)-Laplacian-like operator. There, the reaction satisfies a sub-critical growth condition and the results deal with the existence of one and three solutions (via critical point theory). In [10, 11] the authors prove the existence of three solutions for p(z)-Laplace problems with potential function. In particular, [10] considers small perturbations of nonhomogeneous Neumann condition. A similar problem is discussed in [6], where the authors use sub-supersolution method and strong comparison principle. For mixed boundary value problems there are the recent works of Barletta-Livrea-Papageorgiou [1], Bonanno-D'Aguì-Sciammetta [2] (for the constant *p*-Laplace operator).

Here, we give two existence theorems of three weak solutions to problem $(P_{\xi,\mu})$ (that is, mixed boundary value problem with variable exponent version of the *p*-Laplace operator), by using a variational approach and critical point theorems. Here the reaction $g : M \times \mathbb{R} \to \mathbb{R}$ is L^1 -Carathéodory (that is, g is Carathéodory and for any s > 0 there exists $l_s \in L^1(M)$ with $|g(z,y)| \leq l_s(z)$, for a.e. $z \in M$ and for all $|y| \leq s$). So, the three critical points results of Bonanno-Marano [4] and Bonanno-Candito [3] apply to energy functionals associated to problem $(P_{\xi,\mu})$.

2. MATHEMATICAL BACKGROUND

Let (E, E^*) be a Banach topological pair. Here, we use the variable exponent Lebesgue spaces $L^{p(z)}(M)$, $L^{p(z)}(\partial M)$, and the generalized Lebesgue-Sobolev space $W^{1,p(z)}(M)$. These spaces (referring to the norms below) are separable, reflexive and uniformly convex Banach spaces (see Fan-Zhang [8]). Precisely, we have

$$L^{p(z)}(M) = \left\{ u: M \to \mathbb{R} : \text{ u is measurable and } \int_M |u(z)|^{p(z)} dz < +\infty \right\},$$

with the norm

$$\|u\|_{L^{p(z)}(M)} := \inf\left\{\xi > 0 : \int_{M} \left|\frac{u(z)}{\xi}\right|^{p(z)} dz \le 1\right\} \quad \text{(i.e., Luxemburg norm)}.$$

On the other hand, we have

$$L^{p(z)}(\partial M) = \left\{ u : \partial M \to \mathbb{R} : \text{ u is measurable and } \int_{\partial M} |u(z)|^{p(z)} d\sigma < +\infty \right\},$$

where σ is the surface measure on ∂M . This time, we consider the norm

$$\|u\|_{L^{p(z)}(\partial M)} := \inf\left\{\xi > 0 : \int_M \left|\frac{u(z)}{\xi}\right|^{p(z)} d\sigma \le 1\right\}.$$

Also, the generalized Lebesgue-Sobolev space $W^{1,p(z)}(M)$ is defined as

$$W^{1,p(z)}(M) := \{ u \in L^{p(z)}(M) : |\nabla u| \in L^{p(z)}(M) \},\$$

and we take the norm

$$||u||_{W^{1,p(z)}(M)} = ||u||_{L^{p(z)}(M)} + |||\nabla u|||_{L^{p(z)}(M)},$$

which is equivalent to the norm

$$||u|| := \inf\left\{\xi > 0 : \int_M \left(a(z) \left|\frac{u(z)}{\xi}\right|^{p(z)} + \left|\frac{\nabla u(z)}{\xi}\right|^{p(z)}\right) dz \le 1\right\},\$$

(for details we refer to D'Aguì-Sciammetta [5]). So, we work with the norm ||u|| instead of $||u||_{W^{1,p(z)}(M)}$ on $W^{1,p(z)}(M)$. In proving our theorems, we make use of the following result, which links ||u|| to $\rho(u) = \int_M \left(a(z) |u(z)|^{p(z)} + |\nabla u(z)|^{p(z)} \right) dz$ (see Fan-Zhao [9]).

Theorem 1. If $u \in W^{1,p(z)}(M)$, one has

- (i) $||u|| < 1 (= 1, > 1) \Leftrightarrow \rho(u) < 1 (= 1, > 1);$
- (ii) if ||u|| > 1, then $||u||^{p^-} \le \rho(u) \le ||u||^{p^+}$;
- (iii) if ||u|| < 1, then $||u||^{p^+} \le \rho(u) \le ||u||^{p^-}$.

For notational simplicity, by E we denote the set

$$E = W_{0,M_1}^{1,p}(M) = \{ u \in W^{1,p}(M) : u_{|M_1|} = 0 \},\$$

where we consider the norm ||u||.

We recall that a function $u \in E$ satisfying

$$\int_{M} |\nabla u(z)|^{p(z)-2} \nabla u(z) \nabla v(z) dz + \int_{M} a(z) |u(z)|^{p(z)-2} u(z) v(z) dz$$
$$= \xi \int_{M} g(z, u(z)) v(z) dz + \mu \int_{M_2} h(\gamma(u(z)) \gamma(v(z)) dz,$$

for all $v \in E$, means a weak solution of problem (P_{ξ}, μ) .

We mention the fact that $W^{1,p(z)}(M) \hookrightarrow W^{1,p^-}(M)$ continuously. Also, as $N < p^-, W^{1,p^-}(M) \hookrightarrow C_0(\overline{M})$ compactly, and hence $W^{1,p(z)}(M) \hookrightarrow C_0(\overline{M})$ compactly (so $E \hookrightarrow C_0(\overline{M})$ compactly). If we put

$$k = \sup_{u \in W^{1,p(z)}(M) \setminus \{0\}} \frac{\sup_{z \in M} |u(z)|}{\|u\|},$$

then

(1)
$$||u||_{\infty} \le k||u||,$$

with $||u||_{\infty}$ to denote the usual norm in $L^{\infty}(M)$.

The quantity

$$k_{b} = 2^{\frac{p^{-}-1}{p^{-}}} \max\left[\left(\frac{1}{\|a\|_{1}}\right)^{\frac{1}{p^{-}}}, \frac{\operatorname{diam}\left(\mathbf{M}\right)}{N^{\frac{1}{p^{-}}}} \left(\frac{p^{-}-1}{p^{-}-N}\operatorname{meas}\left(\mathbf{M}\right)\right)^{\frac{p^{-}-1}{p^{-}}} \frac{\|a\|_{\infty}}{\|a\|_{1}} \right],$$

where M is convex, diam (M) is the diameter of M, meas (M) is the Lebesgue measure of M, satisfies the inequality $k_b(1 + \text{meas}(M)) \ge k$. This means that $k_b(1 + \text{meas}(M))$ is an upper bound of k (see [5]).

Next, let $G: M \times \mathbb{R} \to \mathbb{R}$ be the function given as

$$G(z,t) = \int_0^t g(z,y) dy, \quad \text{for all } t \in \mathbb{R}, \ z \in M,$$

and $H: \mathbb{R} \to \mathbb{R}$ be the function given as

$$H(t) = \int_0^t h(z)dz$$
, for all $t \in \mathbb{R}$.

Our approach is variational, which means that we study the critical points of the energy functional (say I_{ξ}) associated to problem (P_{ξ}, μ) . So, we introduce the functional $B : E \to \mathbb{R}$ defined by

$$B(u) = \int_M G(z, u(z)) \, dz + \frac{\mu}{\xi} \int_{\Gamma_2} H(\gamma(u(z))) \, d\sigma, \quad \text{for all } u \in E.$$

Clearly, $B \in C^1(E, \mathbb{R})$ and has a compact derivative given as

$$B'(u)(v) = \int_M g(z, u(z))v(z) \, dz + \frac{\mu}{\xi} \int_{\Gamma_2} h(\gamma(u(z)))\gamma(v(z)) \, d\sigma, \quad \text{for all } u, v \in E.$$

Moreover, let $A: E \to \mathbb{R}$ be the functional given as

$$A(u) = \int_{M} \frac{1}{p(z)} \left[|\nabla u(z)|^{p(z)} + a(z)|u(z)|^{p(z)} \right] dz, \text{ for all } u \in E,$$

with A in $C^1(E, \mathbb{R})$. Note that A is Gâteaux differentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative $A': E \to E^*$ is

$$A'(u)(v) = \int_{M} \left[|\nabla u(z)|^{p(z)-2} \nabla u(z) \nabla v(z) + a(z) |u(z)|^{p(z)-2} u(z) v(z) \right] dz, \text{ for all } u, v \in E.$$

We recall the following property of A' (see, for example, [13, Proposition 2.6]).

Proposition 1. The functional $A': E \to E^*$ is a strictly monotone and bounded homeomorphism.

Finally, consider the functional $I_{\xi}: E \to \mathbb{R}$ defined by $I_{\xi}(u) = A(u) - \xi B(u)$ for all $u \in E$. We have

$$\inf_{u \in E} A(u) = A(0) = B(0) = 0.$$

We mention that the critical points of I_{ξ} are the weak solutions of problem (P_{ξ}, μ) .

3. Three weak solutions of Bonanno-Marano type

We establish a theorem producing three weak solutions to problem (P_{ξ}, μ) . So, we use the following three critical point result of Bonanno-Marano [4, Theorem 3.6].

Theorem 2. Let (E, E^*) be a Banach topological pair with E reflexive. Let $A : E \to \mathbb{R}$ be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative has a continuous inverse on E^* , $B : E \to \mathbb{R}$ be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such that A(0) = B(0) = 0. Assume that there exist r > 0 and $w \in E$, with 0 < r < A(w), such that

(i)
$$\sigma = \frac{1}{r} \sup_{A(u) \le r} B(u) < \frac{B(w)}{A(w)} = \rho;$$

(ii) for each $\xi \in \left[\frac{1}{\rho}, \frac{1}{\sigma}\right], I_{\xi} := A - \xi B$ is coercive.
Then, for each $\xi \in \left[\frac{1}{\rho}, \frac{1}{\sigma}\right], I_{\xi}$ has at least three distinct critical points in E

Here, we define $\eta : \overline{M} \to \mathbb{R}$ by $\eta(z) = \rho(z, \partial \overline{M})$, where ρ means the Euclidean distance. Let $D = \eta(z_0)$ with $z_0 \in M$ point of maximum for η so that $\mathcal{B}(z_0, D) = \{z \in \mathbb{R}^N : \rho(z_0, z) < D\} \subset M$. Fixed $s \in]1, +\infty[$, we set $s_D = s^{-1}$ and $\kappa_D = \frac{s}{(s-1)D}$ (note that $(1-s_D)D\kappa_D = 1$). For each $\alpha \ge 1$, we consider a function $w_{\alpha} : M \to \mathbb{R}$ defined by

(2)
$$w_{\alpha}(z) = \begin{cases} 0 & z \in M \setminus \mathcal{B}(z_0, D), \\ \alpha & z \in \mathcal{B}(z_0, s_D D), \\ \alpha \kappa_D (D - |z - z_0|) & z \in \mathcal{B}(z_0, D) \setminus \mathcal{B}(z_0, s_D D) \end{cases}$$

Now, we set $\alpha := d \ge 1$ (so we fix $w_d : M \to \mathbb{R}$) and $c \ge k$ with

$$A(w_d)p^+ \int_M \max_{|y| \le c} G(z, y) dz < \left(\frac{c}{k}\right)^{p^-} \int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz$$

Also, we choose

$$\xi \in \Omega := \left] \frac{A(w_d)}{\int_{\mathcal{B}(x_0, s_D D)} G(z, d) dz}, \frac{\left(\frac{c}{k}\right)^{p^-}}{p^+ \int_M \max_{|y| \le c} G(z, y) dz} \right[$$

so that

(3)
$$\delta := \min\left\{\frac{c^{p^{-}} - \xi p^{+} k^{p^{-}} \int_{M} \max_{|y| \le c} G(z, y) dz}{p^{+} k^{p^{-}} \sigma(M_{2}) \max_{|y| \le c} H(y)}, \frac{1}{2k^{p^{-}} p^{+} \sigma(M_{2}) \limsup_{|y| \to +\infty} \frac{H(y)}{|y|^{p^{-}}}}\right\},$$

with $\sigma(M_2) := \int_{M_2} d\sigma$ and, as usual, we take $r/0 = +\infty$.

Our first result is the following proposition, where we use the hypothesis:

(h) $h : \mathbb{R} \to \mathbb{R}$ satisfies

$$\limsup_{|z| \to +\infty} \frac{H(z)}{|z|^{p^-}} < +\infty.$$

Recall that h is continuous, too.

Proposition 2. If (h) holds, then we can find $\delta > 0$ as in (3) such that, for each $\mu \in [0, \delta]$, the functional $I_{\xi}(u) = A(u) - \xi B(u)$, for all $u \in E$ ($\xi \in \Omega$) is coercive whenever

$$\limsup_{|z| \to +\infty} \frac{\sup_{y \in M} G(z, y)}{|y|^{p^-}} < \frac{\int_M \max_{|y| \le c} G(z, y) dz}{2c^{p^-} \operatorname{meas}(M)}.$$

Proof. Suppose

$$\limsup_{|y|\to+\infty}\frac{\sup_{z\in M}G(z,y)}{|y|^{p^-}}>0,$$

so that we can find l > 0 with

$$\limsup_{|y| \to +\infty} \frac{\sup_{z \in M} G(z, y)}{|y|^{p^-}} < l < \frac{\int_M \max_{|y| \le c} G(z, y) dz}{2c^{p^-} \operatorname{meas}(M)},$$

$$\Rightarrow \quad G(z, y) \le l|y|^{p^-} + C_l, \quad \text{for each } y \in \mathbb{R} \text{ and } z \in M \text{ (for some } C_l > 0).$$

Since $\left(\frac{c}{k}\right)^{p^-} > \xi p^+ \int_M \max_{|y| \le c} G(z, y) dz$, we have

(4)

$$\begin{aligned} \xi \int_{M} G(z, u(z)) dz &\leq \xi l \int_{M} |u(z)|^{p^{-}} dz + \xi C_{l} \max(M) \\ &\leq \frac{\left(\frac{c}{k}\right)^{p^{-}}}{p^{+} \int_{M} \max_{|y| \leq c} G(z, y) dz} \left(l \int_{M} |u(z)|^{p^{-}} dz + C_{l} \max(M) \right) \\ &\leq \frac{\left(\frac{c}{k}\right)^{p^{-}} \max(M)}{p^{+} \int_{M} \max_{|y| \leq c} G(z, y) dz} (lk^{p^{-}} ||u||^{p^{-}} + C_{l}) \quad \text{for all } u \in E \text{ (by (1))}. \end{aligned}$$

So, as $\delta > \mu$, we get

$$1 > 2\mu k^{p^-} p^+ \sigma(M_2) \limsup_{|y| \to +\infty} \frac{H(y)}{|y|^{p^-}},$$

$$\Rightarrow \quad H(y) \le \frac{|y|^{p^-}}{2\mu k^{p^-} p^+ \sigma(M_2)} + C_{\mu}, \quad \text{for all } y \in \mathbb{R} \text{ (for some } C_{\mu} > 0).$$

By (1), we obtain

(5)
$$\int_{M_2} H(\gamma(u(z))) d\sigma \leq \frac{1}{2\mu k^{p^-} p^+ \sigma(M_2)} \int_{M_2} |u(z)|^{p^-} dz + C_\mu \sigma(M_2) \\ \leq \frac{1}{2\mu p^+} ||u||^{p^-} + C_\mu \sigma(M_2), \quad \text{for all } u \in E.$$

If $||u|| \ge 1$, (4) and (5) lead to

$$I_{\xi}(u) = A(u) - \xi B(u)$$

$$\geq \frac{1}{p^{+}} \|u\|^{p^{-}} - \frac{\binom{c}{k}p^{-} \max(M)}{p^{+} \int_{M} \max_{|y| \leq c} G(z, y) dz} (lk^{p^{-}} \|u\|^{p^{-}} + C_{l}) - \frac{1}{2p^{+}} \|u\|^{p^{-}} - \mu C_{\mu} \sigma(M_{2})$$

$$= \frac{1}{p^{+}} \left(\frac{1}{2} - \frac{c^{p^{-}} \max(M)}{\int_{M} \max_{|y| \leq c} G(z, y) dz} l \right) \|u\|^{p^{-}} - \frac{\binom{c}{k}p^{-} \max(M)}{p^{+} \int_{M} \max_{|y| \leq c} G(z, y) dz} - \mu C_{\mu} \sigma(M_{2}).$$

By the choice of l, we get

$$\frac{1}{2} - \frac{c^{p^{-}} \operatorname{meas}(M)}{\int_{M} \operatorname{max}_{|y| \le c} G(z, y) dz} l > 0$$

$$\Rightarrow \quad I_{\xi} \text{ is coercive.}$$

On the other hand, if

 \Rightarrow

$$\limsup_{|y| \to +\infty} \frac{\sup_{z \in M} G(z, y)}{|y|^{p^-}} \le 0,$$

we can find a positive constant C with $G(z, y) \leq C$ for all $y \in \mathbb{R}$ and $z \in M$. So, following the same lines as above, we deduce that

$$I_{\xi}(u) \geq \frac{1}{2p^{+}} \|u\|^{p^{-}} - \frac{\left(\frac{c}{k}\right)^{p^{-}} \operatorname{meas}\left(M\right)C}{p^{+} \int_{M} a \max_{|y| \leq c} G(z, y) dz} - \mu C_{\mu} \sigma(M_{2})$$

$$I_{\xi} \text{ is (again) coercive.}$$

We are ready to establish the existence of three weak solutions. To this aim we suppose that there are $d \ge 1$ and $c \ge k$ with

(6)
$$A(w_d) > \left(\frac{c}{k}\right)^{p^-},$$

where $w_d: M \to \mathbb{R}$ is given as in (2), satisfying

$$(S_{1}) \ p^{+}A(w_{d}) \int_{M} \max_{|y| \leq c} G(z, y) dz < \left(\frac{c}{k}\right)^{p} \ \int_{\mathcal{B}(z_{0}, s_{D}D)} G(z, d) dz;$$

$$(S_{2}) \ \limsup_{|y| \to +\infty} \frac{\sup_{z \in M} G(z, y)}{|y|^{p^{-}}} < \frac{\int_{M} \max_{|y| \leq c} G(z, y) dz}{2c^{p^{-}} \operatorname{meas}(M)};$$

$$(S_{3}) \ G(z, y) > 0 \ \text{for all} \ z \in M, \ y \in [0, d].$$

Theorem 3. If (h), (S_1) - (S_3) hold, then we can find $\delta > 0$ as in (3) such that, for each $\mu \in [0, \delta]$, problem $(P_{\xi,\mu})$ has at least three weak solutions in E ($\xi \in \Omega$).

Proof. We set

$$r := \frac{1}{p^+} \left(\frac{c}{k}\right)^{p^-},$$

so that, by (6), we have

$$A(w_d) > \left(\frac{c}{k}\right)^{p^-} > r.$$

By Theorem 1, for all $u \in E$ such that $u \in A^{-1}(] - \infty, r]$, we obtain

$$\min\{\|u\|^{p^+}, \|u\|^{p^-}\} \le rp^+, \\ \Rightarrow \quad \|u\| \le \max\left\{\left(p^+r\right)^{\frac{1}{p^+}}, \left(p^+r\right)^{\frac{1}{p^-}}\right\} = \frac{c}{k}, \\ \Rightarrow \quad \max_{z \in M} |u(z)| \le k \|u\| \le c \quad (\text{by (1)}). \end{cases}$$

Also, we have

$$B(w_d) = \int_M G(z, w_d(z)) \, dz + \frac{\mu}{\xi} \int_{M_2} H(\gamma(w_d(z))) \, d\sigma.$$

So, we deduce that

$$\frac{1}{r} \sup_{A(u) \le r} B(u) \le \frac{\int_M \max_{|y| \le c} G(z, y) dz + \frac{\mu}{\xi} \int_{M_2} \max_{|y| \le c} H(y) d\sigma}{\frac{1}{p^+} \left(\frac{c}{k}\right)^{p^-}} = p^+ \left(\frac{k}{c}\right)^{p^-} \left[\int_M \max_{|y| \le c} G(z, y) dz + \frac{\mu}{\xi} \sigma(M_2) \max_{|y| \le c} H(y)\right].$$

Now, if $\max_{|y| \le c} H(y) = 0$, we have

$$\frac{1}{r} \sup_{A(u) \le r} B(u) < \frac{1}{\xi},$$

and if $\max_{|y| \leq c} H(y) > 0$, it turns out to be true as

$$\mu < \frac{c^{p^-} - \xi p^+ k^{p^-} \int_M \max_{|y| \le c} G(z, y) dz}{p^+ k^{p^-} \sigma(M_2) \max_{|y| \le c} H(y)}$$

By (S_3) we get

$$\begin{split} B(w_d) &\geq \int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz \\ \Rightarrow \quad \frac{B(w_d)}{A(w_d)} &\geq \frac{\int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz}{A(w_d)} > \frac{1}{\xi} \\ \Rightarrow \quad \frac{B(w_d)}{A(w_d)} > \frac{1}{r} \sup_{A(u) \leq r} B(u), \\ \Rightarrow \quad \text{Theorem } 2(i) \text{ is true.} \end{split}$$

By Proposition 2, we know that Theorem 2(ii) holds true. Since all the regularity hypotheses of Theorem 2 on A and B are true, then Theorem 2 gives us the existence of at least three critical points of I_{ξ} , which are three weak solutions of $(P_{\xi,\mu})$.

4. THREE WEAK SOLUTIONS OF BONANNO-CANDITO TYPE

In this section, we do not use hypothesis (h) in establishing the existence of three weak solutions. Here, we assume that g and h are nonnegative. We apply the following three critical points result of Bonanno-Candito [3, Theorem 3.3].

Theorem 4. Let (E, E^*) be a Banach pair with E reflexive. Let $A : E \to \mathbb{R}$ be a convex, coercive and continuously Gâteaux differentiable functional whose derivative has a continuous inverse on E^* , $B : E \to \mathbb{R}$ be a continuously Gâteaux differentiable functional whose derivative is compact with

$$\inf_{u \in E} A(u) = A(0) = B(0) = 0.$$

If there exist $r_1, r_2 > 0$ and $w \in E$, with $4r_1 < 2A(w) < r_2$, satisfying

- $\begin{array}{l} (\mathrm{i}) \ \ \frac{1}{r_1} \sup_{A(u) < r_1} B(u) < \frac{2}{3} \frac{B(w)}{A(w)}; \\ (\mathrm{ii}) \ \ \frac{1}{r_2} \sup_{A(u) < r_2} B(u) < \frac{1}{3} \frac{B(w)}{A(w)}; \end{array}$
- (iii) $\inf_{s \in [0,1]} B(su_1 + (1-s)u_2) \ge 0$, for all $u_1, u_2 \in E$, with $B(u_1) \ge 0$ and $B(u_2) \ge 0$, which are local minima of $I_{\xi} = A \xi B$, for each $\xi \in \widehat{\Omega}$, where

$$\widehat{\Omega} := \left] \frac{3}{2} \frac{A(w)}{B(w)}, \min\left\{ \frac{r_1}{\sup_{A(u) < r_1} B(u)}, \frac{\frac{r_2}{2}}{\sup_{A(u) < r_2} B(u)} \right\} \right[,$$

then I_{ξ} has at least three distinct critical points in $A^{-1}(] - \infty, r_2[)$.

Next, we suppose that there are $d \ge 1$ and $c_1, c_2 > 0$, with $\min\{c_1, c_2\} \ge k$, such that

$$\frac{3}{2} \frac{A(w_d)}{\int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz} < \min\left\{ \frac{\binom{c_1}{k} p^-}{p^+ \int_M G(z, c_1) dz}, \frac{\binom{c_2}{k} p^-}{2p^+ \int_M G(z, c_2) dz} \right\},\$$

where $w_d: M \to \mathbb{R}$ is given as in (2), satisfying

$$\begin{aligned} & (S_1') \ \frac{2}{p^+} (\frac{c_1}{k})^{p^-} < A(w_d) < \frac{1}{2p^+} (\frac{c_2}{k})^{p^-}; \\ & (S_2') \ \max\left\{\frac{\int_M G(z,c_1)dz}{(\frac{c_1}{k})^{p^-}}, \frac{2\int_M G(z,c_2)dz}{(\frac{c_2}{k})^{p^-}}\right\} < \frac{2}{3} \frac{\int_{\mathcal{B}(z_0,s_DD)} G(z,d)dz}{\Phi(w_d)}; \\ & (S_3') \ g(z,y) \ge 0 \text{ for each } (z,y) \in M \times \mathbb{R}. \end{aligned}$$

Here, we consider

$$\xi \in \widetilde{\Omega} := \left[\frac{3}{2} \frac{A(w_d)}{\int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz}, \frac{1}{p^+} \min\left\{ \frac{\left(\frac{c_1}{k}\right)^{p^-}}{\int_M G(z, c_1) dz}, \frac{\left(\frac{c_2}{k}\right)^{p^-}}{2\int_M G(z, c_2) dz} \right\} \right]$$

so that

(7)
$$\delta^* := \min\left\{\frac{\left(\frac{c_1}{k}\right)^{p^-} - \xi p^+ \int_M G(z, c_1) dz}{p^+ \sigma(M_2) H(c_1)}, \frac{\left(\frac{c_2}{k}\right)^{p^-} - 2\xi p^+ \int_M G(z, c_2) dz}{2p^+ \sigma(M_2) H(c_2)}\right\}.$$

Theorem 5. If (S'_1) - (S'_3) hold, then we can find $\delta^* > 0$ as in (7) such that, for each $\mu \in [0, \delta^*[$, problem (P_{ξ}, μ) $(\xi \in \widetilde{\Omega})$ has at least three distinct weak solutions u_*, u^*, \widetilde{u} , whose values range is the interval $[0, c_2[$.

Proof. For reader convenience we set $r_1 := \frac{1}{p^+} \left(\frac{c_1}{k}\right)^{p^-}$ and $r_2 := \frac{1}{p^+} \left(\frac{c_2}{k}\right)^{p^-}$. So, by (S'_1) we have $4r_1 < 2A(w_d) < r_2$. As $\delta^* > \mu$ and $H(z) \ge 0$ for z > 0, we obtain

$$\frac{1}{r_1} \sup_{A(u) \le r_1} B(u) \le \sup_{A(u) \le r_1} \frac{\int_M G(z, u(z)) dz + \frac{\mu}{\xi} \int_{M_2} H(\gamma(u(z))) d\sigma}{\frac{1}{p^+} \left(\frac{c_1}{k}\right)^{p^-}} = p^+ \left(\frac{k}{c_1}\right)^{p^-} \left[\int_M G(z, c_1) dz + \frac{\mu}{\xi} \sigma(M_2) H(c_1)\right]$$

$$< \frac{1}{\xi} < \frac{2}{3} \frac{\int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz}{A(w_d)} \le \frac{2}{3} \frac{B(w_d)}{A(w_d)}.$$

Also, we have

$$\begin{aligned} \frac{2}{r_2} \sup_{A(u) \le r_2} B(u) &\leq 2 \sup_{A(u) \le r_2} \frac{\int_M G(z, u(z)) dz + \frac{\mu}{\xi} \int_{M_2} H(\gamma(u(z))) d\sigma}{\frac{1}{p^+} \left(\frac{c_2}{k}\right)^{p^-}} \\ &= 2p^+ \left(\frac{k}{c_2}\right)^{p^-} \left[\int_M G(z, c_2) dz + \frac{\mu}{\xi} \sigma(M_2) H(c_2)\right] \\ &< \frac{1}{\xi} < \frac{2}{3} \frac{\int_{\mathcal{B}(z_0, s_D D)} G(z, d) dz}{A(w_d)} \leq \frac{2}{3} \frac{B(w_d)}{A(w_d)} \\ &\Rightarrow \quad \frac{1}{r_2} \sup_{A(u) \le r_2} B(u) < \frac{1}{3} \frac{B(w_d)}{A(w_d)}. \end{aligned}$$

This means that Theorem 4(i)-(ii) hold true.

Next, consider two local minima of I_{ξ} , say $u_*, u^* \in E$. Clearly, u_*, u^* are critical points of I_{ξ} , and hence weak solutions of $(P_{\xi,\mu})$. We have to show that $u_*, u^* \ge 0$. Let w be a weak solution of $(P_{\xi,\mu})$ so that

$$\int_{M} |\nabla w|^{p(z)-2} |\nabla w| |\nabla v| dz + \int_{M} a(z) |w|^{p(z)-2} |w| |v| dz = \xi \int_{M} g(z, w) v dz + \mu \int_{M_2} h(\gamma(w))) \gamma(v) d\sigma$$

for all $v \in E$. So, if we choose $v = \min\{w, 0\} = w^- \in E$, we get

$$\int_{M} |\nabla w^{-}|^{p(z)} dz + \int_{M} a(z) |w^{-}|^{p(z)} dz = \xi \int_{M} g(z, w) w^{-} dz + \mu \int_{M_{2}} h(\gamma(w))) \gamma(w^{-}) d\sigma \le 0$$

(recall the sign assumptions on the data).

This leads to $||w^-|| = 0$, which is absurd, and hence u_* , u^* are nonnegative. So, we have

$$su_* + (1 - s)u^* \ge 0 \quad \text{for all } s \in [0, 1],$$

$$\Rightarrow \quad B(su_* + (1 - s)u^*) \ge 0 \quad \text{for all } s \in [0, 1],$$

$$\Rightarrow \quad \text{Theorem } 4(iii) \text{ is true.}$$

Since all the regularity hypotheses of Theorem 4 on A and B remain true, we conclude that $(P_{\xi,\mu})$ has at least three distinct weak solutions for each $\xi \in \widetilde{\Omega}$.

References

- G. Barletta, R. Livrea, N.S. Papageorgiou, Bifurcation phenomena for the positive solutions on semilinear elliptic problems with mixed boundary conditions, J. Nonlinear Convex Anal., 17 (2016), 1497–1516.
- [2] G. Bonanno, G. D'Aguì, A. Sciammetta, Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions, Opuscula Math., 39 (2019), 159–174.
- Bonanno G, Candito P. Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Diff. Equ., (2008) 244:3031–3059.

10

- [4] G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10.
- [5] G. D'Aguì, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612–5619.
- [6] S. G. Deng, Q. Wang, Nonexistence, existence and multiplicity of positive solutions to the p(x)-Laplacian nonlinear Neumann boundary value problem, Nonlinear Anal., **73** (2010), 2170–2183.
- [7] L. Diening, P. Harjulehto, P. Hästö, M. Rŭzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer-Verlag, Heidelberg, 2011.
- [8] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., **52**(2003), 1843–1852.
- [9] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., **263** (2001), 424–446.
- [10] S. Heidarkhani G.A. Afrouzi, A. Hadjian, Multiplicity results for elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Math. Methods Appl. Sci., 38 (2015), 2589–2599.
- [11] W.-W. Pan, G.A. Afrouzi, L. Li, Three solutions to a p(x)-Laplacian problem in weighted-variable-exponent Sobolev space, An. St. Univ. Ovidius Constanța, **21** (2013), 195–205.
- [12] N.S. Papageorgiou, C. Vetro, Superlinear (p(z), q(z))-equations, Complex Var. Elliptic Equ., 64 (2019), 8–25.
- [13] M.M. Rodrigues, Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators, Mediterr. J. Math. 9 (2012), 211–223.
- [14] C. Vetro, Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator, Electron.
 J. Qual. Theory Differ. Equ., 2017:98 (2017), 1–10.

(C. Vetro) UNIVERSITY OF PALERMO, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, VIA ARCHI-RAFI 34, 90123 - PALERMO, ITALY

E-mail address: calogero.vetro@unipa.it

(F. Vetro) Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

E-mail address: francescavetro@tdtu.edu.vn