THREE SOLUTIONS TO MIXED BOUNDARY VALUE PROBLEM DRIVEN
BY p(z)-LAPLACE OPERATOR

CALOGERO VETRO AND FRANCESCA VETRO

ABSTRACT. We prove the existence of at least three weak solutions to a mixed Dirichlet-Neumann
boundary value problem for equations driven by the p(z)-Laplace operator in the principal part.
Our approach is variational and use three critical points theorems.

1. INTRODUCTION

Let M C RY (N > 3) be an open bounded domain with smooth boundary. In this article
we consider the following mixed Dirichlet-Neumann boundary value problem driven by the p(z)-
Laplace operator:

—div (|Vu(2) PP 2Vu(2)) + a(2)|u(2) PP ~2u(z) = Eg(z,u(z)) in M,
(vau) u=70 on Mj,
VulP=25 = ph(y(u)) on M,

where p € C(M) is a function with some regularities satisfying

N <p~ = inf p(z) < p(z) <p” = sup p(z) < +o0,
zeM zeM
My, My are smooth (N —1)-dimensional submanifolds of OM and I is a smooth (N —2)-dimensional
submanifolds of OM with M, N My = (), My UMy = OM, My N M, =T, a € L>®(M) with
ag := ess inf,cpra(z) > 0 is the potential function, g : M x R — R is a Carathéodory function
(that is, for all z € R, z — ¢(z,y) is measurable and for a.a. z € M, y — ¢g(z,y) is continuous),
h : R — R is a nonnegative continuous function, v : WP(M) — LP(OM) is the trace operator,
¢ >0 and p > 0 are real parameters, and v is the outer unit normal to OM.

We recall that the p(z)-Laplace operator drives processes of physical interest, as stated in
Diening—Harjulehto—HéLsté—Rﬁzfcka [7]. Existence and multiplicity results for problems involv-
ing the p(z)-Laplace operator were obtained by Papageorgiou-Vetro [12], Rodrigues [13], Vetro
[14] (Dirichlet condition), Deng-Wang [6], Heidarkhani-Afrouzi-Hadjian [10], Pan-Afrouzi-Li [11]
(Neumann condition). In [12] the authors consider a (p(z), ¢(z))-equation with reaction g which
depends on the solution but does not satisfy the Ambrosetti-Rabinowitz condition. Their approach
is variational based on critical point theory together with Morse theory (critical groups). These
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tools are used also in [13]. This time, the author studies a nonlinear eigenvalue problem for p(z)-
Laplacian-like operator, originated from a capillary phenomena. The reaction is superlinear at
infinity and the author proves the existence of infinite many pairs of solutions. [14] also considers
a problem driven by the p(z)-Laplacian-like operator. There, the reaction satisfies a sub-critical
growth condition and the results deal with the existence of one and three solutions (via critical
point theory). In [10, 11] the authors prove the existence of three solutions for p(z)-Laplace prob-
lems with potential function. In particular, [10] considers small perturbations of nonhomogeneous
Neumann condition. A similar problem is discussed in [6], where the authors use sub-supersolution
method and strong comparison principle. For mixed boundary value problems there are the re-
cent works of Barletta-Livrea-Papageorgiou [1], Bonanno-D’Agui-Sciammetta [2] (for the constant
p-Laplace operator).

Here, we give two existence theorems of three weak solutions to problem (F%,) (that is, mixed
boundary value problem with variable exponent version of the p-Laplace operator), by using a
variational approach and critical point theorems. Here the reaction ¢ : M x R — R is L!-
Carathéodory (that is, g is Carathéodory and for any s > 0 there exists I, € L'(M) with |g(z,y)| <
ls(z), for a.e. z € M and for all |y| < s). So, the three critical points results of Bonanno-Marano
[4] and Bonanno-Candito [3] apply to energy functionals associated to problem (% ,).

2. MATHEMATICAL BACKGROUND

Let (E, E*) be a Banach topological pair. Here, we use the variable exponent Lebesgue spaces
L@ (M), LP*)(OM), and the generalized Lebesgue-Sobolev space W'P()(M). These spaces (re-
ferring to the norms below) are separable, reflexive and uniformly convex Banach spaces (see
Fan-Zhang [8]). Precisely, we have

LPE (M) = {u : M — R : uis measurable and / lu(2)|PPdz < —l—oo} ,
M
with the norm

||uHLP(Z)(M) := inf {5 >0: /
M

On the other hand, we have

u(2)

z
§

p(2)
dz < 1} (i.e., Luxemburg norm).

LPE(OM) = {u :OM — R : u is measurable and / lu(2)[PPdo < —l—oo} :
oM

where o is the surface measure on M. This time, we consider the norm

p(2)
lull ooy o ::mf{5>o: / % dagl}.
M

Also, the generalized Lebesgue-Sobolev space W1P(2)(M) is defined as
W@ (M) = {u € PP (M) : |Vu| € LP (M)},

and we take the norm
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[ullwree any = [l ooy + VUL | e )
which is equivalent to the norm
p(z)
dz <1,

||u|| := inf {5 >0: /M (a(z)

u(z)

p(2) \V4
‘ U(Z)

§ §
(for details we refer to D’Agui-Sciammetta [5]). So, we work with the norm |ju|| instead of
w106 (ary o0 WP @ (M ) In proving our theorems, we make use of the following result, which
links [Jul| to p(u) = [, la < 2)PE |Vu(z)|p(z)> dz (see Fan-Zhao [9]).

Theorem 1. Ifu € Wl’p(z)(M), one has
() lul <1 (=1, >1) & plu) <1 (=1, > 1);
(i) of [lull > 1, then [[ulP” < p(u) < |Jull”";
(iid) f [Jull <1, then [[ulP” < p(u) < [|uf”".
For notational simplicity, by £ we denote the set
E = Wiy (M) = {ue W (M) : upy, = 0},

where we consider the norm ||ul|.
We recall that a function u € E satisfying

/\Vu(z)|p(z)2Vu(z)Vv(z)dz+/Ma(z)|u(z)|p(z)Zu(z)v(z)dz
—¢ [ gt dn [ haEn0E) -

for all v € £, means a weak solution of problem (P, ).

We mention the fact that WP (M) < WP™ (M) continuously. Also, as N < p=, WhP" (M) —
Co(M) compactly, and hence WP (M) < Cy(M) compactly (so E < Cy(M) compactly). If we
put

k= sup w’
weWLp(2) (M)\{0} [l
then
(1) [ulloo < Ellul],

with ||u|l to denote the usual norm in L*(M).
The quantity

1 p_—1
p_— 1 — di - —1 P
ky =2 © max ( > , — 1( ) <p_ meas (M)) — 1,
lall N \p =N lall:

where M is convex, diam (M) is the diameter of M, meas (M) is the Lebesgue measure of M,
satisfies the inequality k(1 + meas(M)) > k. This means that k(1 + meas (M)) is an upper
bound of k (see [5]).
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Next, let G : M x R — R be the function given as
G(z,t) = /tg(z,y)dy, forallt e R, z € M,
and H : R — R be the function giver? as
H(t) = /t h(z)dz, for all t € R.
0

Our approach is variational, which means that we study the critical points of the energy func-
tional (say I¢) associated to problem (P, ). So, we introduce the functional B : E' — R defined
by

B(u) = /MG(z,u(z)) dz + g A H(y(u(z)))do, forallue E.

Clearly, B € C*(E,R) and has a compact derivative given as
B'(u)(v) = / g(z,u(2))v(z)dz + g/ h(y(u(2)))y(v(z)) do, for all u,v € E.
M Iy
Moreover, let A : E — R be the functional given as

1
Au) = / L 1Vu@)P? + a(o)u(z) PP dz, for all u € E,
v p(2)
with A in C*(E,R). Note that A is Gateaux differentiable and sequentially weakly lower semicon-
tinuous and its Gateaux derivative A’ : B — E* is
Al(u)(v) = / [|[Vu(2) PP 72V u(2) Vo(2) + a(2)|u(2) P9 ?u(2)v(2)] dz, for all u,v € E.
M

We recall the following property of A’ (see, for example, [13, Proposition 2.6]).
Proposition 1. The functional A’ : E — E* is a strictly monotone and bounded homeomorphism.

Finally, consider the functional I : E — R defined by I¢(u) = A(u) — £B(u) for all w € E. We
have

11LI€1£A(U) = A(0) = B(0) = 0.

We mention that the critical points of I, are the weak solutions of problem (P, y).

3. THREE WEAK SOLUTIONS OF BONANNO-MARANO TYPE

We establish a theorem producing three weak solutions to problem (P, ). So, we use the
following three critical point result of Bonanno-Marano [4, Theorem 3.6].

Theorem 2. Let (E, E*) be a Banach topological pair with E reflezive. Let A : E — R be a coer-
cive, continuously Gateaux differentiable and sequentially weakly lower semicontinuous functional
whose Gateaur derivative has a continuous inverse on E*, B : E — R be a continuously Gateaux
differentiable functional whose Gateaux derivative is compact such that A(0) = B(0) = 0. Assume
that there exist r > 0 and w € E, with 0 < r < A(w), such that
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ia:1 su U M: ;
=5 o, B0 = Gy =

11
(ii) for each & € } - = [, I. :== A —¢B is coercive.
p o
11 . . . .
Then, for each & € |—, —|, I¢ has at least three distinct critical points in E.
p o

Here, we define n : M — R by 1(z) = p(z,0M), where p means the Euclidean distance. Let
D = n(z) with 29 € M point of maximum for 1 so that B(zp, D) = {z € RN : p(20,2) < D} C M.
Fixed s €]1, +o00[, we set sp = s~ and kp = (5—;1)17 (note that (1—sp)Dkp = 1). For each a > 1,
we consider a function w, : M — R defined by

0 2 € M\ B(z, D),
(2) we(z) =< « z € B(zo,spD),
akp(D — |z — z|) 2z € B(zo, D) \ B(zo,spD).

Now, we set o :=d > 1 (so we fix wg : M — R) and ¢ > k with

Alwy)pt | maxG(z,y)dz < <E>p / G(z,d)dz.
k B(z0,5p D)

M lyl<c

Also, we choose

L A(wd) (%)P7
€= :
fB(mSDD) G(z,d)dz" pt [}, maxy <. G(z,y)dz
so that
3) 6= mind & TR Jymaxyic Gz y)dz 1
pkP” o (Ms) maxyy <. H(y) " 2k»" pto(Ms) lim SUD|y| 5400 \ZE}Q ’

with o(M,) := [, do and, as usual, we take r/0 = +o0.
Our first result is the following proposition, where we use the hypothesis:

(h) h:R — R satisfies

, H(z)
lim sup = < 400
|2|—+o00 |2|P

Recall that h is continuous, too.

Proposition 2. If (h) holds, then we can find § > 0 as in (3) such that, for each p € [0,0], the
functional I¢(u) = A(u) — EB(u), for allu € E (£ € Q) is coercive whenever

sup,en G(z,y) [, maxpy <. G(z,y)dz
2cP"meas (M)

lim sup —
|z| =400 |y|p
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Proof. Suppose

G
lim sup Supzem G(2,9)

- > 0,
ly|——+o0 |y|p
so that we can find [ > 0 with

SUP.em G(Zv y) | < fM maXjy|<c G(Z’ y)dz
2¢P"meas (M)

lim sup —
ly|—-+oo lylP

= G(z,y) <llyP +C),, foreachye R and ze M (for some C; > 0).

Y

Since (%)p_ > &pt [y, maxyy <. G(z, y)dz, we have
¢ / Gz u())d= < € / u(z)[P”dz + £Cy meas (M)
M M
() (l/ lu(2)[P dz + C) meas (M))
M

p* fM maxjy <. G(2,y)dz
()P meas (M)
— pt fM max|y|<. G(z, y)dz

(4) <

(I |ju||P + ) for allu € E (by (1)).

So, as d > u, we get

_ H
1 > 2uk? pto(M,)limsup (y),
|y]—~+o00 |y|p

-
= H(y) < v +C,, forally € R (for some C, > 0).

~ 2ukr pto(Ms)
By (1), we obtain

1 ,
. H(y(u(z)))do < S o (M) /M2 lu(2)|P dz+ C, o(My)
1 _
(5) < T |ullP + CLo(My), forallue E.

If |lul] > 1, (4) and (5) lead to

1 - (£)P" meas (M)
LU W e
(£)P" meas (M)

1 (1 c? meas (M) .

- 1 .
(K" ul” +Cz)—2]7HUI|p = 1Cuo(Ms)

- ILLCMO'(MQ).

— == e —
pt\2 [, maxy<.G(z,y)dz > Jul pt [, maxyy <. G(z,y)dz
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By the choice of [, we get

1 c? meas (M) >0
2 [, maxy <. G(z,y)dz

= I is coercive.

On the other hand, if
G
lim sup SUPzem _(z,y)
ly|—+o00 lylP
we can find a positive constant C' with G(z,y) < C for all y € R and z € M. So, following the
same lines as above, we deduce that

<0

— bl

(£)P meas (M)C
pt fM amaxjy<. G(z,y)dz

= I is (again) coercive.

— pCpo (M)

U
We are ready to establish the existence of three weak solutions. To this aim we suppose that
there are d > 1 and ¢ > k with
c\P
(6) A(wd> > (E) s

where wy : M — R is given as in (2), satisfying

(S1) pTA(wq) [,, maxy <. G(z,y)dz < (%)pi fB(ZO’sDD) G(z,d)dz;

: SUPzem G(z,y) fM maXy|<c G(z,y)dz
Ss) lim )
(52) 1m0 $UPy 4o lylP 2cP"meas (M)

(S3) G(z,y) >0 forall ze M, y € [0,d].

Theorem 3. If (h), (S1)-(S3) hold, then we can find § > 0 as in (3) such that, for each u € [0, 4],
problem (P, ) has at least three weak solutions in E (§ € Q).

Proof. We set

)
so that, by (6), we have
A(wg) > (g)p_ > 7.

By Theorem 1, for all u € E such that uw € A7!(] — oo, r]), we obtain
min{Jul”", Jul”"} < rp*,
a1 o
= Jull < max{ (pr)", (pr)7 | =

k”
= maxfu(z)] < kflull < e (by (1)).
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Also, we have

Blwg) = / G(z,wd(z))ng H(y(wa(2))) do.
M Mo
So, we deduce that

1 max|, <. G(z,y)dz + & max, <. H(y)do
~ sup Blu) < fM wi<e G( )1 gp{Mz ly|< ()
" Awsr o= (%)
LR\ H
= — max G(z,y)dz + —o(M,) max H .
v (2) | maxGenas + Lo max ()
Now, if maxy<. H(y) = 0, we have
1 1
— sup B(u) < -,
TA(u)Sr ( ) 5

and if maxy <. H(y) > 0, it turns out to be true as

& —Eptkr [y maxy < G(z,y)dz
pTkP” o (M) maxyy <. H(y) .

By (S3) we get

B(wg) > / G(z,d)dz
B(zo0,spD)

B(wd) fB(zo,sDD) G(Z’ d)dZ 1
T Aw) S Awg) &
= B(wa) >1 sup B(u),

A(wd) T A(uw)<r
= Theorem 2(7) is true.

By Proposition 2, we know that Theorem 2(i7) holds true. Since all the regularity hypotheses
of Theorem 2 on A and B are true, then Theorem 2 gives us the existence of at least three critical
points of /¢, which are three weak solutions of (F% ). O

4. THREE WEAK SOLUTIONS OF BONANNO-CANDITO TYPE

In this section, we do not use hypothesis (h) in establishing the existence of three weak solutions.

Here, we assume that g and h are nonnegative. We apply the following three critical points result
of Bonanno-Candito [3, Theorem 3.3].

Theorem 4. Let (E, E*) be a Banach pair with E reflexive. Let A: E — R be a convez, coercive
and continuously Gateaux differentiable functional whose derivative has a continuous inverse on
E*, B : E — R be a continuously Gateauz differentiable functional whose derivative is compact
with

inf A(u) = A(0) = B(0) =0.

uel
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If there exist 71,79 > 0 and w € E, with 4r; < 2A(w) < ry, satisfying

N 2 B(w)
i) — sup Bu) < ——=;
( ) L A(u)<r ( ) 3 A(w)
o1 1 B(w)
ii) — sup Bu) < ———=;
W, iR, < )
(iii) infsepo) B(sur + (1 = s)ug) > 0, for all uy,uy € E, with B(uy) > 0 and B(uy) > 0, which

are local minima of I = A — (B, for each & € @, where

o))

3A(w) . ! 5

5y n ) )
2 B(w) SUP Au)<ry B(W) SUP ) <r, B(W)
then I¢ has at least three distinct critical points in A™'(] — 0o, r2]).

Next, we suppose that there are d > 1 and ¢y, ca > 0, with min{cy, co} > k, such that
5 Aw) L@y (2"
2 S T GG edz 2 [ Gz e)dz [
2f8(20,sDD) G(’Z?d)dz b fM (Z, Cl) Z Zp fM (Z,CQ) z

where wy : M — R is given as in (2), satisfying

(S1) = (FP < Alwa) < 5= (F)7;

() max{fM G(z,c1)dz 2 [, G(z,@)dz} _ EIB(Zo,SDD)G(Z7d>dZ.

(5%) g(z,y) > 0 for each (z,y) € M x R.

(Fr () 3 ®(wa) ’
Here, we consider

~ 3 A(wd) 1 .
Ee:=|= , — min
QIB(ZO’SDD) G(z,d)dz’ pt+

CO )
Sy G(z,e1)dz" 2 [, G(z,co)dz | |7
so that

(7) 5 e min 4 B &P [y Gl e)dz (R —2%p* [, Gz, ca)dz
' pro(L)He) 0 2pto(My)H(cy) '

Theorem 5. If (57)-(S5) hold, then we can find 6* > 0 as in (7) such that, for each u € [0, %],

problem (Pg, p) (€ € Q) has at least three distinct weak solutions u.,u*,w, whose values range is
the interval [0, cy].

Proof. For reader convenience we set r; := p%r (%)p and 7y 1= p%r (%)p . So, by (S]) we have

4ry < 2A(wq) < re. As 0* > pand H(z) > 0 for z > 0, we obtain
G(z,u(z))dz + & H(~v(u(z)))do
L o B < sup Ju Gz u(2))dz+ £ [y, H(y(u(2)))

1 A(u)<r A(u)<ry p% (%)p_

_ (E)p_ [ /M Glzve0)dz + (M) H(er)

(&1
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< ng(zo,sDD) G(Z7 d)dZ QB(wd)

SES3T Alwy) = 3 A(wy)

A

Also, we have

2 gp Bluy<2 sp LrGEMENEYE Dy HOWEN®

T2 A(u)<ra A(u)<ry pL“' (%)p*

_opt (ﬁ)p [ /M Gz, ca)dz + Lo (M) H es)

§
2 fB(ZMDD) G(z,d)dz
3 A(wd
1

<1
§

1
= — sup B(u) < =
T2 A(u)<ry ( ) 3

This means that Theorem 4(7)-(i7) hold true.
Next, consider two local minima of I¢, say u,, u* € E. Clearly, u,, u* are critical points of I,

and hence weak solutions of (Pw). We have to show that u,, u* > 0. Let w be a weak solution of
(Pe,,) so that

[ vl gl oids + [ a@ep2uliids =€ [ gewpds [ hG)ne)ds
M M M Mo

for all v € E. So, if we choose v = min{w,0} = w™ € E, we get

/M Vw™ [P dz + /Ma(Z)Iw_I”(z)dz = S/Mg(&w)ufdz + M/MQ h(y(w)))y(w™)do <0

(recall the sign assumptions on the data).

2=
g
S

This leads to [jw~| = 0, which is absurd, and hence u,, u* are nonnegative. So, we have

sux + (1 —s)u* >0 forall s €0,1],
= B(su.+ (1—s)u") >0 forallsel0,1],
= Theorem 4(7i7) is true.

Since all the regularity hypotheses of Theorem 4 on A and B remain true, we conclude that
(P¢,,) has at least three distinct weak solutions for each £ € Q. O
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