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Abstract 10 

The exsolution, rise, expansion, and separation of volatiles from magma provides the driving force behind 11 

both effusive and explosive volcanic eruptions. The field of volcanic gas geochemistry therefore plays a 12 

key role in understanding volcanism. In this article, we summarize the most important findings of the past 13 

few decades and how these shape today’s understanding of volcanic degassing. We argue that the recent 14 

advent of automated, continuous geochemical monitoring at volcanoes now allows us to track activity 15 

from unrest to eruption, thus providing valuable insights into the behavior of volatiles throughout the 16 

entire sequence. In the next 10 years, the research community stands to benefit from the expansion of 17 

geochemical monitoring networks to many more active volcanoes. This, along with technical advances in 18 

instrumentation, and in particular the increasing role that unoccupied aircraft systems (UAS) and satellite-19 

based observations are likely to play in collecting volcanic gas measurements, will provide a rich dataset 20 

for testing hypotheses and developing diagnostic tools for eruption forecasts. The use of consistent, well-21 

documented analytical methods and ensuring free, public access to the collected data with few 22 

restrictions will be most beneficial to the advancement of volcanic gas science. 23 
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Introduction 51 

Volatiles emitted from volcanoes have had profound impact on Earth’s natural environment throughout 52 

its geologic history. Volcanic gases formed the Earth’s early atmosphere and oceans, and thus provided 53 

habitat for the first life forms approximately four billion years ago (Oro et al. 1990; Schaefer and Fegley 54 

2007). Though magma is driven from great depth towards the Earth’s surface by pressure and 55 

temperature gradients, it is the chemical and physical behavior of volatiles that control eruption style and 56 

provide the fuel for explosive volcanism (Oppenheimer et al. 2014; Cashman and Sparks 2013; Woods 57 

1995). It is therefore not surprising that much can be gleaned from observations of volcanic degassing, 58 

whether they are made before, during, or after periods of unrest or eruption. 59 

At the same time, such studies represent no easy task as volcanic degassing is extremely variable in space 60 

and time. Volatiles can diffuse through magma bodies, travel laterally along faults, exsolve and re-dissolve 61 

in magmatic or aqueous fluids, or be stored in underground reservoirs from which they can be explosively 62 

erupted into the atmosphere or leak slowly to the surface over millennia. These complexities exacerbate 63 

the development of sound strategies for representative sample collection and measurement surveys. 64 

Observations made at a single time and location must be interpreted in the context of these complex 65 

volatile source, storage, and transport mechanisms to avoid the risk of arriving at incorrect or misleading 66 

conclusions. 67 

In this article, we take inventory of where the field of volcanic gas geochemistry resides at present. We 68 

begin with a brief review of observations and concepts that have shaped today’s understanding of volatile 69 

degassing processes. We describe the measurement techniques and instrumentation that have led to 70 

these findings and give an outlook on how these tools may improve in the future. Finally, we suggest 71 

several areas of focus for the next decade that we believe to be of particular importance for improving 72 

our understanding of degassing processes and the use of volcanic gas measurements as a diagnostic tool 73 

for eruption forecasting. 74 

The information content of volcanic gases 75 

On 28 May 1912, A.L Day and E.S. Shepherd of the Carnegie Institute’s Geophysical Laboratory had the 76 

good fortune to find a pressurized hornito vent on the floor of Kīlauea’s Halemaʻumaʻu Crater while 77 

looking for an opportunity to sample volcanic gases (Day and Shepherd 1913). To the surprise of many at 78 

that time, chemical analyses of samples they collected revealed that the principal component of the high-79 
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temperature volcanic gas was water vapor (Day and Shepherd 1913; Sutton and Elias 2014). Closer 80 

analysis of samples collected in Hawaiʻi and elsewhere over the next few decades revealed that the 81 

primary components of all high temperature volcanic gases are water vapor (H2O, typically 75-98%), 82 

carbon dioxide (CO2, 0.3-13%), sulfur dioxide (SO2, 0.3-3%), and hydrogen sulfide (H2S, 0.02-2%) with 83 

smaller fractions of hydrogen halides (HCl, HF, and HBr), hydrogen (H), helium (He), and reduced carbon 84 

species (carbon monoxide CO, carbonyl sulfide COS, and carbon disulfide CS2) (Gerlach 2004; Giggenbach 85 

1996; Textor et al. 2004; Fischer and Chiodini 2015). Trace amounts of numerous other species, mostly 86 

metals and metalloids, are emitted either as gaseous species or aerosol particles (Symonds et al. 1987; 87 

Martin et al. 2010; Mather et al. 2012; Zelenski et al. 2013; Ilyinskaya et al. 2021; Mason et al. 2021). Note 88 

that many of these species pose environmental and health hazards (see Stewart et al. 2022 in this issue 89 

for a review). 90 

Measured as they are emitted from volcanic vents into the Earth’s atmosphere, these volcanic gases have 91 

a diverse origin. Arc gases are richer in water and chlorine than those released by midocean ridge basalts 92 

(MORB) due to the incorporation of fluids delivered by subducted sediments and altered oceanic crust 93 

(Wallace 2005). In contrast, hotspot and rift volcanism produce magmas with more carbon-rich (and 94 

water-poor) compositions (Gerlach 2004, see Fig. 1). Helium in hotspot volcanic gases is typically enriched 95 

in primordial 3He relative to MORB, unambiguously indicating deep mantle origin (Hart et al. 1992; Lupton 96 

and Craig 1975). In contrast, gases produced from volcanic systems where crustal assimilation is a 97 

dominant process are enriched in crustally-derived radiogenic 4He (Hilton et al. 1993). Taken together 98 

with other isotopic (H, C, N, S, Ar, Ne) evidence, volcanic gases provide important information on magma 99 

generation (Chiodini et al., 2010; Fischer and Chiodini 2015). 100 

Gas emissions can also be used to infer magma depth, which is crucial for volcano monitoring, due to the 101 

distinct solubilities of the various volatile species in melts (Giggenbach 1996). Studies of melt inclusions 102 

(MI) in erupted products show that magmas often exhibit an exsolved vapor phase by the time they reach 103 

the mid-crust (10-15 km), and that most of the exsolved vapor is initially CO2 (Edmonds and Wallace 2017; 104 

Lowenstern 2001; Fig. 1). The solubility of H2O is several times greater than that of CO2 such that H2O 105 

remains dissolved in the melt until it reaches shallower depths, typically within 5 km of the surface 106 

(Wallace et al 2015; Fig. 1). However, since H2O is an order of magnitude more abundant than CO2 in 107 

magma, it is the abrupt and voluminous exsolution of H2O that provides the energy for explosive volcanism 108 

(Chiodini et al. 2016; Papale et al. 1999). The vapor-melt partitioning of sulfur is complicated due to its 109 

occurrence in different dissolved forms (S2- and S6+), various gaseous species (SO2 and H2S), and solubility 110 
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dependence on oxygen fugacity. Generally, sulfur will exsolve from the melt at depths as great as 10 km 111 

in H2O-rich magmas, especially in relatively cool rhyolites, while only partitioning to the gas phase at very 112 

shallow depths (100s of meters) in H2O-poor basalts (Wallace and Edmonds, 2011). Finally, we note that, 113 

while MI studies have provided great insight into magmatic processes, the recognition that older literature 114 

MI data often significantly underestimate melt CO2 contents (by a factor of ~2.5; Rasmussen et al. 2020) 115 

requires re-evaluation of quantitative models linking gas emissions to magma degassing depth. 116 

Eventually, exsolved volatiles are emitted to the atmosphere as volcanic gases, and it is mostly this 117 

transition from CO2-rich deeply sourced gas, toward H2O-S-rich shallow exsolved gas (see degassing lines 118 

in Fig. 1), that geochemists attempt to capture when monitoring volcanoes (Aiuppa et al. 2007). However, 119 

while at open-vent volcanoes without significant hydrothermal systems high CO2/H2O and CO2/S ratios 120 

unambiguously indicate deep origin and gases with relatively low CO2/H2O and CO2/S have usually 121 

equilibrated at shallow depth before being released (Fig. 1), complications arise at wet volcanoes that 122 

have active hydrothermal systems. Here, magmatic gases react with groundwater, brines, hydrothermal 123 

fluids, and host rocks, greatly affecting the composition of gases emitted at the surface. Though highly 124 

complex in detail, such interactions generally add water, reduce the oxidation state of the gases 125 

(Giggenbach 1987), and often efficiently remove sulfur from the gas stream in a process known as 126 

‘scrubbing’ (Symonds et al. 2001; Fig. 1). Thus, at active volcanoes with hydrothermal systems, CO2-rich 127 

gases can reflect either deeply-derived magmatic degassing or extensive hydrothermal scrubbing (Stix and 128 

de Moor 2018; Fig. 1c). Though S behavior in magmatic-hydrothermal systems is complex and kinetically 129 

inhibited (Giggenbach 1996, 1997), abruptly decreasing H2S/SO2 is often associated with the transition 130 

from quiescence to eruptive activity (de Moor et al. 2016a, 2019; Fig. 2), and high frequency gas 131 

monitoring provides a promising avenue for monitoring of phreatic/phreatomagmatic systems.  132 

Tools of the trade 133 

For many years, volcanic gas samples were collected using evacuated glass bottles and analyzed by gas 134 

chromatography (GC) (Symonds et al. 1994). In 1975, Werner Giggenbach revolutionized direct sampling 135 

by introducing sampling bottles containing sodium hydroxide solution and an evacuated headspace 136 

(Giggenbach 1975). The solution absorbs all major volcanic gas species, thus greatly increasing sample 137 

volume and improving precision and analytical sensitivity to both the absorbed gases and the minor non-138 

reactive gas species concentrated in the headspace of the bottle. To this day, analysis of direct gas samples 139 

still provides the most comprehensive compositional information on volcanic gas emissions and thus 140 
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elucidates important detail on volcanic and hydrothermal processes (Corazza 1986; Giggenbach and 141 

Matsuo 1991; Giggenbach et al. 2001). If a complete characterization of emissions is desired, direct gas 142 

samples can be augmented with samples collected by pumping the gas and aerosol mixture through 143 

impregnated filters which absorb acid gases and trace species for analysis in the laboratory (Finnegan et 144 

al. 1989). 145 

Another revolution in volcanic gas geochemistry occurred approximately 15 years ago with the advent of 146 

robust continuous gas monitoring technology. Continuous gas monitoring is achieved mainly by two types 147 

of instruments: For one, Multi-GAS instruments are deployed near active craters and measure in situ 148 

major gas compositions (H2O, CO2, SO2, H2S) in air-diluted volcanic plumes using a combination of IR 149 

absorption and electrochemical sensors (Aiuppa et al. 2005; Shinohara 2005). Multi-GAS measurements 150 

primarily target major gas ratios (CO2/SO2, H2S/SO2, H2O/CO2.) to correct for air dilution. Secondly, 151 

differential optical absorption spectrometers (DOAS) measure the absorption of scattered solar radiation 152 

by gases (mainly SO2) in overhead volcanic plumes (Edmonds et al. 2003; Galle et al. 2002, 2010). DOAS 153 

instruments are miniaturized successors to the highly innovative correlation spectrometers (COSPEC) 154 

developed in the 1970s which enabled volcanic SO2 emission rates, typically given in kg/s or metric tons 155 

per day (t/d), to be measured for the first time (Moffat and Millan 1971; Millán and Hoff 1978). At 156 

volcanoes with both Multi-GAS and DOAS instruments, emission rates of all major volatile species can be 157 

derived by scaling the DOAS-derived SO2 emission rates with the X/SO2 ratios measured by Multi-GAS (X 158 

= H2O, CO2, H2S).  159 

Our understanding of global volcanic CO2 fluxes has especially benefited from the combined Multi-GAS 160 

and DOAS approach (Burton et al. 2013; Fischer et al. 2019; Werner et al. 2019; Fischer and Aiuppa 2020), 161 

though situations exist where magmatic or hydrothermal CO2 travels along faults and fractures and 162 

diffuses through soils to the surface, sometimes away from any obvious volcanic features. Such diffuse 163 

CO2 emissions can be quantified using soil-gas surveys in which the accumulation of CO2 in chambers 164 

placed on the ground is measured. Repeating the measurement along a grid covering the area of interest 165 

yields a total diffuse CO2 flux from that area, a parameter that can track magma movement below 166 

(Chiodini et al. 1998; Lewicki et al. 2005; Werner et al. 2014). 167 

Next to the DOAS measurements mentioned above, several other remote sensing techniques can provide 168 

a variety of information on volcanic degassing. In the last decade, hyperspectral imaging methods in the 169 

UV and IR have been developed that allow 2D mapping of volcanic gas plumes (Bluth et al. 2007; Kern et 170 

al. 2010; Kuhn et al. 2014; Mori and Burton 2006). Though less selective than the DOAS systems, these 171 
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“SO2 cameras” provide 2D imagery at unprecedented temporal resolution (typically on the order of 1 Hz) 172 

which allows direct comparison with high-resolution geophysical data and the study of syn-eruptive 173 

processes occurring on short time scales (McGonigle et al. 2017; Nadeau et al. 2011, 2015; Pering et al. 174 

2015; Tamburello et al. 2013). The first continuous SO2 camera systems have been installed on volcanoes 175 

in recent years (Burton et al. 2015; Delle Donne et al. 2019, 2017; Kern et al. 2015). Open-path Fourier 176 

Transform Infrared Spectroscopy (FTIR) is another remote sensing technique that is sensitive not only to 177 

SO2, but also to other IR-active species such as CO2, CO, HCl, and HF, thus allowing a nearly complete 178 

plume characterization if a suitable measurement configuration and radiation source can be found 179 

(Francis et al. 1998; Love et al. 1998; Oppenheimer et al. 1998). 180 

Finally, satellite observations also provide information on volcanic degassing. Beginning with the 181 

successful launch of the Total Ozone Mapping Spectrometer (TOMS) instrument in 1978, spectroscopic 182 

data collected by satellites have provided the community with a wealth of information on global volcanic 183 

degassing (Carn et al. 2003, 2015; Krueger 1983). Though not as sensitive as ground-based measurements, 184 

satellites provide global coverage on an approximately daily basis and can track large gas plumes all 185 

around the world. To date, satellite measurements mainly target SO2 in the UV spectral region, with the 186 

Tropospheric Monitoring Instrument (TROPOMI) currently providing daily global coverage at 187 

unprecedented 3.5 x 7 km resolution (Theys et al. 2019). In certain conditions, satellite-borne IR 188 

spectroscopy can also provide information on SO2, H2S, HCl, sulfate aerosol, ash, and possibly even CO2, 189 

though the latter is extremely challenging due to the high atmospheric background CO2 concentration and 190 

current technology will only allow quantitative CO2 detection on rare occasions (Carn et al. 2016; Clarisse 191 

et al. 2010, 2011, 2012; Johnson et al. 2020; Schwandner et al. 2017). 192 

The next 10 years 193 

Though volcanic gas geochemistry clearly has a long legacy including many important discoveries, the field 194 

has lagged behind geophysical disciplines in terms of continuous, real-time monitoring. Whereas well-195 

monitored volcanoes have typically had geophysical networks for decades, continuous gas-geochemical 196 

monitoring has only begun in earnest in the last 10-15 years. Many volcano observatories have only 197 

recently gained the capacity to deploy Multi-GAS and DOAS instruments to the volcanoes they are charged 198 

with monitoring. These efforts are helped by community-wide global initiatives such as the Network for 199 

Observation of Volcanic and Atmospheric Change (NOVAC, https://novac-community.org; Arellano et al. 200 

2021; Galle et al. 2010) and the Deep Earth Carbon Degassing (DECADE, 201 
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https://deepcarboncycle.org/home-decade; Fischer 2013; Fischer et al. 2019) initiative which aim to 202 

provide instrumentation, technical know-how, and scientific understanding of the measurement results 203 

to staff at observatories and research institutions around the world. 204 

We expect that continuous geochemical monitoring will expand greatly in the next 10 years, motivated 205 

by the extremely promising results from volcanoes that have been instrumented or where campaign 206 

measurements were fortuitously performed at key moments. Examples include the emission of 207 

substantial precursory CO2 at Redoubt volcano starting almost 6 months prior to its 2009 eruption 208 

(Werner et al. 2013), a marked increase in CO2/SO2 ratios measured by continuous Multi-GAS in the plume 209 

of Villarrica volcano one month before its paroxysmal March 2015 eruption (Aiuppa et al. 2017), the 210 

systematic increase of SO2 flux through the crater lake of Poás volcano detected by DOAS and Multi-GAS 211 

instruments prior to phreatic eruptions (de Moor et al. 2016b, 2019), or the recently discovered increase 212 

in CO2 emission rate that appears to precede paroxysms at Stromboli by weeks to months (Aiuppa et al 213 

2021). 214 

Ground-based instruments are often destroyed by eruptions, resulting in a relative paucity of syn-eruptive 215 

gas composition data. Unoccupied aircraft systems (UAS) are likely to play an important role in filling this 216 

knowledge gap and in routine volcano monitoring, as they can provide access to otherwise inaccessible 217 

gas plumes. In the past several years, numerous studies have shown that reliable measurements of 218 

plumes can be obtained by mounting miniaturized Multi-GAS or DOAS instruments on small, multi-rotor 219 

UAS (James et al. 2020; Liu et al. 2019, 2020; McGonigle et al. 2008; Mori et al. 2016; Rüdiger et al. 2021; 220 

Stix et al. 2018; de Moor et al. 2019), or by collecting samples of these plumes for later analysis in the 221 

laboratory (Rüdiger et al. 2018; Liu et al. 2020; Galle et al. 2021; Ilyinskaya et al. 2021; Mason et al. 2021). 222 

As the technology continues to evolve and regulatory hurdles are overcome, somewhat larger UAS hold 223 

even greater potential as these can carry larger, more sensitive payloads to volcanic vents from safe 224 

distances even during times of unrest (Galle et al. 2021; Syahbana et al. 2019). 225 

Isotopic measurements of volcanic gases, traditionally the domain of specialized laboratories, have also 226 

become more applicable to monitoring. Portable high-resolution laser absorption cavity ringdown 227 

instruments can now examine carbon isotopes at sensitivities sufficient to sample dilute plumes and can 228 

sometimes even be used directly in the field (Fischer and Lopez 2016; Stix et al. 2017; Ajayi and Ayers 229 

2021). As the frequency of isotope measurements of volcanic gases increases, new insights will be 230 

achieved on the sources and processes governing dynamic variations in gas emissions. 231 
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Gas measurements inform our understanding of volcanic systems far beyond pattern recognition and 232 

eruption forecasting. We expect that the diagnostic power of these measurements will continue to 233 

increase as experimental volcanology provides better constraints on volatile solubility and degassing 234 

processes, and as those results are used to improve degassing models. These models are key to 235 

interpreting gas measurements, as simplified interpretations are often ambiguous. For example, an 236 

increase in CO2/SO2 ratio could indicate deep recharge of carbon-rich magma or increasingly efficient 237 

scrubbing of sulfur by a shallow hydrothermal system. Only by considering all available geochemical 238 

parameters in a degassing model can these processes be distinguished. However, diverse hydrothermal 239 

systems and non-equilibrium (kinetic) processes will provide significant challenges to universally 240 

applicable geochemical models of volcanic degassing. Integration of robust geochemical and geophysical 241 

data streams into real-time machine learning pattern recognition algorithms is a promising approach for 242 

improved and objective eruption forecasts. 243 

Conclusions 244 

Our view is that volcanic gas geochemistry, after numerous recent and important developments, is now 245 

entering what could be a golden era for the field. Technological advances in instrumentation combined 246 

with an improved understanding of how volatiles behave in volcanic systems is allowing for a paradigm 247 

change in the diagnostic capability of volcanic gas monitoring, which could place these techniques on par 248 

with geophysical methods. 249 

The degree to which this potential is realized depends on how the community can overcome a few 250 

remaining challenges. Gas monitoring instrumentation is still largely custom-built, in contrast to the 251 

commercial, off-the-shelf solutions available for seismic or geodetic monitoring. The software packages 252 

used for data analysis (e.g., RatioCalc (Tamburello 2015), Mobile DOAS (Johansson et al. 2021a), the 253 

NOVAC Program (Johansson et al. 2021b), and Pyplis (Gliß et al. 2017)) are also custom solutions 254 

developed by the volcanology community and typically lack the high degree of automation often available 255 

in commercial geophysics software, although first examples of fully automated data processing and 256 

visualization routines are now at use at some volcanoes (Delle Donne et al., 2019; Aiuppa et al., 2021). 257 

This, along with the relatively small size of the gas geochemistry community compared with other 258 

volcanology disciplines, has limited the speed and efficiency at which monitoring networks have been able 259 

to expand. Gas monitoring data and field instrumentation are also inherently at the mercy of wind 260 

patterns (i.e., plume travel direction) and at risk of destruction by eruptions, often yielding incomplete 261 
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time series data – a situation which is likely to improve markedly as gas networks improve their spatial 262 

coverage of individual volcanoes. 263 

Also, in contrast to other volcano monitoring disciplines, the gas geochemistry community has been slow 264 

to adopt standardized, public data portals. This is largely because the field has historically been highly 265 

diverse in terms of data production methods and somewhat ‘data-starved’, but such portals will be 266 

needed as data volume increases over the coming years and will be especially important in allowing 267 

comparative and interdisciplinary studies of the world’s active volcanoes. The EarthChem/DECADE 268 

database (https://decade.earthchem.org/), the Mapping Gas Emissions project 269 

(http://www.magadb.net/), and the NOVAC data portal (https://novac.chalmers.se/) provide important 270 

first steps in this direction. 271 

The motivation to overcome these challenges stems from the promises that volcanic gas measurements 272 

hold: that changes in gas composition and emission rate are likely one of the first signs of unrest at many 273 

more volcanoes than we are currently aware of; that more widespread geochemical monitoring will allow 274 

us to capture such signals with increased frequency and reliability; and that coupling these gas 275 

measurements with improved volatile degassing models and increasingly sophisticated data analysis 276 

methods will lead to a significant improvement in our ability to forecast volcanic events. 277 
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 645 

 646 

Fig. 1 Conceptual model for volatile behavior in volcanic systems. (a) Schematic cross-section of a volcano plumbing system, 647 

showing magma/gas migration pathways from a deep magma storage zone to the surface. (b) CO2-H2O-St (total sulfur) ternary 648 

diagram, showing proportions in volcanic gases (Giggenbach 1996). The compositional fields of arc and non-arc magmatic gases, 649 

and of hydrothermal gases, are from Aiuppa (2015). (c) CO2-SO2-H2S ternary diagram, showing generalized compositional fields 650 

of magmatic and hydrothermal gases (modified from Stix and de Moor 2018). The field H/DM, not present in the original work of 651 

Stix and de Moor (2018), identifies an uncertain area where both hydrothermal and deep magmatic gases can plot. In (b) and (c), 652 

the dashed arrows represent the modeled composition of an exsolved volatile phase in magma ascending from approx. 10 km to 653 

the surface (see ‘Model 1’ in the study by de Moor et al. (2016a), for details on model initialization). The numbered circles denote 654 

the mean gas compositions measured at Turrialba during the four stages of activity from 1998 to 2016 (repose to eruption, 655 

compare Fig. 2). Syn-eruptive compositions are depicted by a small circle – these are phase 4 measurements further filtered to 656 

exclude H2O/St falling outside the 90th to 10th percentile bracket to remove points likely affected by external water addition or 657 

condensation in the plume. Solid arrows originating from here describe the effects of scrubbing, addition of external (meteoric 658 

or hydrothermal) H2O, and S reduction. The dashed line in (c) represents the gas composition that would be measured at the 659 

point of emission, after H2S/SO2 re-equilibrates to low values at high temperature and low pressure (de Moor et al. 2016a). 660 
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 662 

Fig. 2 Volcanic gas composition (a) and SO2 flux (b) measured at Turrialba Volcano, Costa Rica, since 1998. Over the past two 663 

decades at Turrialba, the Observatorio Vulcanológico y Sismológico de Costa Rica (OVSICORI) and international partners have 664 

recorded one of the most complete continuous geochemical datasets available globally. The measurements clearly show the 665 

sequence from a period of quiescence prior to 2001, when hydrothermal gases dominated emissions (Vaselli et al., 2010), 666 

successively towards the magmatic unrest that has occurred since 2015 (de Moor et al. 2016a). Prior to 2001, CO2/total sulfur (St) 667 

ratios greater than 100 and a complete lack of SO2 (H2S/SO2 depicted as equal to 10000 in Fig 2a) prevailed, indicative of purely 668 

hydrothermal degassing during this period of quiescence. However, the gas signature became increasingly magmatic during 2001-669 

2010, with CO2/St decreasing by two orders of magnitude and detectable, low-level SO2 emissions beginning. The SO2 emission 670 

rate spiked sharply in 2010 with the opening of a new, high-temperature vent at the volcano’s summit. From this time on, the 671 

H2S/SO2 ratio varied over 4 orders of magnitude reflecting the ability of individual magmatic eruptions to transfer SO2-rich gases 672 

to the surface with negligible gas-water interaction. Data compiled from: Vaselli et al. (2010); Campion et al. (2012); Conde et al. 673 

(2013); Aiuppa et al. (2014); Moussallam et al. (2014); Zimmer et al. (2014); de Moor et al. (2016a, 2017); Carn et al. (2017); Avard 674 

et al. (2020) ; and Aiuppa (unpublished). Additional SO2 emission rate satellite data from 675 

https://so2.gsfc.nasa.gov/measures.html. 676 


