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Abstract. The aim of this paper is to prove the existence of at least one nontrivial
weak solution for equations involving the (p(·), q(·))-Laplace operator. The approach
is variational and based on the critical point theory.

1. Introduction

Let Ω ⊂ Rn be an open bounded domain with smooth boundary. We consider the
problem with Dirichlet condition:

(1)

{
−∆p(x)u(x)−∆q(x)u(x) = µh(x, u(x)) in Ω,

u = 0 on ∂Ω, µ > 0.

where ∆p(x)u := div(|∇u|p(x)−2∇u) and ∆q(x)u := div(|∇u|q(x)−2∇u) are the p(·)-
Laplace and q(·)-Laplace operators. Let p, q ∈ C(Ω) be such that

1 < q− := inf
x∈Ω

q(x) ≤ q(x) ≤ q+ := sup
x∈Ω

q(x)

< p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞.

The study of equations driven by the p(x)-Laplace operator presents major difficulties
than the classical ones driven by the p-Laplace operator. Indeed, the p(x)-Laplace
operator is inhomogeneous.

Here, the function h(x, z) (reaction term) is Carathéodory (that is, for all z ∈ R,
x → h(x, z) is measurable and for a.a. x ∈ Ω, z → h(x, z) is continuous).

Let p∗(x) =
np(x)

n− p(x)
if p(x) < n and p∗(x) = +∞ if p(x) ≥ n. The hypothesis on

h : Ω× R → R is as follows:

(h1) there exist constants b1, b2 ∈ [0,+∞[ and β ∈ C(Ω) with 1 < β(x) < p∗(x) for each
x ∈ Ω, such that

|h(x, ξ)| ≤ b1 + b2|ξ|β(x)−1 for all x ∈ Ω, all ξ ∈ R.

We give two easy examples of functions satisfying the hypothesis (h1):

• h(ξ) = ξs(x)−1 + ξr(x)−1 for all ξ ≥ 0, with p, q, r, s ∈ C(Ω) such that 1 < s(x) <
q(x) < p(x) < r(x) < p∗(x).

• h(ξ) = ξp(x)−1 ln(1+ ξ), for all ξ ≥ 0, with p ∈ C(Ω) such that 1 < p(x) ≤ p∗(x).
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The solution to (1) is understood in the weak sense, that is, a function u ∈ W
1,p(x)
0 (Ω)

such that ∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
Ω

|∇u|q(x)−2∇u∇vdx = µ

∫
Ω

h(x, u)vdx,

for all v ∈ W
1,p(x)
0 (Ω). Here, by W

1,p(x)
0 (Ω), we denote the closure of C∞

0 (Ω) in
W 1,p(x)(Ω), where W 1,p(x)(Ω) is the generalized Lebesgue−Sobolev space considered in
Section 2.

Existence and multiplicity theorems for boundary value problems involving the p(·)-
Laplace and (p(·), q(·))-Laplace operators were recently obtained by Bonanno-Chinǹı
[2], Gasiński-Papageorgiou [5], Papageorgiou-Vetro [9], Tan-Fang [10], Vetro [11], and
Zhou [12].

The structure of problem (1) is variational and hence we approach it by using critical
point theory. So, we wish to prove two results concerning the existence of at least
one and three weak solutions. Precisely, we construct our proofs on two critical point
theorems due to Bonanno [1, Theorem 2.3] and Bonanno-Marano [3, Theorem 3.6].
Here we recall the following statements.

Theorem 1 ([1]). Let X be a real Banach space and let A,B : X → R be two
continuously Gâteaux differentiable functionals such that infu∈X A(u) = A(0) = B(0) =
0. Assume that there exist r > 0 and ū ∈ X, with 0 < A(ū) < r, such that

(j) δ =
1

r
sup

A(u)≤r

B(u) <
B(ū)

A(ū)
= ϱ;

(jj) for each µ ∈ ]ϱ−1, δ−1[ the functional Jµ := A− µB satisfies (P.S.)[r]-condition.

Then, for each µ ∈ ]ϱ−1, δ−1[, there is u0,µ ∈ A−1(]0, r[) such that J ′
µ(u0,µ) ≡ ϑX∗ and

Jµ(u0,µ) ≤ Jµ(u) for all u ∈ A−1(]0, r[).

Theorem 2 ([3]). Let X be a reflexive real Banach space and let A : X → R be a
coercive, continuously Gâteaux differentiable and sequentially weakly lower semi-continuous
functional whose Gâteaux derivative admits a continuous inverse on X∗, B : X → R
be a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact
such that infu∈X A(u) = A(0) = B(0) = 0. Assume that there exist r > 0 and ū ∈ X,
with 0 < r < A(ū), such that

(j) δ =
1

r
sup

A(u)≤r

B(u) <
B(ū)

A(ū)
= ϱ;

(jj) for each µ ∈ ]ϱ−1, δ−1[ the functional Jµ := A− µB is coercive.

Then, for each µ ∈ ]ϱ−1, δ−1[, the functional Jµ := A − µB has at least three distinct
critical points in X.

2. Mathematical Background

Let X be a Banach space. By X∗ we denote its topological dual and by ⟨·, ·⟩ the
duality brackets for the pair (X∗, X). In the analysis of problem (1), we work with
the spaces Lp(x)(Ω) (variable exponent Lebesgue space) and W 1,p(x)(Ω) (generalized
Lebesgue−Sobolev space). We mention that both Lp(x)(Ω) and W 1,p(x)(Ω), endowed
with the norms ∥u∥Lp(x)(Ω) and ∥u∥W 1,p(x)(Ω) (see below), are separable, reflexive and
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uniformly convex Banach spaces (see [6]). So, we have

Lp(x)(Ω) =

{
u : Ω → R : u is measurable and ρp(u) :=

∫
Ω

|u(x)|p(x)dx < +∞
}
,

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.

Next, we consider the norms:

∥u∥Lp(x)(Ω) =

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣p(x) dx ≤ 1

}
,

∥u∥W 1,p(x)(Ω) = ∥u∥Lp(x)(Ω) + ∥ |∇u| ∥Lp(x)(Ω).

We recall that

∥u∥Lp(x)(Ω) ≤ C∥∇u∥Lp(x)(Ω) for all u ∈ W
1,p(x)
0 (Ω), for a specific constant C > 0,

(see [4, Theorem 8.2.18] and [6, Proposition 2.5(iii)]). So, the norms ∥u∥W 1,p(x)(Ω)

and ∥ |∇u| ∥Lp(x)(Ω) are equivalent on W
1,p(x)
0 (Ω). Therefore, we can use ∥ |∇u| ∥Lp(x)(Ω)

instead of ∥u∥W 1,p(x)(Ω) so that we put

∥u∥ = ∥ |∇u| ∥Lp(x)(Ω) in W
1,p(x)
0 (Ω).

The following result is a generalization of the classical Sobolev embedding theorem.

Proposition 1. [6, Proposition 2.5(ii)] Assume that p ∈ C(Ω) with p(x) > 1 for each
x ∈ Ω. If β ∈ C(Ω) and 1 < β(x) < p∗(x) for all x ∈ Ω, then there exists a continuous
and compact embedding W 1,p(x)(Ω) ↪→ Lβ(x)(Ω).

We will also use another basic theorem, linking ∥ · ∥Lp(x)(Ω) to ρp(·) (see, for example,
Theorem 1.3 of [7]).

Theorem 3. Let u ∈ Lp(x)(Ω). Then, the following relations hold:

(i) ∥u∥Lp(x)(Ω) < 1 (= 1, > 1) ⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ∥u∥Lp(x)(Ω) > 1, then ∥u∥p
−

Lp(x)(Ω)
≤ ρp(u) ≤ ∥u∥p

+

Lp(x)(Ω)
;

(iii) if ∥u∥Lp(x)(Ω) < 1, then ∥u∥p
+

Lp(x)(Ω)
≤ ρp(u) ≤ ∥u∥p

−

Lp(x)(Ω)
.

Next, let H : Ω× R → R defined by

H(x, t) =

∫ t

0

h(x, ξ)dξ for all t ∈ R, x ∈ Ω,

and consider the functional B : W
1,p(x)
0 (Ω) → R defined by

B(u) =

∫
Ω

H(x, u(x)) dx, for all u ∈ W
1,p(x)
0 (Ω).

By the hypothesis (h1) on the reaction term, we have B ∈ C1(W
1,p(x)
0 (Ω),R).

Remark 1. Proposition 1 ensures that B admits a compact Gâteaux derivative given by

⟨B′(u), v⟩ =
∫
Ω

h(x, u(x))v(x) dx, for all u, v ∈ W
1,p(x)
0 (Ω).
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Now, let A1, A2, A : W 1,p
0 (Ω) → R be the C1-functionals defined by

A1(u) =

∫
Ω

1

p(x)
|∇u(x)|p(x)dx, A2(u) =

∫
Ω

1

q(x)
|∇u(x)|q(x)dx

and
A(u) = A1(u) + A2(u),

for all u ∈ W
1,p(x)
0 (Ω). We note that A1, A2 and A are convex, sequentially weakly lower

semi-continuous with Gâteaux derivatives A′
1, A

′
2, A

′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ given

by

⟨A′
1(u), v⟩ =

∫
Ω

|∇u|p(x)−2∇u∇vdx, ⟨A′
2(u), v⟩ =

∫
Ω

|∇u|q(x)−2∇u∇vdx

and
⟨A′(u), v⟩ = ⟨A′

1(u), v⟩+ ⟨A′
2(u), v⟩,

for all u, v ∈ W
1,p(x)
0 (Ω).

Remark 2 (see [6], Theorem 3.1(ii)). A′
1, A

′
2 are mappings of type (S+), that is, if un

w−→ u

in W
1,p(x)
0 (Ω) and lim supn→+∞⟨A′

i(un), un−u⟩ ≤ 0, then un → u in W
1,p(x)
0 (Ω), i = 1, 2.

Of course, A′ is a mapping of type (S+) too.

Remark 3 (see [6], Theorem 3.1(i)). A′
1, A

′
2 : W

1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ are continuous

strictly monotone mappings. Consequently, A′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is a

continuous strictly monotone mapping (hence maximal monotone too). The continuity
is obvious. We prove that A′ is strictly monotone. In fact, if (u, u∗), (v, v∗) ∈ Gr(A′),

then there exist z∗, w∗ ∈ (W
1,p(x)
0 (Ω))∗ such that (u, z∗), (v, w∗) ∈ Gr(A′

1) and (u, u∗ −
z∗), (v, v∗ − w∗) ∈ Gr(A′

2). So, we have

⟨u∗ − v∗, u− v⟩ =⟨z∗ − w∗ + (u∗ − z∗)− (v∗ − w∗), u− v⟩
=⟨z∗ − w∗, u− v⟩+ ⟨(u∗ − z∗)− (v∗ − w∗), u− v⟩ ≥ 0,

since
⟨z∗ − w∗, u− v⟩, ⟨(u∗ − z∗)− (v∗ − w∗), u− v⟩ ≥ 0.

Moreover, from ⟨z∗ − w∗, u− v⟩ > 0 for u ̸= v it follows

⟨u∗ − v∗, u− v⟩ > 0 if u ̸= v.

Remark 4. The mapping A′ : W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ has a continuous inverse

(A′)−1 : (W
1,p(x)
0 (Ω))∗ → W

1,p(x)
0 (Ω).

Indeed, from Remark 3 it follows that A′ is injective and maximal monotone. Since
A′ is also coercive, then A′ is surjective (see Theorem 2.55 of Motreanu-Motreanu-
Papageorgiou [8], p. 33). This ensures that A′ has an inverse mapping (A′)−1 :

(W
1,p(x)
0 (Ω))∗ → W

1,p(x)
0 (Ω).

Now, we prove that (A′)−1 is continuous. Let sn, s ∈ (W
1,p(x)
0 (Ω))∗ with sn → s. For

every n ∈ N, there exists (a unique) un ∈ W
1,p(x)
0 (Ω) such that A′(un) = sn. Also, there

exists u ∈ W
1,p(x)
0 (Ω) such that A′(u) = s. Since A′ is coercive and A′(un) → A′(u), we

get that {un} ⊂ W
1,p(x)
0 (Ω) is bounded. So, by passing to a subsequence if necessary,

we can assume that there exists u0 ∈ W
1,p(x)
0 (Ω) such that un

w−→ u0. Since sn → s, we
have

lim
n→+∞

⟨A′(un)− A′(u0), un − u0⟩ = lim
n→+∞

⟨sn, un − u0⟩ = 0,
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⇒ un → u0 (as A′ is of type (S+), see Remark 2).

The continuity of A′ implies that sn = A′(un) → A′(u0) = s = A′(u). The strictly
monotonicity of A′ implies that u = u0. So, we conclude that un → u, and hence (A′)−1

is continuous.

We consider the functional Jµ : W
1,p(x)
0 (Ω) → R given as Jµ(u) = A(u) − µB(u) for

all u ∈ W
1,p(x)
0 (Ω). We note that

inf
u∈W 1,p(x)

0 (Ω)

A(u) = A(0) = B(0) = 0.

Since the concept of (PS)[r]-condition appears in the statement of Theorem 1, we
recall it.

Definition 1. Let (X,X∗) be a Banach dual pair. We say that Jµ : X → R has the
Palais-Smale cut off upper at r property, for r ∈] −∞,+∞] fixed, if every {un} ⊂ X
such that:

(j) {Jµ(un)} is bounded;
(jj) ∥J ′

µ(un)∥X∗ → 0 as n → +∞;
(jjj) A(un) < r,

admits a convergent subsequence.

3. Main Results

Firstly, we prove a theorem producing at least one nontrivial weak solution for the
problem (1). We impose the growth condition (h1) on the reaction term. Define the
function ζ : Ω → R by ζ(x) = d(x, ∂Ω), where d is the Euclidean distance. Let x0 ∈ Ω be
a point of maximum for ζ and let θ := ζ(x0), then B(x0, θ) = {x ∈ Rn : d(x0, x) < θ} ⊂
Ω. For notational convenience, we fix η ∈ ]1,+∞[ and put ηθ = 1/η and ωθ = η

(η−1)θ
.

Clearly, (1− ηθ)θωθ = 1. Also, for c > 0 and κ ∈ C(Ω) with 1 < κ−, we put

[c]κ := max{cκ−
, cκ

+} and [c]κ := min{cκ−
, cκ

+}.

We impose the following condition on H : Ω× R → R:

(h2) lim sup
t→0+

infx∈Ω H(x, t)

tq−
= +∞.

Example 1. Let β ∈ C(Ω) with 1 < β(x) < p∗(x) for each x ∈ Ω, and g : Ω → R such
that g ∈ L1(Ω) with 0 < a ≤ g(x) ≤ b1 < +∞ for all x ∈ Ω. Consider the function
h : Ω× R → R given as

h(x, t) =

{
g(x) + ctβ(x)−1 t > 0,

g(x) t ≤ 0.

Clearly h satisfies (h1) and H satisfies (h2).

Now, put µ∗ =
(
b1χ1(p

+)1/p
−
+ b2

β− [χβ]
β(p+)β

+/p−
)−1

, with χ1 and χβ denoting the

constants of the compact embeddings W
1,p(x)
0 (Ω) ↪→ L1(Ω) and W

1,p(x)
0 (Ω) ↪→ Lβ(x)(Ω).

So, we prove our first theorem.
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Theorem 4. For each µ ∈]0, µ∗[, problem (1) has at least one nontrivial weak solution,
provided that (h1) and (h2) hold.

Proof. We consider the Banach space X := W
1,p(x)
0 (Ω) and work with A, B defined

above (see Section 2). We wish to apply Theorem 1, so we check its hypotheses in the
case r = 1. Supported by the fact that A,B ∈ C1(X,R) and the compactness of B′, we
point out that Jµ satisfies the (P.S.)[r]-condition for all r > 0 (see Bonanno [1]). This

means that Theorem 1(jj) holds. Let m := 2πn/2

nΓ(n/2)
be the measure of the unit ball of Rn,

where Γ is the Gamma function. Now, fixed µ ∈]0, µ∗[, by using the hypothesis (h2),
we have

(2) 0 < ζµ < min

{
1,

(
q−

mθn(1− ηn)([ωθ]p + [ωθ]q)

)1/q−
}

so that

(3)
q−ηnθ infx∈Ω H(x, ζµ)

(1− ηnθ )([ωθ]p + [ωθ]q)(ζµ)q
− >

1

µ
.

If | · | denotes the Euclidean norm on Rn, define uµ : Ω → R by

uµ(x) =


0 x ∈ Ω \ B(x0, θ),

ζµ x ∈ B(x0, ηθθ),

ζµωθ(θ − |x− x0|) x ∈ B(x0, θ) \ B(x0, ηθθ).

We have

A(uµ) =

∫
Ω

1

p(x)
|∇u(x)|p(x)dx+

∫
Ω

1

q(x)
|∇u(x)|q(x)dx

≤ 1

p−
(ζµ)

p−m[ωθ]
p(1− ηnθ )θ

n +
1

q−
(ζµ)

q−m[ωθ]
q(1− ηnθ )θ

n

≤ 1

q−
(ζµ)

q−m(1− ηnθ )θ
n([ωθ]

p + [ωθ]
q),

⇒ A(uµ) ≤
1

q−
(ζµ)

q−m(1− ηnθ )θ
n([ωθ]

p + [ωθ]
q) < 1 (by (2)).

Also, we get

B(uµ) ≥
∫
B(x0,ηθθ)

H(x, uµ)dx ≥ inf
x∈Ω

H(x, ζµ)mηnθ θ
n (by (3)),

⇒ B(uµ)

A(uµ)
≥ q−ηnθ infx∈Ω H(x, ζµ)

(1− ηnθ )([ωθ]p + [ωθ]q)(ζµ)q
− >

1

µ
.

For each u ∈ A−1(]−∞, 1]), by using Theorem 3, we have

∥∇u∥Lp(x)(Ω) ≤ [ρp(|∇u(x)|)]1/p ≤
[
p+

∫
Ω

|∇u(x)|p(x)

p(x)
dx

]1/p
≤ [p+]1/p = (p+)1/p

−
,

⇒ ∥u∥ = ∥ |∇u| ∥Lp(x)(Ω) ≤ (p+)1/p
−
.(4)
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By Proposition 1 and Theorem 3, we have

(5)

∫
Ω

|u(x)|β(x)dx = ρβ(u) ≤ [∥u∥Lβ(x)(Ω)]
β ≤ [χβ∥u∥]β for all u ∈ X.

By hypothesis (h1), (4), (5) and the compact embedding X ↪→ L1(Ω), for each u ∈
A−1(]−∞, 1]) we get

B(u) ≤ b1

∫
Ω

|u(x)|dx+
b2
β−

∫
Ω

|u(x)|β(x)dx ≤ b1χ1∥u∥+
b2
β− [χβ]

β[∥u∥]β

≤ b1χ1(p
+)1/p

−
+

b2
β− [χβ]

β(p+)β
+/p− ,

⇒ sup
A(u)≤1

B(u) ≤ b1χ1(p
+)1/p

−
+

b2
β− [χβ]

β(p+)β
+/p− =

1

µ∗ <
1

µ
,

⇒ sup
A(u)≤1

B(u) <
1

µ
<

B(uµ)

A(uµ)
.

So, Theorem 1(j) is satisfied. Since µ ∈]A(uµ)

B(uµ)
, 1
supA(u)≤1 B(u)

[, we apply Theorem 1 to

conclude the existence of a local minimum point vµ for Jµ with 0 < A(vµ) < 1. Thus,
vµ is a nontrivial weak solution of (1). □

Next, we prove a multiplicity result for the problem (1). We impose the following
conditions on H : Ω× R → R:

(h3) there exist c ∈ [0,+∞[ and γ ∈ C(Ω) with 1 < γ− ≤ γ+ < p− such that

H(x, t) ≤ c(1 + |t|γ(x)) for all x ∈ Ω, all t ∈ R;

(h4) H(x, t) ≥ 0 for all x ∈ Ω, all t ∈ R+;
(h5) there exist r > 0 and ζ > 0 with r < 1

p+
(ζ)p

+
m(1−ηnθ )θ

n([ωθ]p+[ωθ]q) such that

R :=
1

r
{b1χ1(p

+)1/p
−
[r]1/p +

b2
β− [χβ]

β(p+)β
+/p− [[r]1/p]β} <

q−ηnθ infx∈ΩH(x, ζ)

(1− ηnθ )([ωθ]p + [ωθ]q)(ζ)q
− .

Example 2. Let γ ∈ C(Ω) with 1 < γ− ≤ γ+ < p− for each x ∈ Ω, and g : Ω → R
such that g ∈ L1(Ω) with 0 < a ≤ g(x) ≤ b1 < +∞ for all x ∈ Ω. Consider the function
h : Ω× R → R given as

h(x, t) =

{
g(x) + ctγ(x)−1 t > 0,

0 t ≤ 0.

Clearly h satisfies (h1) and H satisfies (h3), (h4) and (h5).

Now, we can have the existence theorem producing at least three weak solutions.

Theorem 5. For each µ ∈ Θ :=

]
(1− ηnθ )([ωθ]

p + [ωθ]
q)(ζ)q

−

q−ηnθ infx∈Ω H(x, ζ)
,
1

R

[
, problem (1) has at

least three weak solutions, provided that (h1), (h3), (h4) and (h5) hold.

Proof. From same notation and similar arguments as in the proof of Theorem 4, we
deduce that the requirements of Theorem 2 (see also Remark 4) are met.
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For r, ζ satisfying (h5), we define w : Ω → R by

w(x) =


0 x ∈ Ω \ B(x0, θ),

ζ x ∈ B(x0, ηθθ),

ζωθ(θ − |x− x0|) x ∈ B(x0, θ) \ B(x0, ηθθ).

From (h4), in the lines of the proof of Theorem 4, we get

B(w)

A(w)
≥ q−ηnθ infx∈ΩH(x, ζ)

(1− ηnθ )([ωθ]p + [ωθ]q)(ζ)q
− .

Also, we have

A(w) ≥ 1

p+
(ζ)p

+

m(1− ηnθ )θ
n([ωθ]p + [ωθ]q).

Since r < 1
p+
(ζ)p

+
m(1− ηnθ )θ

n([ωθ]p + [ωθ]q), we get r < A(w). So, we have

(6)

∫
Ω

|u(x)|β(x)dx = ρβ(u) ≤ [∥u∥Lβ(x)(Ω)]
β ≤ [χβ∥u∥]β for all u ∈ X,

(by Proposition 1 and Theorem 3). For each u ∈ A−1(]−∞, r]), thanks to Theorem 3
we get

∥∇u∥Lp(x)(Ω) ≤ [ρp(|∇u(x)|)]1/p ≤
[
p+

∫
Ω

|∇u(x)|p(x)

p(x)
dx

]1/p
≤ [p+A(u)]1/p ≤ [p+r]1/p = (p+)1/p

−
[r]1/p,

⇒ ∥u∥ = ∥ |∇u| ∥Lp(x)(Ω) ≤ (p+)1/p
−
[r]1/p.(7)

Now, (h1), (6), (7) and the compact embedding X ↪→ L1(Ω), for each u ∈ A−1(]−∞, r]),
give us

B(u) ≤ b1

∫
Ω

|u(x)|dx+
b2
β−

∫
Ω

|u(x)|β(x)dx ≤ b1χ1∥u∥+
b2
β− [χβ]

β[∥u∥]β

≤ b1χ1(p
+)1/p

−
[r]1/p +

b2
β− [χβ]

β(p+)β
+/p− [[r]1/p]β,

⇒ 1

r
sup

A(u)≤r

B(u) ≤ 1

r

{
b1χ1(p

+)1/p
−
[r]1/p +

b2
β− [χβ]

β(p+)β
+/p− [[r]1/p]β

}
,

⇒ 1

r
sup

A(u)≤r

B(u) <
B(w)

A(w)
,

⇒ Theorem 2(i) is true.

We wish to show that Jµ := A− µB, for each µ > 0, is coercive. We point out that

(8)

∫
Ω

|u(x)|γ(x)dx = ργ(u) ≤ [∥u∥Lγ(x)(Ω)]
γ ≤ [χγ∥u∥]γ for all u ∈ X,

(by Proposition 1 and Theorem 3), where χγ is the constant for the compact embedding
X ↪→ Lγ(x)(Ω). From (h3) and (8), for each u ∈ X with ∥u∥ ≥ max{1, χ−1

γ } we have

B(u) =

∫
Ω

H(x, u(x))dx ≤
∫
Ω

c(1 + |u(x)|γ(x))dx

≤ c{|Ω|+ [χγ∥u∥]γ} = c{|Ω|+ [χγ]
γ∥u∥γ+}, |Ω| is the Lebesgue measure of Ω.
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So, we have

Jµ(u) ≥
∫
Ω

1

p(x)
|∇u(x)|p(x)dx+

∫
Ω

1

q(x)
|∇u(x)|q(x)dx− µc{|Ω|+ [χγ]

γ∥u∥γ+}

≥ 1

p+
∥u∥p− − µc{|Ω|+ [χγ]

γ∥u∥γ+},

⇒ Jµ is coercive.

By Theorem 2, Θ ⊂

]
A(w)

B(w)
,

r

supA(u)≤r B(u)

[
implies that Jµ (for each µ ∈ Θ) has at

least three critical points, which are weak solutions of (1). □

Acknowledgment: The authors wish to thank the knowledgeable referee for his/her
important remarks.

References

[1] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear
Anal., 1 (2012), 205–220.
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