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In this paper we give a simple and effective tool to analyze a given Kirkman triple system 
of order 15 and determine which of the seven well-known non-isomorphic KTS(15)s it is 
isomorphic to.
Our technique refines and improves the lacing of distinct parallel classes introduced by 
F. N. Cole, by means of the notion of residual triple defined by G. Falcone and the present 
author in a previous paper.
Unlike Cole’s original lacing scheme, our algorithm allows one to distinguish two KTS(15)s 
also in the harder case where the two systems have the same underlying Steiner triple 
system. In the special case where the common STS is #19, an alternative method is given 
by means of the 1-factorizations of the complete graph K8 associated to the two KTSs.
Moreover, we present three new visual solutions to the schoolgirl problem, and we 
catalogue most of the classical (or interesting) solutions in the literature in terms of what 
KTS(15)s they are isomorphic to.
This paper provides background on a classical topic, while shedding new light on the 
problem as well.
© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The fifteen schoolgirl problem is one of the most important, celebrated and fascinating problems in combinatorics and 
recreational mathematics. It was proposed by Thomas Penyngton Kirkman in 1850 as a challenge in a popular annual 
publication [35, p. 48], and from the very beginning to the present day it has always intrigued both professional and 
amateur mathematicians, as well as puzzle lovers. The problem is to find a weekly schedule for fifteen girls walking out 
daily in five rows of three, in such a way that no two girls shall walk in the same row more than once (equivalently, any 
girl shall walk exactly once in the same row with each of the other girls).

The first published solution, due to Arthur Cayley, appeared in June 1850 [13], immediately followed by Kirkman’s own 
solution in August 1850 [36] (replicated in [37, p. 260] and [38, p. 48]). The latter solution (as Kirkman himself revealed in 
[36, p. 170]) was implicit in the landmark and pioneering paper [34], which appeared three years earlier, where Kirkman 
ingeniously combined a Fano plane with a Room square of side 7 (which he later called a “curious arrangement” in [37, 
p. 261]). In fact, Cayley became aware of Kirkman’s work when he was asked to referee the 1847 paper [34], about which 
he was enthusiastic [20, p. 143]. This success kept up during the second half of the century, when the schoolgirl problem 
and its variants were regularly given solutions both in scholarly journals and in recreational publications [26].
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In order to rephrase the problem in the modern terminology of combinatorial design theory, we need some preliminary 
definitions (see, e.g., [4,7,15,17,62]). A Steiner triple system of order v , denoted STS(v), is a pair (V, B), where V is a set 
of v elements (points), and B is a collection of (unordered) triples (blocks) of elements of V , with the property that each 
(unordered) pair of points occurs as a subset of precisely one triple in B. When v is a multiple of 3, a parallel class is a 
subcollection of v/3 mutually disjoint triples in B that partitions the point-set V . When the entire collection B of triples 
can in turn be partitioned into parallel classes, such a partition is called a resolution (or parallelism) of the STS, and the STS 
is said to be resolvable. If (V, B) is an STS(v) and R is a resolution of it, then (V, B, R) is a Kirkman triple system of order v , 
denoted KTS(v), and (V, B) is its underlying STS. In this abstract setting, the schoolgirl problem amounts to asking whether 
there exists a KTS of order 15 (note that a resolution consists of seven parallel classes, each containing five triples). In fact, 
the theory of resolvable designs stems precisely from Kirkman’s schoolgirl problem.

An isomorphism from an STS (V1, B1) to an STS (V2, B2) is a one-to-one map π from V1 onto V2 that preserves triples: 
more precisely, T = {x, y, z} ∈B1 if and only if π(T ) = {π(x), π(y), π(z)} ∈ B2. An isomorphism from a KTS (V1, B1, R1) to 
a KTS (V2, B2, R2) is required, in addition, to preserve parallel classes: for any parallel class C in R1, the set {π(T ) | T ∈ C}
is a parallel class in R2. An automorphism is an isomorphism from an STS/KTS to itself.

A KTS(v) (V, B, R) is cyclic if it admits an automorphism α consisting of a single cycle of length v such that α preserves 
both the set of triples B and the resolution R [46]. For instance, there exists no cyclic KTS(v) for v = 15 [46]. It is worth 
noting, however, that the word “cyclic” was used with a different meaning in the early literature on Kirkman’s problem in 
the second half of the XIX century [2,5,6,52]; more precisely, a solution to the schoolgirl problem was said to be “cyclic” if, 
in modern terms, it was 2-rotational, that is, with an automorphism having of a single fixed point and two cycles of length 
7, inducing a cyclic permutation of the seven parallel classes [3] (see also Example 5 in the final Appendix of the present 
paper). We will use ourselves the word cyclic in this earlier sense throughout the rest of the paper.

The distinction between KTSs and resolvable STSs is that there can exist non-isomorphic KTSs that share the same 
underlying STS. Of the eighty non-isomorphic STS(15)s [67], exactly four are resolvable [18] (cf. [15, p. 66], [17, p. 370]). 
Moreover, three of these four STSs underlie two non-isomorphic KTSs, whereas the fourth STS underlies a unique KTS, which 
leads to an overall number of seven non-isomorphic KTSs of order 15. The seven solutions are given here in Table 1, using 
the numbering of the underlying STSs as in [42] and [15, p. 67] (where, in the latter case, the solutions that are numbered 
15a and 15b should be instead 19a and 19b, respectively. See also [61, Appendix, pp. 389-390]).

It must be said, in this respect, that a much more difficult problem than finding a KTS(15) is determining whether two 
given KTSs of order 15 are isomorphic or not. In fact, Kirkman himself erroneously thought at first that his arrangement was 
“the only possible solution” up to permutation [38], and Wesley S.B. Woolhouse, who was the first to raise the isomorphism 
issue, initially thought that all solutions were necessarily cyclic [68,69]. In 1860, Benjamin Peirce proved that there were 
three possible cyclic systems [52], corresponding to the solutions by Kirkman [36] and Cayley [13] and to one of Anstice’s 
solutions [5]. In 1881 eleven solutions of the schoolgirl problem were published [12], but it was only in 1917 [47] and 
1922 [18] that it was proved that only seven of them were non-isomorphic, precisely those given in 1862 and 1863 by 
Woolhouse [69,70] (an alternative proof, using graph theory, was given in [57]). Nevertheless, as far as we are aware, the 
literature lacks a description of the seven solutions that is easily understandable to the general reader.

One wishes to find simple and effective tools to establish whether two given KTS(15)s are isomorphic or not, and, 
possibly, determine which of the seven types they belong to. The first possibility is that the two systems do not have the 
same underlying STS. This can be established, for instance, by considering the two KTSs just as Steiner triple systems and 
computing, for each of them, some isomorphism-invariant STS parameter, such as the order of the automorphism group, 
the number of parallel classes, the number of Pasch configurations, or the number of Fano planes (see, e.g., [42] and [15, 
Table 1.29, p. 32]). Each of these parameters identifies one of the four resolvable STS(15)s uniquely, with the only exception 
of the number of Fano planes, which is equal to 1 for both systems #19 and #61.

However, a simpler and more effective tool to distinguish two KTSs of order 15, with two distinct underlying STSs, is 
using the notion of lacing of parallel classes, introduced by Frank Nelson Cole in [18] (although already suggested in [69], in 
the case of cyclic systems). We say that two distinct parallel classes of a KTS(15) are laced in the mode (α) if there exist two 
triples in one class and two triples in the other class, such that the four triples are mutually disjoint. Otherwise, there exists 
only one other possible lacing, in which case we say that the two parallel classes are laced in the mode (β). For instance, in 
the KTS numbered 1a (in Table 1) the triples abc, ehm, dko, fjl are mutually disjoint, hence the parallel classes Monday and 
Tuesday are laced in the mode (α). We wish to mention that there exists an alternative proof, by Alexander Rosa, that there 
exist only two possible lacings: the block-intersection graph of two distinct parallel classes in a KTS(15) is a bipartite cubic 
graph of order 10, and there exist exactly two such graphs, up to isomorphism [57].

As we mentioned above, the interlacing scheme of distinct parallel classes allows one to identify the underlying STS of a 
given KTS(15) [18] and, therefore, to distinguish two KTS(15)s with distinct underlying STSs. Indeed, in the systems 1a and 
1b any two distinct parallel classes have only the lacing (α). In the systems 7a and 7b (in Table 1) the parallel class Monday 
is in lacing (α) with all the other parallel classes, whereas each of the latter has two (α) lacings and four (β) lacings. In 
the systems 19a and 19b (in Table 1) the parallel classes Friday, Saturday, and Sunday have the lacing (α) with each other, 
whereas all the other lacings are of type (β). Finally, in the system 61 the lacings of distinct parallel classes are all of type 
(β).

In the case where two KTS(15)s have the same underlying STS (up to isomorphism), the interlacing scheme of distinct 
parallel classes is the same for the two systems, hence it is no longer sufficient to distinguish them, nor can the two systems 
2
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Table 1
The seven solutions of Kirkman’s schoolgirl problem.

# Mon Tue Wed Thu Fri Sat Sun

1a

abc
djn
ehm
fio
gkl

ahi
beg
cmn
dko
fjl

ajk
bmo
cef
dhl
gin

ade
bln
cij
fkm
gho

afg
bhj
clo
dim
ekn

alm
bik
cdg
ejo
fhn

ano
bdf
chk
eil
gjm

1b

abc
djn
ehm
fio
gkl

ahi
beg
cmn
dko
fjl

ajk
bmo
cef
dhl
gin

ade
bik
clo
fhn
gjm

afg
bln
chk
dim
ejo

alm
bdf
cij
ekn
gho

ano
bhj
cdg
eil
fkm

7a

abc
djo
eim
fkl
ghn

ahi
bdf
clo
ekn
gjm

ajk
beg
cmn
dhl
fio

ade
bln
cij
fhm
gko

afg
bmo
chk
din
ejl

alm
bik
cdg
eho
fjn

ano
bhj
cef
dkm
gil

7b

abc
djo
eim
fkl
ghn

ahi
bdf
clo
ekn
gjm

ajk
beg
cmn
dhl
fio

ade
bmo
chk
fjn
gil

afg
bln
cij
dkm
eho

alm
bhj
cef
din
gko

ano
bik
cdg
ejl
fhm

19a

ade
bik
chl
fmn
gjo

afg
bhj
cin
dkm
elo

alm
bdf
cko
eij
ghn

ano
beg
cjm
dil
fhk

abc
dho
ekn
fjl
gim

ahi
bmo
cef
djn
gkl

ajk
bln
cdg
ehm
fio

19b

ade
bik
chl
fmn
gjo

afg
bhj
cin
dkm
elo

alm
bdf
cko
eij
ghn

ano
beg
cjm
dil
fhk

abc
djn
ehm
fio
gkl

ahi
bmo
cdg
ekn
fjl

ajk
bln
cef
dho
gim

61

abc
dik
ejn
flo
ghm

ade
bil
cjm
fhn
gko

afg
bhj
cio
dmn
ekl

ahi
beg
cln
djo
fkm

ajk
bmo
cef
dhl
gin

alm
bkn
cdg
eho
fij

ano
bdf
chk
eim
gjl

be distinguished by their automorphism groups, which are also the same. However, in some cases the automorphisms can 
nonetheless be used to distinguish the two systems [18]. Indeed, the automorphisms of 1a (in Table 1) are transitive on all 
points except on the point i, which is fixed under all automorphisms, whereas the automorphisms of 1b are transitive in 
seven and in eight points. The automorphisms of 7a are transitive in three and in twelve points, whereas the automorphisms 
of 7b are transitive in three, in four, and in eight points. An interpretation of these facts will be given in Remark 2.6(7), in 
the light of our forthcoming results.

On the other hand, for both systems 19a and 19b the automorphisms are precisely the same as for the underlying 
STS [18]: in particular, a single permutation of the 15 points is a KTS-automorphism of 19a if and only if it is a KTS-
automorphism of 19b. Therefore the two KTSs cannot be distinguished by considering the lacings of distinct parallel classes, 
nor by looking at the orbits of their automorphisms. To the best of our knowledge, no simple method to distinguish the 
two systems is available in the literature.

Alternatively, a “standard” idea to test the isomorphism of two KTS(15)s is to compare the corresponding bipartite 
graphs as follows (for an early mention of this technique, see [43, §3.12 ]). For each of the two KTS(15)s, one constructs the 
associated pairwise balanced design (PBD) (see, e.g., [62, Ch. 7]), by adding a new point xi to every block in the ith parallel 
class, and then adding a block consisting of the seven new points. Such a PBD has one block of size seven, while all the 
remaining blocks have size four. Then one constructs the bipartite point-block incidence graph of the PBD. The vertices of 
this graph comprise the points and the blocks of the PBD. A point x is joined to a block B if and only if x is in the block 
B . Finally, one tests the two resulting bipartite graphs using a graph isomorphism program such as Brendan McKay’s nauty 
program [44].

In Section 2 of this paper we give a simple and effective tool to establish, in all possible cases, whether two given 
KTS(15)s are isomorphic or not, independently of the underlying STSs, by determining for any KTS(15) the system in Table 1
isomorphic to it. Because of the previous considerations, our method is particularly significant in the special case where the 
underlying STS is #19 for both systems. Moreover, in the case where the underlying STS of a given KTS(15) is either #1 or 
#7, our algorithm is even simpler, and allows one to settle the isomorphism problem in a much faster and more effective 
way than with the automorphism method described above. In the former case (#1), the algorithm had already appeared in 
3
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a paper by G. Falcone and the present author, which contained, in addition, a visual description of the two non-isomorphic 
arrangements of the projective lines of PG(3, 2), by combining the fifteen simplicial elements of a tetrahedron [28].

Our technique refines and improves Cole’s lacing of parallel classes, by means of the notion of residual triple implicitly 
introduced in [28]. Unlike in Cole [18], our algorithm allows one to use the lacing scheme to distinguish two KTS(15)s also 
in the harder case where the two systems have the same underlying STS. In the special case where the common STS is 
#19, we also present an alternative method in terms of the 1-factorizations of the complete graph K8 that are naturally 
associated to the two KTSs.

In Section 3 we test the effectiveness and simplicity of our method, and exhibit a remarkable solution to the schoolgirl 
problem for each of the seven isomorphism classes. In fact, we go through the most significant solutions in the mathe-
matical literature from 1850 to the present day, and we catalogue them by means of our algorithm in Theorem 2.4, which 
provides a central point of reference for the whole discussion. Among these solutions we include new octahedron-based 
representations of systems 7a and 7b.

The final Appendix, “Systems 1a and 1b revisited”, is devoted to some very significant models of the two KTS(15)s 
whose underlying STS is the point-line design of the projective geometry PG(3, 2). In particular, we improve the well-
known solution by A. Frost [30], and we reinterpret, in the light of our lacing algorithm, the solutions given by J.I. Hall 
[32], by identifying PG(3, 2) and the complete 3-design on seven points, and R. Ehrmann [27], by regarding PG(3, 2) as 
the projective completion of AG(3, 2). Finally, we describe a new algebraic model of the cyclic solutions 1a and 1b, and 
present two new visual representations of systems 1a and 1b, based on the complete graph on six points and on the regular 
triangular bipyramid.

2. The main results

In this section we describe how to determine, for a given Kirkman triple system of order 15, which of the seven systems 
in Table 1 it is isomorphic to. In order to do so, we extend Cole’s lacing scheme [18] by means of the notion of residual 
triple, which was implicitly introduced in [28].

Definition 2.1. ([18]) Let C1 and C2 be two distinct parallel classes of a KTS(15). We say that C1 and C2 are laced in the mode 
(α) if there exist two triples in C1 and two triples in C2 such that the four triples are mutually disjoint. Otherwise, we say 
that C1 and C2 are laced in the mode (β).

Definition 2.2. Let (V, B, R) be a Kirkman triple system of order 15, and let C1 and C2 be two distinct parallel classes in R
that are laced in the mode (α). Let T1, T2 (respectively, T3, T4) be the two triples in C1 (respectively, in C2) such that the 
four triples T1, T2, T3, T4 are mutually disjoint. We say that a triple T in B is the residual triple of the lacing of C1 and C2 if 
the set {T1, T2, T3, T4, T } is a partition of the point-set V .

Remarks 2.3. 1) If T is the residual triple of the lacing of C1 and C2, as in Definition 2.2, then there exists a parallel class 
C3 in R, different from C1 and C2, such that T ∈ C3. Indeed, if T1, T2, T3, T4 are as in Definition 2.2, and if, for instance, T
were in C2, then the triples T1, T3, T4, T could not be mutually disjoint, else T1 would intersect one of the two triples in 
C2 different from T3, T4, and T in two points, thereby contradicting the definition of Steiner triple system.

For instance, in the KTS numbered 1a (in Table 1), Monday and Tuesday are laced in the mode (α), and the corresponding 
residual triple is the triple gin, in Wednesday.

2) The STS(15) numbered as #19 contains a unique Fano plane S (see, e.g., [15, Table 1.29, p. 32]). If the 35 triples of 
the system are given as in Table 1 above, then the seven triples in S are precisely abc, ade, afg, bdf, beg, cdg, cef. Moreover, 
each parallel class in systems 19a and 19b consists of a (unique) triple in S and four triples of the form sxy, where s is in 
S and x, y are not in S . This fact will be essential in the following Theorem 2.4.

3) In [28], where only systems 1a and 1b are considered, the fact that the four triples in Definitions 2.1 and 2.2 are 
pairwise disjoint is referred to as the four skew triples property, and the residual triples are called unconsidered triples, in that 
they do not belong to any set of four mutually disjoint triples in a lacing of type (α).

Theorem 2.4. Let (V, B, R) be a Kirkman triple system of order 15, with R = {C1, C2, . . . , C7}. Then one, and only one, of the follow-
ing four cases occurs.

1. (a) Any two distinct parallel classes in R are laced in the mode (α). In this case, the KTS is isomorphic to either system 1a or 
system 1b.

(b) For any pair of distinct classes Ci, C j in R, there exists a class Ck in R, different from Ci and C j , such that the lacing of any 
two parallel classes in {Ci , C j , Ck} has a residual triple in the third class.

(c) The set of all residual triples of the lacings of distinct parallel classes consists of precisely seven triples. Moreover, this set 
consists of either the seven triples containing p, for some point p in V , or the seven triples of a Fano plane. In the former case 
the KTS is isomorphic to system 1a, in the latter case it is isomorphic to system 1b.
4
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2. (a) There exists a unique parallel class in R, say C1, that is laced in the mode (α) with each of the other six classes in R. Each of 
the latter classes has two (α) lacings and four (β) lacings. In this case, the KTS is isomorphic to either system 7a or system 7b.

(b) Up to permutation of the classes C2, . . . , C7 , any two parallel classes in any of the three sets {C1, C2, C3}, {C1, C4, C5}, 
{C1, C6, C7} are laced in the mode (α), with a residual triple in the third class of the set.

(c) The set of all residual triples of the lacings of type (α) consists of precisely seven triples. Moreover, this set consists of either 
seven triples whose union is the point-set V , or the seven triples of a Fano plane. In the former case the KTS is isomorphic to 
system 7a, in the latter case it is isomorphic to system 7b.
Alternatively, if Ci and C j are any two classes laced in the mode (β), and if the two residual triples in Ci and C j are disjoint 
(resp., intersect in one point), then the KTS is isomorphic to system 7a (resp., to system 7b).

3. (a) There exist three distinct parallel classes in R, say C1, C2, C3 , that are laced in the mode (α) with each other. Any other pair of 
distinct parallel classes in R is laced in the mode (β). In this case, the KTS is isomorphic to either system 19a or system 19b.

(b) The lacing of any two parallel classes in {C1, C2, C3} has a residual triple in the third class.
(c) There exists a (unique) Fano plane S that is a subdesign of (V, B) and whose seven triples include the three residual triples of 

the lacings of type (α). Given a class Ci in {C1, C2, C3}, and a class C j in {C4, C5, C6, C7}, let x, y be any two points, not in S , 
lying in the same triple in C j , and let z, w be the two corresponding points, not in S , such that Ci has a triple containing x, z
and a triple containing y, w. If z, w are in the same triple in C j , then the KTS is isomorphic to system 19a, else it is isomorphic 
to system 19b.

4. Any two distinct parallel classes in R are laced in the mode (β). In this case, the KTS is isomorphic to system 61.

Proof. The statements 1(a), 2(a), 3(a), and 4 are in [18], whereas the statements 1(b) and 1(c) are proved in [28] (a somewhat 
similar argument, although not fully explicit, is given in [69, pp. 86-87], where the word “collating” is used instead of 
“lacing”). Thus we are left with the proofs of 2(b), 2(c), 3(b), and 3(c).

Let us first consider the case where 2(a) holds. Then the KTS is isomorphic to either system 7a or system 7b in Table 1. 
The lacings of type (α) in 7a and in 7b are those listed in Tables 2 and 3, respectively.

Table 2
The lacings of type (α) in system 7a.

7a Parallel classes Four mutually disjoint triples Residual triple

Mon Tue
Mon Wed
Tue Wed
Mon Thu
Mon Fri
Thu Fri
Mon Sat
Mon Sun
Sat Sun

eim ghn bdf clo
djo fkl beg cmn
ekn gjm dhl fio
fkl ghn ade cij
djo eim afg chk
fhm gko din ejl
djo ghn alm bik
eim fkl ano bhj
eho fjn dkm gil

ajk (in Wed)
ahi (in Tue)
abc (in Mon)
bmo (in Fri)
bln (in Thu)
abc (in Mon)
cef (in Sun)
cdg (in Sat)
abc (in Mon)

Table 3
The lacings of type (α) in system 7b.

7b Parallel classes Four mutually disjoint triples Residual triple

Mon Tue
Mon Wed
Tue Wed
Mon Thu
Mon Fri
Thu Fri
Mon Sat
Mon Sun
Sat Sun

eim ghn bdf clo
djo fkl beg cmn
ekn gjm dhl fio
fkl ghn ade bmo
djo eim afg bln
fjn gil dkm eho
djo ghn alm cef
eim fkl ano cdg
din gko ejl fhm

ajk (in Wed)
ahi (in Tue)
abc (in Mon)
cij (in Fri)
chk (in Thu)
abc (in Mon)
bik (in Sun)
bhj (in Sat)
abc (in Mon)

Hence statement 2(b) holds (with C1 = Monday). Moreover, in either case there is an overall number of seven resid-
ual triples. In the former case (system 7a), the union of the residual triples is the point-set V = {a, b, c, d, e, f, g, h, i, j, k, 
l, m, n, o}, whereas in the latter case (system 7b) the set {abc, ahi, ajk, bhj, bik, chk, cij} of the residual triples is the block-
set of a Fano plane. Also, any two residual triples belonging to two classes laced in the mode (β) are mutually disjoint in 
the former case, whereas they intersect in one point in the latter case. Therefore statement 2(c) holds.

Let us finally consider the case where 3(a) holds. Then the KTS is isomorphic to either system 19a or system 19b in 
Table 1. The lacings of type (α) in these two systems are those listed in Tables 4 and 5, respectively.

Hence statement 3(b) holds, with {C1, C2, C3} = {Friday, Saturday, Sunday}. In either case, the three residual triples 
abc, cdg, cef belong to the set S = {abc, ade, afg, bdf, beg, cdg, cef}, which is the block-set of the unique Fano plane of the 
underlying STS (see, e.g., [15, Table 1.29, p. 32]).
5
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Table 4
The lacings of type (α) in system 19a.

19a Parallel classes Four mutually disjoint triples Residual triple

Fri Sat
Fri Sun
Sat Sun

ekn fjl ahi bmo
dho gim ajk bln
djn gkl ehm fio

cdg (in Sun)
cef (in Sat)
abc (in Fri)

Table 5
The lacings of type (α) in system 19b.

19b Parallel classes Four mutually disjoint triples Residual triple

Fri Sat
Fri Sun
Sat Sun

djn gkl ahi bmo
ehm fio ajk bln
ekn fjl dho gim

cef (in Sun)
cdg (in Sat)
abc (in Fri)

Let us consider the parallel classes Friday and Monday in system 19a (respectively, 19b) in Table 1. In either case, the 
points x = i, y = k (which are not in S) are in the same triple in Monday, whereas i, m (resp., i, o) and k, n (resp., k, l) are 
in the same triple in Friday, and m, n are in the same triple in Monday (resp., o, l are not in the same triple in Monday). The 
same happens for any other choice of the two points x, y, not in S , in the same triple in Monday, and for any other choice 
of a pair of parallel classes in {Friday, Saturday, Sunday} × {Monday, Tuesday, Wednesday, Thursday}. Hence statement 3(c)
holds.

This completes the proof of the theorem. �
The next result gives an alternative method to distinguish two KTS(15)s in the harder case where their common under-

lying STS is #19. It is worth mentioning that the following characterization is interesting in its own right from a theoretical 
point of view and, moreover, its formulation appears to be simpler and more elegant than that in Theorem 2.4. However, as 
we will explain in Remark 2.6(5), for practical purposes the following method proves to be less effective than the algorithm 
given in Theorem 2.4.

Let (V, B, R) be a KTS(15) isomorphic to either system 19a or system 19b, and let P (⊆ V) be the point-set of the 
unique Fano plane contained in the underlying STS (see, e.g., [15, Table 1.29, p. 32]). Let us also regard the eight points 
in V \ P as the vertices of the complete graph K8. One can construct a 1-factorization of the graph in a very simple and 
natural way. Each of the seven parallel classes of the KTS determines a 1-factor, which is obtained by removing from the 
class the (unique) triple in the Fano plane and the (unique) point in P in each of the remaining four triples. The seven 
resulting 1-factors form a 1-factorization of the graph, which is invariant, up to isomorphism, under the automorphisms of 
the KTS.

Our characterization will now follow from the complete invariant for the 1-factorizations of K8 that is known as 
the “division invariant”. Let us recall that three 1-factors of a 1-factorization are called a 3-division if the union of all 
three is a non-connected subgraph (equivalently, the three corresponding parallel classes in the KTS are of the form 
{Ax1x2, Bx3x4, . . .}, {Cx1x3, Dx2x4, . . .}, {Ex1x4, F x2x3, . . .}, with x1, x2, x3, x4 not in the Fano plane), whereas two 1-factors 
are called a maximal 2-division if their union is not connected and any additional 1-factor connects the resulting subgraph. 
It turns out that the number of 3-divisions and the number of maximal 2-divisions form together a complete invariant for 
the 1-factorizations of K8. There are six 1-factorizations for K8 and each has a different division structure [66, p. 91].

We now present the following result.

Proposition 2.5. Let (V, B, R) be a Kirkman triple system of order 15 isomorphic to either system 19a or system 19b, let F be the 
corresponding 1-factorization of the complete graph K8, and let d3 be the number of 3-divisions contained in F . Then (V, B, R) is 
isomorphic to system 19a (resp., 19b) if and only if d3 > 1 (resp., d3 = 1).

Proof. If the blocks of the KTS are denoted as in Table 1 in the Introduction (see systems 19a and 19b), then 
{abc, ade, afg, bdf, beg, cdg, cef} is the block-set of the unique Fano plane contained in the underlying STS. Hence, for system 
19a, the corresponding 1-factorization F is that given in Table 6.

Table 6
The 1-factorization for system 19a.

M hl ik jo mn
TU hj in km lo
W hn i j ko lm
TH hk il jm no
F ho im jl kn
SA hi jn kl mo
SU hm io jk ln
6
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Then, by definition, M-TU-F and M-W-SU are two distinct 3-divisions of F . For the sake of completeness, M-TH-SA, 
TU-W-SA, TU-TH-SU, W-TH-F, and F-SA-SU are also 3-divisions, hence F is isomorphic to the 1-factorization of K8 that is 
usually denoted by F1 [66, p. 93].

Similarly, one finds, for system 19b, that F contains a unique 3-division, which is F-SA-SU (note that these are precisely 
the three parallel classes that are mutually laced in the mode (α); see Table 5). In passing, there exist also six maximal 
2-divisions (corresponding to the six 2-subsets of the set {M,TU,W,TH}), hence F is isomorphic to the 1-factorization of K8
that is usually denoted by F4.

This completes the proof of the proposition. �
Remarks 2.6. 1) It follows from Theorem 2.4 that in both systems 1a and 1b the seven parallel classes can be seen as the 
points of a Fano plane, whose blocks are precisely the sets {Ci , C j , Ck} in property 1(b) of the theorem.

If we refer to Table 1, then the blocks of the Fano plane are precisely M-TU-W, M-TH-SU, M-F-SA, TU-TH-SA, TU-F-SU, 
W-TH-F, W-SA-SU for system 1a, and M-TU-W, M-TH-F, M-SA-SU, TU-TH-SA, TU-F-SU, W-TH-SU, W-F-SA for system 1b.

Moreover, in the latter case (system 1b) the seven residual triples afg, ahi, ano, fhn, fio, gho, gin form the blocks of 
a Fano plane as well (cf. property 1(c) in Theorem 2.4), and, interestingly enough, the map that sends a parallel class to 
the (unique) residual triple belonging to it is an isomorphism of the Fano plane of the seven parallel classes with the dual 
design of the Fano plane of the seven residual triples. For instance, M �→ fio, TU �→ ahi, W �→ gin, whence M-TU-W �→ i. 
Equivalently, three parallel classes in 1b are in the same block of the Fano plane if and only if the three residual triples that 
they contain have a common point.

Similarly, the proof of Proposition 2.5 shows that the parallel classes of system 19a form the points of a Fano plane whose 
blocks are M-TU-F, M-W-SU, M-TH-SA, TU-W-SA, TU-TH-SU, W-TH-F, F-SA-SU, corresponding to the seven 3-divisions. If S
is the (unique) Fano plane contained in the underlying STS (V, B), then three parallel classes are in the same block if and 
only if the three triples in S contained in them have a common point in V .

2) As a consequence of the previous Remark 1), it follows immediately that, given a KTS(15), it suffices to apply the 
lacing scheme to only three pairs of distinct parallel classes in order to determine whether the underlying STS is #1 and, in 
addition, whether in that case the system is isomorphic to system 1a or system 1b.

Indeed, if the lacing of two given parallel classes X, Y is of type (α) and the residual triple is in a class Z , then, given 
a fourth class U , if the lacing of X and U is of type (α), then the underlying STS is either #1 or #7 and the residual triple 
is necessarily in a fifth class V by properties 1(b) and 2(b) in Theorem 2.4. Now let us consider the lacing of Z and U . If 
this lacing is again of type (α), then the underlying STS is #1 and we may assume, by property 1(c) in Theorem 2.4, that 
the residual triple in Z is, say, αβγ and the residual triple in V is αδε . Now, by Remark 1) above, the third residual triple 
containing α, in system 1b, is precisely the residual triple of the lacing of Z and V (which is contained in a sixth parallel 
class W , different from X, Y , Z , U , V ). Therefore, if the residual triple of the lacing of Z and U contains α, then the KTS is 
isomorphic to system 1a, else it is isomorphic to system 1b.

This observation will be repeatedly applied throughout the rest of the paper (especially in the final Appendix, devoted 
to systems 1a and 1b).

3) For a KTS(15) whose underlying STS is #7, and for which the distinguished parallel class C1 is known, it suffices to 
apply the lacing scheme to only two pairs of distinct parallel classes in order to determine whether the system is isomorphic 
to system 7a or system 7b. Indeed, given k �= 1, consider first the lacing of C1 and Ck , with residual triple, say, in Ci . Let h
be different from 1, i, k, and consider the lacing of C1 and Ch , with residual triple, say, in C j . If the two residual triples in Ci

and C j are disjoint (resp., intersect in one point), then the KTS is isomorphic to system 7a (resp., to system 7b) by property 
2(c) in Theorem 2.4.

4) More generally, given an explicit KTS(15), it is natural to ask how many applications of the lacing scheme are neces-
sary in order to determine the isomorphism class of the system. One can show that, if no preliminary information on the 
KTS is known, then the number of applications that are needed is at most 3 (resp., 6, 9, 10) if the underlying STS is #1 
(resp., #7, #61, #19).

Moreover, if the underlying STS is either #19 or #61, then it can take up to 9 applications only to determine the 
underlying STS, besides the further difficulty of distinguishing systems 19a and 19b (this depends on the fact that in the 
two latter systems there are only three lacings of type (α) out of 21).

On the other hand, if the first lacing comes out to be of type (α), then only four further applications are needed, at 
most, to settle the isomorphism problem, no matter whether the underlying STS is #1, #7, or #19.

Indeed, let us denote the seven parallel classes of a given KTS(15) by the days of the week: M, TU, W, TH, F, SA, SU. 
Whenever a lacing is of type (α), with residual triple in the class denoted by the day X, we denote such a triple by T X . The 
idea is to begin the investigation by first considering the four lacings M-TU, W-TH, F-SA, and M-SU, in this order. If one of 
these lacings is of type (α), then the underlying STS is #1, or #7, or #19. If, instead, these four lacings are all of type (β), 
then the underlying STS is either #19 or #61, and one continues with the five lacings TU-SU, W-F, W-SA, TH-F, and TH-SA, 
in any order. If at least one of these five lacings is of type (α), say X-Y, with residual triple T Z , then the STS is #19, and 
the residual triple T Y of the lacing X-Z, together with T Z , allows one to determine the unique Fano plane contained in the 
system, and hence the isomorphism class, by means of property 3(c) in Theorem 2.4.
7
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If, instead, all the nine lacings are of type (β), then the KTS is necessarily isomorphic to system 61, because the lacings 
have been chosen in such a way that each triple of mutually distinct parallel classes contains at least one pair of classes 
corresponding to one of the nine lacings (note that this cannot be accomplished with less than nine lacings). This proves, 
as claimed, that if the underlying STS is #61 (resp., #19), then at most nine (resp., ten) lacings are necessary to determine 
the isomorphism class of the KTS.

Let us now consider the case where the first lacing, M-TU, is of type (α), with residual triple, say, T W . In this case, we 
consider the lacing M-TH. If this lacing is of type (α), with residual triple, say, T F , then the system is isomorphic to 7a if 
T W ∩ T F = ∅, else it is isomorphic to either 1a, 1b, or 7b. In the latter case, we consider W-TH: if this lacing is of type (β), 
then the system is isomorphic to 7b; if it is of type (α), with residual triple T X , then the system is isomorphic to 1a (resp., 
1b) if T W ∩ T F ∩ T X is non-empty (resp., empty).

If, instead, the lacing M-TH is of type (β), then we consider the lacing W-TH. If this lacing is of type (α), with residual 
triple, say, T F , and if T T U is the residual triple of the lacing M-W, then the KTS is isomorphic to system 7a (resp., 7b) if 
T F ∩ T T U is empty (resp., non-empty). If, instead, W-TH is of type (β), then we consider the lacing TU-TH: if this is of type 
(α), with residual triple, say, T F , then the KTS is isomorphic to system 7a (resp., 7b) if T F ∩ T W is empty (resp., non-empty); 
if TU-TH is of type (β), then the underlying STS is #19, and it takes only one further lacing M-W, with residual triple T T U , 
to determine the unique Fano plane contained in the system, and hence the isomorphism class, by means of property 3(c)
in Theorem 2.4. This shows that if the first lacing, M-TU, is of type (α), then at most four more lacings are needed to settle 
the isomorphism problem, as claimed.

If M-TU is of type (β), then the underlying STS is #7, or #19, or #61. In this case, one considers the lacings W-TH, F-SA, 
and M-SU, in this order. If they are all of type (β), then the STS is either #19 or #61, and one continues as above, else it 
is either #7 or #19. In the latter case, and if the STS is #7, one can show, by arguing as above, that the highest number of 
lacings required to determine the isomorphism class of the system is six, and that this upper bound is attained precisely in 
the case where M-TU and W-TH are both of type (β), whereas F-SA is of type (α). If T X is the corresponding residual triple, 
and if Y is any class not in {F, SA, X}, then one further considers the lacings Y-X, Y-F, and Y-SA, in this order. The upper 
bound six is attained precisely in the case where Y-X and Y-F are both of type (β) and Y-SA is of type (α).

5) As we pointed out earlier, Proposition 2.5 is an interesting and elegant result from a theoretical point of view, but for 
practical purposes it is more convenient to resort to the algorithm in Theorem 2.4. Indeed, given an arbitrary KTS(15), one 
can apply Proposition 2.5 only if one already knows that the underlying STS is #19. On the other hand, as we explained in 
the previous Remark 4), in order to get this information one must apply the lacing scheme in Theorem 2.4 as many as nine 
times, and once it is ascertained that the underlying STS is #19, it suffices to consider just one extra lacing to determine 
whether the system is 19a or 19b, with no need of constructing and examining the 1-factorization of K8 .

6) One may think of extending Proposition 2.5 to the case where the underlying STS of the KTS is not necessarily #19. 
However, in the general case, the 1-factorization of K8 is not a complete invariant for the isomorphism classes of KTS(15)s. 
Indeed, depending on the chosen Fano plane, it turns out that the 1-factorization F of K8 associated with the KTS is either 
F4 or F6, either F1 or F5, F4, either F1 or F5, F1, F4, F1, respectively, according to whether the KTS(15) is 1a, 1b, 7a, 
7b, 19a, 19b, 61. Therefore, with the only exception of the case where F =F6, F does not determine the KTS(15) uniquely. 
The details will be worked out in a forthcoming paper.

7) We mentioned in the Introduction that the automorphisms of 1a (in Table 1) are transitive on all points except on 
the point i, which is fixed under all automorphisms, whereas the automorphisms of 1b are transitive in seven and in eight 
points. Needless to say, the point i is the common point of the seven residual triples in system 1a, whereas the seven points 
in the latter case are precisely the points of the Fano plane of the residual triples in system 1b.

The automorphisms of 7a are transitive in three and in twelve points, whereas the automorphisms of 7b are transitive 
in three, in four and in eight points. If we refer again to Table 1, then in either case the three points are a, b, c (see Tables 2
and 3 in the proof of Theorem 2.4), whereas the four points are h, i, j, k, which, together with a, b, c, form the Fano plane 
determined by the residual triples of system 7b. Note, in passing, that a, b, c are precisely the three common points of the 
three Fano planes contained in the underlying STS.

As for systems 19a and 19b, the three residual triples provide a simple method to find the points of the unique Fano 
plane contained in the underlying STS.

8) Note that the Fano plane {abc, ade, afg, bdf, beg, cdg, cef} is contained in all four STS(15)s in Table 1. In particular, each 
of the four resolvable STS(15)s contains at least one Fano plane, that is, a maximum subsystem of the STS (cf. [48]). Also, 
as shown in Theorem 2.4, Fano planes play a crucial role in the identification of the isomorphism class of a given KTS(15). 
This is, however, a special property of the case v = 15, which does not extend to a more general setting. For instance, the 
point-line design of the affine geometry AG(3, 3) is a resolvable STS(27) that does not contain any maximum subsystem, 
that is, any sub-STS(13). Indeed, if AG(3, 3) contained a sub-STS(13), then the latter system would be an additive design, in 
contradiction with the fact that the only additive Steiner triple systems are the point-line designs of AG(d, 3) and PG(d, 2)

[11, Theorem 3.7]. Alternatively, it suffices to observe that any three non-collinear points in AG(3, 3) generate an STS(9), 
which cannot be contained in an STS(13).

The fact that any resolvable STS(15) contains (at least) one Fano plane S implies that all KTS(15)s share the same formal 
structure. Indeed, since 

(8
2

) = 28, the 28 triples of the STS(15) not belonging to S are all of the form sxy, where s is in S and 
x, y are not in S . Since any two distinct triples in a Fano plane intersect in one point, the seven triples in S are necessarily 
8
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distributed in all seven parallel classes of the KTS(15). This finally implies that each parallel class contains one triple in S
and four triples of the form sxy, with s in S and x, y not in S . This implies, in turn, that there is a 1-factorization F of the 
graph K8 that is naturally associated to the KTS(15) and to S .

Cayley was the first one to conjecture that this was the structure of all KTS(15)s: “there is obviously a division of the 15
things into (7 + 8) things, viz. the 35 triads are composed seven of them each of 3 out of the 7 things, and the remaining 
28 each of 1 out of the 7 things, and 2 out of the 8 things. (...) I believe, but am not sure, that in all the solutions which 
have been given of the school-girl problem there is an 8 without 3, (...) that is, there are 8 things such that no triad of them 
occurs in the system” [14].

3. Examples

In this section we test the effectiveness and simplicity of our method by determining, for some given KTS(15)s, which 
of the systems in Table 1 they are isomorphic to. By doing so, we will exhibit (at least) one KTS(15) for each of the seven 
types.

It is worth noting that almost all the solutions of the schoolgirl problem in the literature are isomorphic to either system 
1b or system 1a, that is, the first two published solutions [13,36]. In either case, the underlying STS is the point-line design 
of the projective geometry PG(3, 2), hence the two systems have the richest automorphism group, a fact which, together 
with the cyclic nature of the two solutions, perhaps made the solutions 1a and 1b arise in a more “natural” way (see, in 
this regard, the final Appendix below).

1) (System 1b) The first solution to the schoolgirl problem that appeared in print was given by Cayley in 1850 [13]. Here, 
in Table 7, we actually describe Cayley’s more revealing construction in [14] (cf. [17, p. 6]).

Table 7
Cayley’s solution 1b.

a b c d e f g

abc 35 17 82 64
ade 62 84 15 37
afg 13 57 86 42
bdf 47 16 38 25
beg 58 23 14 67
cdg 12 78 56 34
cef 36 45 27 18

The bottom-right 7 × 7 “minor” of Table 7 is a Room square of side 7, whereas the seven triples in the first column are 
the blocks of a Fano plane. In general, a Room square of side n, on the symbol set S = {1, . . . , n + 1}, is an n × n array F
such that: every cell of F either is empty or contains an unordered pair of symbols from S; each symbol of S occurs once 
in each row and column of F ; every unordered pair of symbols occurs in precisely one cell of F . In the case of Table 7, 
the schoolgirls are the fifteen symbols a, b, c, d, e, f, g, 1, 2, 3, 4, 5, 6, 7, 8. Each of the seven bottom rows of the array 
gives a parallel class, by taking the triple in the first column together with the triples obtained by adjoining each pair of 
numbers to the letter that appears in the same column (in passing, any KTS(15) can be constructed in this way; see the 
above Remark 2.6(8)). Hence the solution is that given in Table 8.

Table 8
Cayley’s solution 1b in explicit form.

Mon Tue Wed Thu Fri Sat Sun

abc
d35
e17
f82
g64

ade
b62
c84
f15
g37

afg
b13
c57
d86
e42

bdf
a47
c16
e38
g25

beg
a58
c23
d14
f67

cdg
a12
b78
e56
f34

cef
a36
b45
d27
g18

Now Monday and Tuesday are laced in the mode (α), with residual triple afg in Wednesday. Also, Monday and Thursday 
are laced in the mode (α), with residual triple beg in Friday. Finally, Wednesday and Thursday are laced in the mode (α), 
with residual triple cef in Sunday. It follows from Theorem 2.4 that the KTS is isomorphic to either system 1a or system 
1b. As the three residual triples afg, beg, and cef do not have any point in common, we may finally conclude, again by 
Theorem 2.4 (see also Remark 2.6(2)), that Cayley’s KTS is isomorphic to system 1b. Also, it can be immediately checked 
that the seven residual triples are precisely the blocks of the Fano plane in the leftmost column of Table 7. Note that one 
can obtain a KTS isomorphic to 1a by suitably rearranging the triples in Monday, Tuesday, and Wednesday.

Other “classical” examples of a KTS(15) isomorphic to system 1b are the solutions by W. Ahrens [1, p. 281], W. Spottis-
woode [60], J. Horner [54], and W. Burnside [10], the first solution by A.C. Dixon [23], T.H. Gill’s solution [58, p. 103], the 
9
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first solution by E.J.F. Primrose [55], the solution by E. Brown and K.E. Mellinger [9, Table 2], the solution by J.P. Marceaux 
and A.R.P. Rau [41, Table 4] (where Kirkman’s schoolgirls are seen in correspondence with the Lie-Clifford algebra of quan-
tum spin pairs), and the second cyclic solution by B. Peirce [52, §31, p. 172] (also reported in [24, p. 18]), whose visual 
representation is given by means of a two-step rotating circle in [59, Figure iii, p. 200] (see also [31, Figure 51, p. 126], 
from Scientific American, May 1980), and where one of the two orbits of length 7 consists precisely of the points of the Fano 
plane of the seven residual triples. All this can be checked by the same method used above for Cayley’s solution.

Another interesting visual example of a KTS(15) isomorphic to system 1b is the system denoted by (�, �) in [28], where 
the schoolgirls are represented as the fifteen simplicial elements of a tetrahedron, that is, the four vertices, the six edges, 
the four faces, and the whole tetrahedron.

2) (System 1a) Our second example is the 1850 system published by Kirkman [36] (replicated in [37, p. 260] and [38, 
p. 48]), who described it as “the neatest method of writing the solution of the problem”. He also thought that this was the 
only possible solution up to permutation [38]. The fifteen schoolgirls are

a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3.

As a first parallel class we take

a1a2a3, b1b2b3, c1c2c3, d1d2d3, e1e2e3.

Each of the other six classes contains three triples of the form a1 xi yi , a2x j y j , a3uk vk , where {x, y} ranges over the six 
2-subsets of {b, c, d, e}, {u, v} = {b, c, d, e} \ {x, y}, and {i, j, k} = {1,2,3}. In view of the choice of the first parallel class, the 
other two triples (in each of the other six classes) are necessarily of the form xk ui v j and yku j vi . Therefore each of the six 
classes has the form

a1xi yi, a2x j y j, a3uk vk, xkui v j, yku j vi .

The six classes are uniquely determined by three choices of i, j, x, y, and u. Indeed, any such choice produces another 
class by just permuting x ↔ u and y ↔ v . To get a KTS(15) it now suffices to make the following (cyclic) choice for the 
ordered quintuple (i, j, x, y, u): (1, 2, b, c, d), (2, 3, d, b, c), (3, 1, c, d, b). This way we get precisely Kirkman’s solution of the 
schoolgirl problem [36, p. 169] (up to changing the order of Saturday and Sunday), which we summarize in Table 9.

Table 9
Kirkman’s solution 1a.

Mon a1a2a3 b1b2b3 c1c2c3 d1d2d3 e1e2e3

Tue a1b1c1 a2b2c2 a3d3e3 b3d1e2 c3d2e1

Wed a1d1e1 a2d2e2 a3b3c3 d3b1c2 e3b2c1

Thu a1d2b2 a2d3b3 a3c1e1 d1c2e3 b1c3e2

Fri a1c2e2 a2c3e3 a3d1b1 c1d2b3 e1d3b2

Sat a1c3d3 a2c1d1 a3b2e2 c2b3e1 d2b1e3

Sun a1b3e3 a2b1e1 a3c2d2 b2c3d1 e2c1d3

By construction, the permutation (b1 c3 d2)(c1 d3 b2)(d1 b3 c2)(e3 e2 e1)(a1)(a2)(a3) of the fifteen symbols is an automor-
phism of order 3 of the KTS, which induces the permutation (Tue Sat Thu)(Wed Sun Fri)(Mon) of the parallel classes.

Now Monday and Tuesday are laced in the mode (α), with residual triple a3b3c3 in Wednesday. Also, Monday and 
Saturday are laced in the mode (α), with residual triple a3c2d2 in Sunday. Finally, Wednesday and Saturday are laced in the 
mode (α), with residual triple a3d1b1 in Friday. It follows from Theorem 2.4 that the KTS is isomorphic to either system 
1a or system 1b. As the three residual triples a3b3c3, a3c2d2, and a3d1b1 have the point a3 in common, we may finally 
conclude, by Remark 2.6(2), that the KTS is isomorphic to system 1a. Note that one can obtain a KTS isomorphic to 1b by 
suitably rearranging the triples in Monday, Tuesday, and Wednesday.

Further examples of a KTS(15) isomorphic to system 1a are R.R. Anstice’s first solution [5, p. 280], the third cyclic solution 
by B. Peirce [52, §31, p. 172], the solutions by A. Frost [30] (also reported in [40, p. 184]), A.F.H. Mertelsmann [45], and H.E. 
Dudeney [25], the second solution by E.J.F. Primrose [55], the regular 14-gon model in [7, Figure 5.2, p. 28], the solution by 
B. Polster [53, Figure 8], and the tetrahedron-based model denoted by (�, �) in [28].

Interestingly enough, the joint solution by four authors in [38, p. 48], immediately after Kirkman’s solution, is also 
isomorphic to system 1a. In a recent paper [8, §6.2], S. Bonvicini et al. constructed a model of system 1a which was 
designed to show that the KTS is 3-pyramidal, i.e., admitting an automorphism group acting sharply transitively on all but 
three points. A very elegant and highly symmetric planar model of system 1a was given by Ed Pegg Jr. [51], by representing 
the fifteen schoolgirls as the vertices of three concentric regular pentagons. The rotation by 2π/5 around the common center 
is an order-5 automorphism of the underlying STS, but is not a KTS-automorphism (on the other hand, the automorphism 
group of system 1a has order 168 [18]).

Finally, whenever system 1a is constructed as a cyclic solution, the common point of the seven residual triples is precisely 
the fixed point of the order-7 permutation of the fifteen points that cyclically permutes the seven parallel classes.
10
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3) (Systems 7a and 7b) In 2012 Kristýna Stodolová wrote a thesis on “Classic problems in combinatorics” [63], where she 
described the visual solutions of the schoolgirl problem given in [21] and [28] and, in addition, proposed a further elegant 
and symmetric visual solution, with no references. To this end, she arranged fifteen balls in the usual triangular pool-table 
configuration as follows.
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The seven parallel classes are defined as follows, with the obvious interpretation of the symbols. For instance, the five 
triples in Monday are {1, 2, 3}, {4, 5, 6}, {7, 8, 15}, {9, 10, 11}, and {12, 13, 14}.
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Note how the three configurations in each row are the orbit of the leftmost configuration under the 120-degree coun-
terclockwise rotation

φ = (1 11 15)(2 12 10)(3 7 14)(4 13 6)(5 8 9) (1)

of the triangle around its center, and that the final parallel class (Sunday) is invariant under the same rotation. Also, Monday, 
Thursday, and Sunday are symmetric with respect to the vertical axis through the top ball.

An alternative choice (not reported in [63]) for Wednesday, Saturday, and Sunday is the following.
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In either case, the resulting KTS(15) has the property that the only lacings in the mode (α) are those between any two 
parallel classes in any of the three sets {Mon, Thu, Sun}, {Tue, Fri, Sun}, {Wed, Sat, Sun}. It follows from Theorem 2.4 that 
the KTS is isomorphic to either system 7a or system 7b.

In the former case (with the first choice of the seven parallel classes), the seven residual triples of the lacings in the 
mode (α) are {1, 11, 15}, {1, 2, 3}, {1, 5, 13}, {11, 6, 8}, {11, 7, 12}, {15, 4, 9}, and {15, 10, 14}, whose union is the point-set 
{1, 2, . . . , 15}, hence the KTS is isomorphic to system 7a by Theorem 2.4.

In the latter case, when we make the alternative choice for Wednesday, Saturday, and Sunday, the seven residual triples 
of the lacings in the mode (α) are {1, 4, 10}, {1, 9, 14}, {1, 11, 15}, {4, 9, 15}, {4, 11, 14}, {9, 10, 11}, and {10, 14, 15}, which 
form the blocks of a Fano plane. Hence, by Theorem 2.4, the KTS is isomorphic to system 7b.

According to [18], the full automorphism group of the system 7a described here is an order-24 group, generated by the 
order-3 rotation φ defined above in (1) and by the order-4 automorphism

ψ = (1)(11 15)(2 13 3 5)(4 8 14 7)(6 10 12 9).

The planar model in the present example is somehow the best possible one, up to isomorphism, to visualize the auto-
morphism φ, whereas it does not seem to be particularly suitable to visualize ψ . Similarly, if we apply to the fifteen balls 
the permutation (1 5 13)(6 11 8)(4 15 9)(2 14)(3 12)(7 10), then we get an alternative visual solution for 7a, which is also 
invariant under rotations, and where the triples are seventeen equilateral triangles, six isosceles triangles, and twelve triples 
obtained from the base triples {1, 4, 11}, {1, 5, 13}, and {1, 8, 14} under the six symmetries of the underlying equilateral tri-
angle containing the fifteen balls (see [50]). This alternative planar representation of the underlying STS, which is obtained 
by means of a suitable Pasch switch from a visual model of the STS(15) #6 [50], is also not suited to visualize the order-4
automorphism.

We now propose a new spatial and highly symmetric representation of system 7a based on a regular octahedron, which is 
particularly suitable to reflect an order-4 automorphism of the KTS, and to visualize the three Fano planes of the underlying 
STS #7. The fifteen schoolgirls are represented as the six vertices, the eight faces, and the whole of a octahedron. Let us 
denote the six vertices by the numbers 1, 2, 3, 4, 5, 6 as in Fig. 1. Each face is denoted by a triple of the form abc, where 
a, b, c are the three vertices belonging to that face. Also, the letter O denotes the whole of the octahedron.
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Fig. 1. The octahedron.

The underlying STS(15) is defined as follows. If f1, f2 are two disjoint faces, then { f1, f2, O} is a triple. If f1, f2 are two 
faces with only one common vertex x, with x not in {1, 6}, and y is the only vertex not on the two faces, then { f1, f2, y}
is a triple. If f1, f2 are two faces with only one common vertex x, with x in {1, 6}, then { f1, f2, y} is a triple, where y = 1
(resp., y = 6) if the two parallel edges of the two faces are parallel to the edge 23 (resp., 34). If f1, f2 are two faces with 
two common vertices x, y, only one of which, say x, is in {1, 6}, then { f1, f2, y} is a triple. If f1, f2 are two faces with two 
common vertices x, y, neither of which is in {1, 6}, then { f1, f2, z} is a triple, where z = 1 (resp., z = 6) if the edge xy is 
parallel to the edge 34 (resp., 23). The remaining seven triples are {1, 2, 3}, {1, 4, 5}, {2, 5, 6}, {3, 4, 6}, {O, 1, 6}, {O, 2, 4}, 
{O, 3, 5} (which form the block-set of a Fano plane). If we define

χ = (O)(1 6)(2 3 4 5)(123 134 145 125)(236 346 456 256), (2)

then χ is an order-4 automorphism of the STS(15), which fixes O, interchanges 1 and 6, and rotates counterclockwise, by 
90 degrees, the twelve remaining points of the STS. A KTS(15) can now be defined by taking the orbits under χ of the three 
base parallel classes

{2,5,6} {O,145,236} {1,125,256} {3,123,134} {4,346,456}
{O,2,4} {1,236,456} {3,145,256} {5,123,346} {6,134,125}
{O,1,6} {2,145,346} {3,125,456} {4,123,256} {5,134,236}.

The resulting KTS is given in Table 10. It can be readily seen that the KTS is isomorphic to system 7a by Theorem 2.4
(alternatively, one can find an explicit isomorphism between the system in Table 10 and the above system 7a with point-set 
{1, 2, . . . , 15}). The seven residual triples are {O, 1, 6}, {O, 2, 4}, {O, 3, 5}, and the four triples of the form { f1, f2, z}.
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Table 10
The octahedron-based system 7a.

Mon {2,5,6} {O,145,236} {1,125,256} {3,123,134} {4,346,456}
Tue {3,2,1} {O,125,346} {6,123,236} {4,134,145} {5,456,256}
Wed {4,3,6} {O,123,456} {1,134,346} {5,145,125} {2,256,236}
Thu {5,4,1} {O,134,256} {6,145,456} {2,125,123} {3,236,346}
Fri {O,2,4} {1,236,456} {3,145,256} {5,123,346} {6,134,125}
Sat {O,3,5} {6,346,256} {4,125,236} {2,134,456} {1,145,123}
Sun {O,1,6} {2,145,346} {3,125,456} {4,123,256} {5,134,236}

By construction, χ is an order-4 automorphism of the system, which induces on the parallel classes the order-4 permu-
tation

(Mon Tue Wed Thu)(Fri Sat)(Sun).

Also, χ fixes the Fano plane consisting of O and the six vertices, and interchanges the other two Fano planes of the STS, 
that is, {O, 1, 6, 125, 134, 256, 346} and {O, 1, 6, 123, 145, 236, 456}.

By suitably reshuffling the triples in Fri, Sat, and Sun, one finds a KTS(15) isomorphic to system 7b. Again, χ is an 
automorphism of the system, inducing on the parallel classes the same order-4 permutation as for system 7a.

Moreover, by simply observing that the dual Platonic solid of the octahedron is the cube, with the vertices and the faces 
interchanged, the two previous arrangements of systems 7a and 7b can be immediately represented on a cube, by taking as 
the fifteen schoolgirls the six faces and the eight vertices of the cube, and the whole of the cube.

In Fig. 2 the eight vertices of the cube are represented by the same eight triples as the faces of the octahedron, whereas 
each face of the cube is represented by the unique symbol belonging to the four vertices of the face. For instance, the face 
at the base of the cube is represented by the symbol 6. If we represent the whole of the cube by the letter O, then the two 
previous arrangements for system 7a (Table 10) and 7b can be visualized on the cube. Also, the order-4 automorphism χ in 
(2) fixes the cube, interchanges the two horizontal faces and rotates counterclockwise, by 90 degrees, the twelve remaining 
elements of the cube.
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Fig. 2. The cube for an alternative representation of systems 7a and 7b.

Note that in this representation of the STS(15) #7, by means of the eight vertices, the six faces, and the whole of a cube, 
25 triples out of 35 coincide with 25 triples of the STS(15) #19 defined in the next example with the same point-set (in 
passing, the common 25 triples are not contained in five parallel classes, else they would determine a unique KTS(15)).

We are not aware of any other visual models of systems 7a and 7b. Another KTS(15) isomorphic to system 7b is the 
second solution by A. C. Dixon [23].

4) (Systems 19a and 19b) In 1897 Ellery W. Davis, a former doctoral student of James J. Sylvester, gave a visual solution 
to the schoolgirl problem, where the fifteen schoolgirls were represented as the eight vertices, the six faces, and the whole 
of a cube [21].

Let us denote the eight vertices by the numbers 1, 2, . . . , 8, as in Fig. 3. Each face is denoted by a quadruple of the form 
abcd, where a, b, c, d are the four vertices belonging to that face. For instance, 1234 is the face at the base of the cube in 
Fig. 3. Also, the letter C denotes the whole of the cube.

The first four parallel classes are defined as follows. Each class contains a triple of the type {C, v, w}, where v is a 
vertex in the set {2, 4, 5, 7} and w is the opposite vertex, a triple consisting of the three faces containing the vertex v , and 
three triples of the type { f , x, y}, where f is one of the three remaining faces, and x, y are two adjacent vertices belonging 
to f and different from w . There are two possible ways of taking the four classes, depending on whether {1256, 1, 2} or 
{1256, 1, 5} is chosen as one of the triples. Either choice determines uniquely the first four parallel classes. If we choose, for 
instance, {1256, 1, 2} to be one of the triples, then the four classes are determined as in Table 11.

The remaining three classes are defined as follows. Each class contains a triple consisting of C and two opposite faces, 
and four triples of the type { f , x, y}, where f is one of the remaining four faces, and x, y are two non-adjacent vertices 
belonging to the face opposite to f . If the first four classes are taken as in Table 11, then there are two possible ways of 
taking the remaining three classes, which are shown in Tables 12 and 13.
13
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Fig. 3. Davis’ cube.

Table 11
The first choice of the first four parallel classes.

Mon C, 7, 1 2367, 3478, 5678 1234, 2, 3 1256, 5, 6 1458, 4, 8
Tue C, 2, 8 1234, 1256, 2367 1458, 1, 5 3478, 3, 4 5678, 6, 7
Wed C, 5, 3 1256, 1458, 5678 1234, 1, 4 2367, 2, 6 3478, 7, 8
Thu C, 4, 6 1234, 1458, 3478 1256, 1, 2 2367, 3, 7 5678, 5, 8

Table 12
Friday, Saturday, and Sunday in system 19a.

Fri C, 1234, 5678 1256, 4, 7 1458, 3, 6 2367, 1, 8 3478, 2, 5
Sat C, 1256, 3478 1234, 6, 8 1458, 2, 7 2367, 4, 5 5678, 1, 3
Sun C, 1458, 2367 1234, 5, 7 1256, 3, 8 3478, 1, 6 5678, 2, 4

Table 13
Friday, Saturday, and Sunday in system 19b.

Fri C, 1234, 5678 1256, 3, 8 1458, 2, 7 2367, 4, 5 3478, 1, 6
Sat C, 1256, 3478 1234, 5, 7 1458, 3, 6 2367, 1, 8 5678, 2, 4
Sun C, 1458, 2367 1234, 6, 8 1256, 4, 7 3478, 2, 5 5678, 1, 3

In either case, the resulting KTS(15) has the property that the classes Friday, Saturday, and Sunday are laced in the 
mode (α) with each other, whereas all the other lacings are in the mode (β). It follows from Theorem 2.4 that the KTS is 
isomorphic to either system 19a or system 19b.

Also, in either case, the residual triples of the three lacings of type (α) are {C, 1234, 5678}, {C, 1256, 3478}, and 
{C, 1458, 2367}, which belong to the block-set of the Fano plane whose points are C and the six faces of the cube. Now 
the points 4 and 6 are in the same triple in Thursday, whereas, according to Table 12 (resp., Table 13) Friday has a triple 
containing 4 and 7 and a triple containing 6 and 3 (resp., a triple containing 4 and 5 and a triple containing 6 and 1). 
Since 7 and 3 are in the same triple in Thursday (resp., 5 and 1 are not in the same triple in Thursday), it follows from 
Theorem 2.4 that the KTS is isomorphic to system 19a (resp., to system 19b).

If at the beginning one takes {1256, 1, 5}, instead, to be one of the triples, then a second arrangement of the first four 
parallel classes is uniquely determined. This can be matched, in turn, with two possible choices of the remaining three 
classes, thereby producing again two KTSs isomorphic to systems 19a and 19b.

Note that, in addition to the points, the triples, and the parallel classes, this geometric model allows one to visualize 
all the automorphisms of the two systems as well. Indeed, in either case the automorphism group of the system is the 
(order-12) tetrahedral group [18], and it is easy to check that by construction, together with the identity, the three order-2
rotations around the midpoints of two opposite faces, and the eight order-3 rotations around the diagonals through two 
opposite vertices are all automorphisms of the two systems. For this reason, we believe that this model is the best visual 
solution to the schoolgirl problem.

Needless to say, Davis’ solutions can also be visualized on an octahedron, because of the duality between the cube and 
the octahedron.

We are not aware of any other solution isomorphic to either 19a or 19b in the literature (with the exception, of course, 
of those provided by those authors who gave all seven solutions [18,47,57,69,70]).

5) (System 61) In this final example we describe a visual solution to the schoolgirl problem, which was inspired by the 
two-step rotating circle in [59, Figure ii, p. 200], which, in turn, was derived from Anstice’s cyclic solution in [5, p. 285].

In 1852 Anstice published the first cyclic solutions to the schoolgirl problem. More precisely, they were KTS(15)s having 
an automorphism of order 7, with one fixed point and two orbits of length 7 (in modern terms, a KTS with this property 
is called 2-rotational). The same use of the term “cyclic” is found in [52]. One can easily check, by applying Theorem 2.4, 
that Anstice’s first solution [5, p. 280] is isomorphic to system 1a, whereas the second solution [5, p. 285] is isomorphic to 
14
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system 61. In the postscript of his paper [5, p. 291], Anstice shows that there exist “three distinct species of combinations 
of triads” of 15 symbols, but does not exhibit the arrangement 1b explicitly.

Kirkman considered Anstice’s solutions the “first properly mathematical solutions”, which revealed “the theory of the 
solution” of his puzzle [39]. Since 1850, Kirkman had been looking for the theoretical aspect hidden behind his puzzle: “The 
question has yet to be mathematically treated: I do not feel satisfied with knowing how to form thirty-five triads, which 
are found on trial, but not certainly proved before trial, to be capable of the required arrangement” [36].

In the present visual solution, unlike in [59], the fifteen schoolgirls are represented by labelling the seven vertices of an 
outer regular 7-gon by P0, . . . , P6, the seven vertices of an inner regular 7-gon by Q0, . . . , Q6, and the central point by the 
symbol ∞. In the following picture, on the right, we describe only the “base” parallel class, by representing each triple by 
three marks of the same kind. The remaining six parallel classes are obtained by the non-trivial rotations around the central 
point that leave the set of vertices invariant. Equivalently, the parallel classes are the orbits of the base parallel class under 
the automorphism defined by Pn �→ Pn+1, Qn �→ Qn+1 (mod 7), and ∞ �→ ∞.
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More precisely, the resulting KTS(15) is given in Table 14 (which is essentially the same as in [3, Example 1.1]).

Table 14
The (cyclic) system 61.

Mon P0Q0∞ Q1Q2Q4 P1Q3P5 P2P3Q6 P4Q5P6

Tue P1Q1∞ Q2Q3Q5 P2Q4P6 P3P4Q0 P5Q6P0

Wed P2Q2∞ Q3Q4Q6 P3Q5P0 P4P5Q1 P6Q0P1

Thu P3Q3∞ Q4Q5Q0 P4Q6P1 P5P6Q2 P0Q1P2

Fri P4Q4∞ Q5Q6Q1 P5Q0P2 P6P0Q3 P1Q2P3

Sat P5Q5∞ Q6Q0Q2 P6Q1P3 P0P1Q4 P2Q3P4

Sun P6Q6∞ Q0Q1Q3 P0Q2P4 P1P2Q5 P3Q4P5

As Monday and Tuesday are laced in the mode (β), the KTS is not isomorphic to system 1a nor to system 1b by 
Theorem 2.4. On the other hand, systems 7a, 7b, 19a, and 19b do not have an automorphism of order 7 (see, for instance, 
[18] and [61, Appendix]), whence the KTS is isomorphic to system 61.

Alternatively, a direct proof can be given, in view of Remark 2.6(4) in Section 2, by showing that there exist nine suitable 
lacings of distinct parallel classes of type (β).

Note that the labelling and the arrangement of the fifteen points help us not only to highlight the cyclicity of the 
solution, but also to get a more immediate understanding of some other properties of the system. For instance, the vertices 
Q0, . . . , Q6 of the inner 7-gon are precisely the points of the unique Fano plane contained in the underlying STS (see, e.g., 
[15, Table 1.29, p. 32]). Also, the full order-21 automorphism group of the system is generated by the order-7 permutation 
(P0P1P2P3P4P5P6)(Q0Q1Q2Q3Q4Q5Q6)(∞) (that is, the clockwise rotation of the 7-gons that generates the parallel classes) 
and the order-3 permutation (P1 P4 P2)(Q1 Q4 Q2)(P3 P5 P6)(Q3 Q5 Q6)(P0)(Q0)(∞) (see [18]). Finally, the fact that the system 
generated under the above rotation by the base block {Q1, Q2, Q4} is a Fano plane depends precisely on the fact that every 
non-zero element of the group Z/7Z can be written in a unique way as a difference x − y (mod 7), with x, y in {1, 2, 4}
(accordingly, the set {1, 2, 4} is called a (cyclic) (7,3,1)-difference set [15, §VI.18], that is, a (cyclic) (7,3,1)-difference family
with only one set [15, §VI.16]).

It is worth mentioning that, by applying to the special case q = 7 the well-known construction by Ray-Chaudhuri and 
Wilson of a KTS(2q + 1), for a prime power q ≡ 1 (mod 6), one obtains a KTS(15) with point-set (F7 × {1, 2}) ∪ {∞}, whose 
seven parallel classes are derived by developing modulo 7 (in the first coordinate) the base parallel class {(0, 1), (0, 2), ∞}, 
{(1, 1), (3, 1), (2, 2)}, {(2, 1), (6, 1), (4, 2)}, {(4, 1), (5, 1), (1, 2)}, {(6, 2), (5, 2), (3, 2)} ([56]; see also [16, 14.5.21, p. 592] and 
[17, Theorem 19.10]). Arguing as above, one immediately finds that the KTS is isomorphic to system 61. Alternatively, one 
can easily find an explicit isomorphism with the KTS described in Table 14. In particular, one finds that the Fano plane 
contained in the system is that generated modulo 7 by the base block {(6, 2), (5, 2), (3, 2)} (equivalently, {6, 5, 3} is a (cyclic) 
(7,3,1)-difference set).
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Note that, for a prime p ≡ 1 (mod 6), the construction of a (2-rotational) KTS(2p + 1) had been given by Anstice himself 
[5,6], making use of primitive roots and difference families for the first time in the history of block designs, and constructing 
infinitely many cyclic Room squares (see also [2]).

Another example of a KTS(15) isomorphic to system 61 is reported in [64, p. 95] (where no other solutions are given). 
Probably the most important appearance of system 61 in the literature is related to Sylvester’s problem of the 15 schoolgirls: 
can the 35 ×13 (unordered) triples of elements of a 15-set be grouped into 13 different KTS(15)s? Denniston’s 1974 solution 
[22] (see also [4, Example 7.3.2] and [15, Example 2.71, p. 66]) contains 13 KTS(15)s all isomorphic to system 61 (and which 
form the basis of the musical score Kirkman’s Ladies by the composer Tom Johnson [33]). As of 2023, it is not known whether 
there exist other non-isomorphic solutions to Sylvester’s problem.

4. Appendix. Systems 1a and 1b revisited

1) (Frost’s solution) In 1871 A. Frost [30] published an interesting solution to the schoolgirl problem, based on the 
observation that if the fifteen schoolgirls are denoted by p, a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2, g1, g2, and if the seven 
letters a, b, . . . , g are the points of a Fano plane, then the seven parallel classes can be constructed as follows. Each letter 
x in {a, b, . . . , g} determines a parallel class containing the triple px1x2 and four triples of the form ui v j wk , where uv w
ranges over the four blocks of the Fano plane not containing x (in modern terms, such a configuration of four triples is 
called quadrilateral or Pasch configuration).

After this elegant and promising premise, however, the various arrangements of the subscripts i, j, k are found after an 
excessively long and involved search, which takes two full pages of the article. Moreover, in the final solution, the ordered 
triple (i, j, k) takes up all the eight possible values, with no symmetry nor apparent logic. The same thing happens in the 
account given in [24, p. 15].

Here we describe a faster and more effective way to obtain a solution which is consistent with Frost’s requirements 
and which, moreover, is particularly symmetric, cyclic, and simple. Our construction is inspired by one of Anstice’s cyclic 
solutions [5, p. 280] (isomorphic to system 1a), and is based on the fact that one of the orbits of the automorphism of order 
7 consists of the seven points of a Fano plane.

Let us denote the fifteen schoolgirls by p, a1, a2, . . . , g1, g2 as above, and let us choose abc, bdf , cf e, dcg, ead, f ga, geb
as the blocks of a Fano plane (which Frost calls the “fundamental triads”). If we take

pa1a2 b1d1 f1 d2c1 g2 c2 f2e1 g1e2b2

as the base parallel class, then the other six parallel classes will be produced by the action of the cyclic group of order 7
generated by the permutation

(a b d c f g e),

which is also an automorphism of the Fano plane of fundamental triads. The resulting KTS will be that given in Table 15.

Table 15
A “Frost-type” realization of system 1a.

Mon pa1a2 b1d1 f1 d2c1 g2 c2 f2e1 g1e2b2

Tue pb1b2 d1c1 g1 c2 f1e2 f2 g2a1 e1a2d2

Wed pd1d2 c1 f1e1 f2 g1a2 g2e2b1 a1b2c2

Thu pc1c2 f1 g1a1 g2e1b2 e2a2d1 b1d2 f2

Fri pf1 f2 g1e1b1 e2a1d2 a2b2c1 d1c2 g2

Sat pg1 g2 e1a1d1 a2b1c2 b2d2 f1 c1 f2e2

Sun pe1e2 a1b1c1 b2d1 f2 d2c2 g1 f1 g2a2

Note that each of the fundamental triads appears four times (once in each of the four rightmost columns), with subscripts 
111, 212, 221, 122. An equivalent and perhaps more illuminating way of describing the system is given in Table 16, where 
the seven parallel classes are given by the seven rightmost columns, and where each cell of the grid represents the ordered 
subscripts to be given to the fundamental triad in the same row.

By applying Theorem 2.4, it can be readily seen that the KTS is isomorphic to system 1a (just like Frost’s original 
solution), and that the residual triples are the seven triples of the form px1x2. By replacing 122, 212, 221 in Table 16 by 
212, 221, 122, respectively, the KTS becomes isomorphic to system 1b, and the residual triples are the triples u1 v1 w1, where 
uv w ranges over the seven fundamental triads of the Fano plane.

2) (PG(3,2) as the complete 3-design on seven points) We now consider the fascinating model of PG(3, 2) by Ascher 
Wagner [65] (whose resolutions were characterized by Jonathan I. Hall [32]), and we revisit it in the light of the algorithm 
in Theorem 2.4. It is probably the model of PG(3, 2) that displays in the simplest and most direct way the duality of the 
projective space (see also [28, §5], where the mutual duality of systems 1a and 1b, with respect to the canonical duality of 
the projective space, is described algebraically, and illustrated by means of the fifteen simplicial elements of a tetrahedron).
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Table 16
An equivalent description of system 1a in Table 15.

pa1a2 pb1b2 pd1d2 pc1c2 pf1 f2 pg1 g2 pe1e2

bdf 111 122 221 212
dcg 212 111 122 221
cf e 221 212 111 122
f ga 221 212 111 122
geb 122 221 212 111
ead 122 221 212 111
abc 122 221 212 111

Let X = {1, 2, 3, 4, 5, 6, 7}. There exist precisely 30 distinct Fano planes with point-set X (this had already been noticed 
by Woolhouse [70] in 1863). The action of the alternating group A7 on X induces a natural action on the 30 Fano planes, 
with two orbits of 15 planes each. Let us denote the two orbits by P (“points”) and H (“planes”), where P (resp., H) is the 
orbit containing the Fano plane whose blocks are obtained by developing (mod 7) the base block (1, 2, 4) (resp., (1, 3, 4)). 
Finally, let us call “lines” the 35 unordered triples of elements of X (that is, the elements of the set 

(X
3

)
).

One can define an incidence structure on P ∪ (X
3

) ∪H as follows. If l ∈ (X
3

)
and F is a Fano plane in P ∪H, then l and F

are incident if and only if the triple l is a block of F . If F1 ∈ P and F2 ∈ H, then F1 and F2 are incident if and only if the 
intersection F1 ∩ F2 of the two Fano planes contains at least one “line” from 

(X
3

)
.

The incidence structure on P ∪ (X
3

) ∪ H is isomorphic to the incidence structure of points, lines and planes of the 
projective geometry PG(3, 2). Also, one can show that two given “lines” l1, l2 in 

(X
3

)
satisfy |l1 ∩ l2| = 1 if and only if they are 

incident to a unique common “point” and to a unique common “plane”. If this is not the case, then l1 and l2 are incident 
to no common “point” and to no common “plane”. Therefore, in this model, the five “lines” of a parallel class of PG(3, 2)

correspond to five triples of 
(X

3

)
with pairwise intersections never of cardinality 1.

J.I. Hall [32] showed that a parallel class of PG(3, 2) either consists of the five triples in 
(X

3

)
containing a given (un-

ordered) pair (i, j) in 
(X

2

)
, or consists of a given (unordered) triple (a, b, c) in 

(X
3

)
, together with the four triples in 

(X
3

)
that 

are disjoint from it. In the former case, the parallel class is denoted by the symbol 〈∞, i, j〉, whereas in the latter case it is 
denoted by the symbol 〈a, b, c〉.

Furthermore, Hall proved that seven parallel classes form a resolution of PG(3, 2) if and only if their symbols form the 
blocks of a Fano plane whose point-set is a 7-subset of the set {∞} ∪ X = {∞, 1, 2, 3, 4, 5, 6, 7}. In particular, all this yields 
an elementary and immediate proof of the fact that PG(3, 2) has 56 distinct parallel classes and 240 distinct resolutions 
(this was already known to Woolhouse [68,69], and was later proved by Conwell [19] by using Galois geometry).

Among these resolutions, 30 have all their seven symbols in 
(X

3

)
, whereas the remaining 210 have three parallel classes 

with symbols of the type 〈∞, i, j〉, and four parallel classes with symbols of the type 〈a, b, c〉. In the former case, there is 
a one-to-one correspondence between the 30 resolutions and the 30 Fano planes in P ∪ H. In either case, we will apply 
Theorem 2.4 to determine whether a given resolution is isomorphic to system 1a or 1b, in terms of its seven symbols.

Let us start by enumerating the fifteen “points” in P , by writing explicitly their corresponding Fano planes.

P1 = {(1,2,3), (1,4,5), (1,6,7), (2,4,7), (2,5,6), (3,4,6), (3,5,7)}
P2 = {(1,2,3), (1,4,6), (1,5,7), (2,4,5), (2,6,7), (3,4,7), (3,5,6)}
P3 = {(1,2,3), (1,4,7), (1,5,6), (2,4,6), (2,5,7), (3,4,5), (3,6,7)}
P4 = {(1,2,4), (1,3,5), (1,6,7), (2,3,6), (2,5,7), (3,4,7), (4,5,6)}
P5 = {(1,2,4), (1,3,6), (1,5,7), (2,3,7), (2,5,6), (3,4,5), (4,6,7)}
P6 = {(1,2,4), (1,3,7), (1,5,6), (2,3,5), (2,6,7), (3,4,6), (4,5,7)}
P7 = {(1,2,5), (1,3,4), (1,6,7), (2,3,7), (2,4,6), (3,5,6), (4,5,7)}
P8 = {(1,2,5), (1,3,6), (1,4,7), (2,3,4), (2,6,7), (3,5,7), (4,5,6)}
P9 = {(1,2,5), (1,3,7), (1,4,6), (2,3,6), (2,4,7), (3,4,5), (5,6,7)}
P10 = {(1,2,6), (1,3,4), (1,5,7), (2,3,5), (2,4,7), (3,6,7), (4,5,6)}
P11 = {(1,2,6), (1,3,5), (1,4,7), (2,3,7), (2,4,5), (3,4,6), (5,6,7)}
P12 = {(1,2,6), (1,3,7), (1,4,5), (2,3,4), (2,5,7), (3,5,6), (4,6,7)}
P13 = {(1,2,7), (1,3,4), (1,5,6), (2,3,6), (2,4,5), (3,5,7), (4,6,7)}
P14 = {(1,2,7), (1,3,5), (1,4,6), (2,3,4), (2,5,6), (3,6,7), (4,5,7)}
P15 = {(1,2,7), (1,3,6), (1,4,5), (2,3,5), (2,4,6), (3,4,7), (5,6,7)}.

Let us first describe explicitly a resolution of PG(3, 2) whose seven symbols are in 
(X

3

)
. Let us consider, for instance, the 

case where the resolution is associated with the “point” P1 ∈P above. We represent in Table 17 each projective “line” as a 
triple in 

(X
3

)
and also as the corresponding triple of “points” in P that are incident with it.

It is immediate that the lacing of two parallel classes is of type (α) if there exist two “lines” in one class and two 
“lines” in the other class (as triples in 

(X
3

)
), such that the four triples contain a common pair of elements of X , and that 

the corresponding residual triple is the fifth triple in 
(X)

containing that common pair. For instance, the residual triple 
3
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Table 17
The system 1a associated with the Fano plane P1 ∈ P .

Mon (1,2,3) (4,5,6) (4,5,7) (4,6,7) (5,6,7)
〈1,2,3〉 P1 P2 P3 P4 P8 P10 P6 P7 P14 P5 P12 P13 P9 P11 P15

Tue (1,4,5) (2,3,6) (2,3,7) (2,6,7) (3,6,7)
〈1,4,5〉 P1 P12 P15 P4 P9 P13 P5 P7 P11 P2 P6 P8 P3 P10 P14

Wed (1,6,7) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
〈1,6,7〉 P1 P4 P7 P8 P12 P14 P6 P10 P15 P2 P11 P13 P3 P5 P9

Thu (2,4,7) (1,3,5) (1,3,6) (1,5,6) (3,5,6)
〈2,4,7〉 P1 P9 P10 P4 P11 P14 P5 P8 P15 P3 P6 P13 P2 P7 P12

Fri (2,5,6) (1,3,4) (1,3,7) (1,4,7) (3,4,7)
〈2,5,6〉 P1 P5 P14 P7 P10 P13 P6 P9 P12 P3 P8 P11 P2 P4 P15

Sat (3,4,6) (1,2,5) (1,2,7) (1,5,7) (2,5,7)
〈3,4,6〉 P1 P6 P11 P7 P8 P9 P13 P14 P15 P2 P5 P10 P3 P4 P12

Sun (3,5,7) (1,2,4) (1,2,6) (1,4,6) (2,4,6)
〈3,5,7〉 P1 P8 P13 P4 P5 P6 P10 P11 P12 P2 P9 P14 P3 P7 P15

of the lacing of Monday and Tuesday is the triple (1, 6, 7) in Wednesday. The complete set of residual triples coincides 
precisely with the block-set of the Fano plane P1, that is, with all the “lines” that are incident with the “point” P1 ∈P . The 
second column of Table 17 contains all the residual triples and shows clearly that these are precisely the triples of “points” 
containing the common “point” P1. Hence the resolution is isomorphic to system 1a.

Similarly, for a resolution of PG(3, 2) whose seven symbols are the blocks of a Fano plane F in H, the seven residual 
triples are again the seven triples in F , which represent the seven “lines” of a “plane” in PG(3, 2).

By applying Theorem 2.4, we can conclude that a resolution of PG(3, 2), whose seven symbols are in 
(X

3

)
, is isomorphic 

to system 1a (resp., 1b) if the seven symbols are the blocks of a Fano plane in P (resp., in H).
Moreover, the map 〈a, b, c〉 �→ (a, b, c) can be easily interpreted in the light of the previous Remark 2.6(1). Also, the 

automorphisms of a resolution of this kind are of the type (a, b, c) �→ (ϕ(a), ϕ(b), ϕ(c)) and 〈a, b, c〉 �→ 〈ϕ(a), ϕ(b), ϕ(c)〉, 
where ϕ is an automorphism of the underlying Fano plane in P ∪H. In passing, this gives a direct combinatorial proof of 
the fact that the group of automorphisms of both systems 1a and 1b is isomorphic to the group of automorphisms of the 
Fano plane.

In particular, an automorphism of the KTS induces a cyclic permutation of the parallel classes if and only if the automor-
phism of the underlying Fano plane is a cyclic permutation of the seven points in X . For instance, for the resolution given 
in Table 17, associated with the “point” P1 ∈P , the cyclic permutation σ = (1 2 4 3 7 6 5) can be seen, at the same time, as 
an automorphism of the Fano plane P1 and as an automorphism of the whole KTS, which fixes the “point” P1 and induces 
a cyclic permutation of the parallel classes as the orbit of the class 〈1, 2, 3〉.

Finally, in the case of a resolution of PG(3, 2), whose seven symbols are the blocks of a Fano plane whose point-set 
contains ∞, let F be the Fano plane in P ∪H obtained by replacing ∞ with the element of X that does not appear in the 
seven symbols. Arguing as above, one can easily show that the seven residual triples form the blocks of a Fano plane in P
(resp., in H) if F is in H (resp., in P). Therefore, the resolution is isomorphic to system 1a if F is in H, and is isomorphic 
to system 1b if F is in P .

3) (A finite-geometry cyclic solution) We already pointed out in Section 3, and in the two previous examples in this 
Appendix, that there exist cyclic solutions to the schoolgirl problem that are isomorphic to either system 1a or system 1b. 
Their visual representations can be easily obtained by applying the same construction with two concentric regular 7-gons 
as in Example 5 in Section 3, with just different choices of the base parallel class (see also [59, Figure iii, p. 200], [31, Figure 
51, p. 126] and [7, Figure 5.2, p. 28]).

An alternative algebraic description of the cyclic solutions 1a and 1b can be given as follows, where we essentially regard 
PG(3, 2) as the derived design at (0, 0, 0, 0) of AG2(4, 2), that is, of the point-plane design of the affine geometry AG(4, 2).

In the classical model of PG(3, 2), the points are the fifteen non-zero elements of the 4-dimensional vector space GF(2)4, 
and the projective lines are all the unordered triples of points summing up to zero in (the additive group of) the vector 
space (from this point of view, the point-line design of PG(3, 2) is an example of additive block design [11]). We may also 
represent the fifteen points, up to isomorphism, as the non-zero elements of the 2-dimensional vector space GF(4)2, where 
GF(4) = {0, 1, α, α2} is the (unique) field with four elements and characteristic 2, with operations 1 + α = α2, 1 + α2 =
α, α + α2 = 1, αα2 = 1.

We may now choose as the base parallel class the set of the five triples of points in GF(4)2, obtained by removing (0, 0)

from the five lines through the origin in the affine plane AG(2, 4) (the five triples are the five columns of the following 
array).
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(1,1) (1,0) (0,1) (1,α) (α,1)

(α,α) (α,0) (0,α) (α,α2) (α2,α)

(α2,α2) (α2,0) (0,α2) (α2,1) (1,α2).

Next, we rewrite the base parallel class by representing again the 15 points in GF(2)4, via the standard identification 
0 �→ (0, 0), 1 �→ (1, 0), α �→ (0, 1), α2 �→ (1, 1). Finally, we consider the orbit of the base parallel class under the action of the 
order-7 linear transformation on GF(2)4 defined on the canonical basis by (1, 0, 0, 0) �→ (1, 1, 1, 1), (0, 1, 0, 0) �→ (1, 0, 0, 1), 
(0, 0, 1, 0) �→ (0, 1, 0, 0), (0, 0, 0, 1) �→ (0, 1, 1, 1). What one gets, in Table 18, is a (cyclic) resolution of PG(3, 2), where for 
simplicity we write every element of GF(2)4 in the form abcd. Note, in passing, that any STS-automorphism of PG(3, 2) is 
necessarily induced by a linear map on GF(2)4 by [29, Theorem 3.1].

Table 18
A cyclic resolution of PG(3, 2) isomorphic to system 1b.

Mon
1010
0101
1111

1000
0100
1100

0010
0001
0011

1001
0111
1110

0110
1101
1011

Tue
1011
1110
0101

1111
1001
0110

0100
0111
0011

1000
1010
0010

1101
0001
1100

Wed
1100
0010
1110

0101
1000
1101

1001
1010
0011

1111
1011
0100

0001
0111
0110

Thu
0110
0100
0010

1110
1111
0001

1000
1011
0011

0101
1100
1001

0111
1010
1101

Fri
1101
1001
0100

0010
0101
0111

1111
1100
0011

1110
0110
1000

1010
1011
0001

Sat
0001
1000
1001

0100
1110
1010

0101
0110
0011

0010
1101
1111

1011
1100
0111

Sun
0111
1111
1000

1001
0010
1011

1110
1101
0011

0100
0001
0101

1100
0110
1010

By arguing as in the Example 1 in Section 3, one can immediately show that the KTS is isomorphic to system 1b. Also, 
the seven residual triples are precisely the blocks of the Fano plane consisting of the seven rightmost triples in Table 18. 
The construction of this (cyclic) KTS is a crucial tool in the proof that AG2(4, 2) decomposes into seven disjoint isomorphic 
copies of the affine plane of order four [49, §4].

Similarly, if one considers the orbit of the same base parallel class under the action of the order-7 linear transformation 
on GF(2)4, defined on the canonical basis by (1, 0, 0, 0) �→ (0, 0, 0, 1), (0, 1, 0, 0) �→ (1, 0, 0, 0), (0, 0, 1, 0) �→ (0, 1, 0, 0), 
(0, 0, 0, 1) �→ (1, 0, 1, 1), then one gets a (cyclic) resolution of PG(3, 2) isomorphic to system 1a, whose seven residual 
triples are all the projective lines containing the point (0, 1, 1, 1), which is also the (unique) fixed point of the linear 
transformation.

4) (Completing AG(3,2) to PG(3,2)) We now describe the visual solution to the schoolgirl problem (essentially contained 
in [27]) that probably best reflects the projective nature of the underlying STS PG(3, 2), in order to interpret it in the light 
of Theorem 2.4.

Let the fifteen schoolgirls be denoted by 0, x, y, z, xy, xz, yz, xyz, X, Y , Z , XY , X Z , Y Z , XY Z , and let the first eight of 
them label in a standard way the vertices of a cube, as illustrated in Fig. 4.
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Fig. 4. A visual representation of the affine geometry AG(3,2).
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The 35 triples of the STS are defined as follows (note the similarity with Cayley’s Example 1 in Section 3). The first 28
triples are precisely those of the type {0, a, A}, {0, ab, AB}, {0, abc, ABC}, {a, b, AB}, {a, ab, B}, {a, bc, ABC}, {a, abc, BC}, 
{ab, ac, BC}, and {ab, abc, C}, whereas the remaining seven triples are those of the type {A, B, AB}, {AB, AC, BC}, and 
{A, ABC, BC}. Note that the seven triples of the latter type determine a Fano plane (recall Remark 2.6(8) in Section 2).

In order to construct the seven parallel classes, we partition the (unordered) pairs of distinct vertices of the cube into 
three classes. A pair {v, w} is of type (A) if v and w are adjacent vertices, that is, if they are the extreme points of an edge 
of the cube. A pair {v, w} is of type (D) if v and w lie on the same face of the cube but are not adjacent, that is, if they are 
the extreme points of one of the two diagonals of a face of the cube. A pair {v, w} is of type (O) if v and w are opposite 
vertices of the cube.

The solution to the schoolgirl problem is completely determined by the choice of just two pairs of distinct vertices. This 
initial choice partitions the 28 pairs of distinct vertices of the cube into seven classes consisting of four pairs each, where 
each class is in turn a partition of the eight vertices of the cube.

Let {v, w} and {t, u} be any two disjoint pairs of type (D), under the only condition that they do not lie on the same face 
of the cube, nor on two opposite faces. Up to rotation, we may assume that {v, w} = {xz, yz}, and either {t, u} = {x, z} or 
{t, u} = {y, z}. We complete these two pairs with the only two possible pairs of type (A), such that the four pairs partition 
the vertices of the cube.

The second partition of the vertices of the cube is constructed as follows. The first two pairs are the two pairs of type 
(D) that lie on the faces opposite to those of {v, w} and {t, u}, but are not parallel to {v, w} and {t, u}. In view of the initial 
assumption, the first pair is {0, xy} and the second pair is either {y, xyz} or {x, xyz}, respectively. We complete the partition 
by adding, in a unique possible way, a pair of type (O) and a pair of type (A).

The next four partitions are obtained from the first two by applying, to each of them, the two order-3 rotations of the 
cube around the axis through the vertices 0 and xyz. Finally, the seventh partition contains the remaining four pairs of 
vertices that were not already considered in the previous six partitions.

In Fig. 5 we illustrate the first, second, and seventh partition, corresponding to the initial choice {v, w} = {xz, yz} and 
{t, u} = {x, z}.
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Fig. 5. The three basic partitions of the eight vertices.

We now construct the seven parallel classes of the KTS as follows. For each of the seven partitions of the eight vertices 
of the cube, we replace each of its four pairs by the unique triple of the STS containing that pair, and we complete the four 
triples thus obtained by adding the unique triple that is needed to get a partition of the fifteen schoolgirls.

Hence we obtain the resolution in Table 19, where Monday (resp., Thursday) is obtained from the first (resp., second) 
partition in Fig. 5, whereas Tuesday and Wednesday (resp., Friday and Saturday) are obtained from the two partitions 
constructed by rotation of the first (resp., second) partition. Finally, Sunday is obtained from the third partition in Fig. 5.

Table 19
The system 1b obtained by completing AG(3,2) to PG(3,2).

Mon 0, y, Y x, z, XZ xz, yz, XY xy, xyz, Z X, YZ, XYZ
Tue 0, z, Z x, y, XY xy, xz, YZ yz, xyz, X Y, XZ, XYZ
Wed 0, x, X y, z, YZ xy, yz, XZ xz, xyz, Y Z, XY, XYZ
Thu 0, xy, XY z, xz, X y, xyz, XZ x, yz, XYZ Y, Z, YZ
Fri 0, yz, YZ x, xy, Y z, xyz, XY y, xz, XYZ X, Z, XZ
Sat 0, xz, XZ y, yz, Z x, xyz, YZ z, xy, XYZ X, Y, XY
Sun 0, xyz, XYZ x, xz, Z y, xy, X z, yz, Y XY, XZ, YZ

By arguing as in the previous Example 1 in Section 3, one immediately finds that the resulting KTS is isomorphic to 
system 1b. Also, the seven residual triples are precisely those in the rightmost column of Table 19, that is, they are the 
blocks of the Fano plane whose points are all written in capital letters. Moreover, the system admits by construction an 
order-3 automorphism induced by the permutations (x y z) and (X Y Z). The same conclusions hold in the case of the 
alternative initial choice {v, w} = {xz, yz} and {t, u} = {y, z}.

Rephrased in different terms, the initial eight-point structure, whose points are the vertices of the cube, can be inter-
preted as the 3-dimensional affine space AG(3,2) over GF(2), and the points X, Y , Z , XY , X Z , Y Z , XY Z are the points 
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at infinity for the parallel classes of the affine space (for instance, X is the point at infinity for the parallel class 
{0, x}, {y, xy}, {z, xz}, {yz, xyz}). By completing each of the 28 affine lines with the corresponding point at infinity, one 
finally gets a 3-dimensional projective space over GF(2) with three points per line, whose remaining 7 lines are those of a 
projective plane over GF(2) at infinity.

This proves again that the underlying STS(15) in this geometric construction is the point-line design of PG(3, 2), and 
shows that the seven residual triples of the KTS(15) are precisely the seven projective lines at infinity. Also, the seven 
partitions of the vertices of the cube form a 1-factorization of the complete graph K8 (isomorphic to that which is usually 
denoted by F1), which is precisely the 1-factorization of K8 associated to the KTS(15) in Table 19 with respect to the Fano 
plane at infinity. Our construction was inspired by a similar construction in [27], where the KTS(15) is also isomorphic to 
system 1b, although the seven residual triples are not the seven projective lines at infinity.

To get a KTS(15) isomorphic to system 1a it suffices to replace the first partition in Fig. 5 by the partition obtained by 
replacing each vertex of the cube with the opposite vertex, that is, by taking {0, z}, {x, y}, {xy, yz}, {xz, xyz}. The second and 
third partition in Fig. 5 are left unchanged. The resulting KTS(15) is isomorphic to system 1a, and the seven residual triples 
are precisely the seven projective lines containing the point at infinity XY Z .

We finally note that Table 19 allows one to get a nice visual representation of system 1b by means of the vertices, the 
edges, the faces of a cube, and the whole of a cube, maybe even more “naturally” than in Examples 3 and 4 in Section 3
(a similar representation, although not fully explicit, is given in [41]). Let us denote the eight vertices of the cube by the 
numbers 1, 2, . . . , 8, as in Fig. 3, which we repeat here for the convenience of the reader.
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Each edge is denoted by a pair of the form v w , where v, w are the two vertices of that edge, and each face is denoted 
by a quadruple of the form abcd, where a, b, c, d are the four vertices belonging to that face. Also, we denote by C the 
whole of the cube. The fifteen schoolgirls are the eight vertices of the cube, C, and the six equivalence classes obtained by 
regarding as equivalent any two parallel edges and any two parallel faces (that is, any two edges and any two faces with 
the same point at infinity). For instance, the edges 12, 34, 56, 78 are all mutually equivalent and are the elements of one 
of the six equivalence classes. In what follows, we will always denote an equivalence class by any of its representatives.

The 35 triples of the underlying STS(15) are defined as follows. If v, w are two distinct vertices of the cube, then they 
belong to the triple {v, w, α}, where: α = v w if v, w are adjacent vertices; α = abcd if v, w are non-adjacent vertices lying 
on a face abcd; α = C if v, w are opposite vertices of the cube. The seven remaining triples are defined as follows. If e1, e2
are two non-equivalent edges, then they belong to the triple {e1, e2, f }, where f is the face determined by e1, e2 (note that, 
up to equivalence, one may assume that e1, e2 lie on the same face). If e is an edge orthogonal to a face f , then {e, f , C} is 
a triple. Finally, if f1, f2, f3 are three mutually non-equivalent faces, then { f1, f2, f3} is a triple.

We can now transform Table 19 into Table 20 by replacing: the vertices 0, x, xy, y, z, xz, xyz, yz in Fig. 4 by the corre-
sponding vertices 1, 2, 3, 4, 5, 6, 7, 8, in this order, in Fig. 3; XY Z by C, and each “point” of the form A, or AB , with capital 
letters, by the corresponding edge v w , or the corresponding face abcd, respectively, according to the above definition of 
the 35 triples. By construction of Table 19, the order-3 permutation (2 4 5)(3 8 6)(1)(7) of the vertices induces an order-3
rotation of the whole cube around the axis through the vertices 1 and 7, which induces an order-3 automorphism of the 
KTS in Table 20 and an order-3 permutation (M TU W)(TH F SA)(SU) of its parallel classes.

Table 20
The cube-based representation of system 1b.

Mon 1, 4, 14 2, 5, 1256 6, 8, 5678 3, 7, 37 56, 2367, C
Tue 1, 5, 15 4, 2, 1234 3, 6, 2367 8, 7, 87 23, 3478, C
Wed 1, 2, 12 5, 4, 1458 8, 3, 3478 6, 7, 67 48, 5678, C
Thu 1, 3, 1234 5, 6, 56 4, 7, 3478 2, 8, C 14, 15, 1458
Fri 1, 8, 1458 2, 3, 23 5, 7, 5678 4, 6, C 15, 12, 1256
Sat 1, 6, 1256 4, 8, 48 2, 7, 2367 5, 3, C 12, 14, 1234
Sun 1, 7, C 2, 6, 26 3, 4, 34 5, 8, 58 1234, 1458, 1256

5) (A “cyclic” solution in Z/15Z) The present example perfectly illustrates the difference between the two notions of 
cyclicity that appear in the literature on the fifteen schoolgirl problem (and, more generally, in the literature on Kirkman 
triple systems). It is known that there exists no cyclic KTS(15) in the sense of [46]. In other words, there exists no KTS(15) 
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with an automorphism consisting of a single cycle of length 15, preserving the triples and the parallel classes. Nevertheless, 
PG(3, 2) is a resolvable cyclic STS(15) (again in the sense of [46]). Indeed, if one takes Z/15Z as the point-set of the design, 
then the 35 triples of PG(3, 2) can be obtained by developing (mod 15) the base blocks {0, 1, 4}, {0, 2, 8}, and {0, 5, 10}. In 
particular, the map i �→ i + 1 preserves the triples and is an STS-automorphism consisting of a single cycle of length 15. 
Also, the fifteen Fano planes are obtained as a single orbit under the action of i �→ i + 1 on the base plane with triples 
{0, 1, 4}, {0, 2, 8}, {0, 5, 10}, {1, 2, 5}, {1, 8, 10}, {2, 4, 10}, {4, 5, 8}. This map, however, does not preserve any resolution of 
PG(3, 2).

A possible resolution is given in Table 21.

Table 21
System 1a with points in Z/15Z.

Mon {14,0,3} {1,2,5} {7,8,11} {9,10,13} {4,6,12}
Tue {0,1,4} {2,3,6} {8,9,12} {10,11,14} {5,7,13}
Wed {4,5,8} {6,7,10} {11,12,0} {13,14,2} {1,3,9}
Thu {8,10,1} {9,11,2} {12,14,5} {13,0,6} {3,4,7}
Fri {7,9,0} {2,4,10} {3,5,11} {6,8,14} {12,13,1}
Sat {0,2,8} {10,12,3} {11,13,4} {14,1,7} {5,6,9}
Sun {0,5,10} {1,6,11} {2,7,12} {3,8,13} {4,9,14}

By applying Theorem 2.4 (see also Remark 2.6(2)), it is immediate that the KTS is isomorphic to system 1a (and that 
the residual triples are the seven triples containing the point 5). A KTS isomorphic to system 1b can be easily obtained by 
suitably rearranging the classes Monday, Tuesday, and Thursday. As it was well-known in the 1850s ([2,5,6,52]), these two 
systems are 2-rotational. For instance, the permutation (0 2 7 8 12 11 9)(10 1 13 4 14 3 6)(5) preserves the 35 triples and 
induces a cyclic permutation (M TU W TH F SA SU) of the parallel classes of system 1a in Table 21. This reveals the “dual 
nature” of the system: the points and the triples are defined in Z/15Z, but the underlying structure of the resolution is 
the cyclic additive structure of Z/7Z (as in [3, Example 1.1]).

6) (A hexagon-based solution and a bipyramid-based solution) We conclude this paper by proposing two new visual 
solutions to the schoolgirl problem, with PG(3, 2) as their underlying Steiner triple system. The first one is based on the 
observation that, since 15 = (6

2

)
, the fifteen schoolgirls can be seen as the edges of the complete graph K6 on six points, 

which, in turn, can be represented as line segments between pairs of distinct vertices of a regular hexagon. With this point-
set, the 35 triples of the STS(15) correspond precisely to the twenty triangles and the fifteen 1-factors of the complete 
graph K6.

As in all the previous examples, the solution has two different versions, isomorphic to systems 1a and 1b. The arrange-
ment proposed in Fig. 6 is that isomorphic to system 1b, as it can be readily seen by arguing as in the Example 1 in 
Section 3. Also, the corresponding residual triples are precisely the seven leftmost triples in the figure.

If the hexagons in Fig. 6 are rotated counterclockwise (respectively, clockwise) by 60 degrees in Monday and Tuesday 
(respectively, Wednesday and Thursday), and are left unchanged in Friday, Saturday, and Sunday, then the resulting KTS is 
isomorphic to system 1a.

An interesting property of the solution in Fig. 6 is the fact that, unlike all the other visual representations of 1a and 
1b that we are aware of, this arrangement allows one to visualize an automorphism of order 4. Indeed, if we denote the 
upper left vertex of the hexagon by 1, and we label consecutively the other vertices clockwise by 2, 3, 4, 5, 6, then the 
permutation (1 2 5 4)(3)(6) induces on the pairs ab of vertices an order-4 automorphism

ψ = (36)(15 24)(12 25 45 14)(13 23 35 34)(16 26 56 46) (3)

of the KTS, which in turn induces the order-4 permutation

(SUN)(FRI SAT)(MON TUE WED THU)

of the parallel classes.
We note, in passing, that the equality 15 = (6

2

)
allows us also to transform the two hexagon-based models of systems 1a 

and 1b into two new tetrahedron-based models of the same systems, since the fifteen simplicial elements of the tetrahedron 
are in a natural one-to-one correspondence with the 2-subsets of the set {V , F , a, b, c, d}. Indeed, if we label the four vertices 
of the tetrahedron by a, b, c, d, then, for any i and for any j �= k in {a, b, c, d}, the pairs V i, F i, and jk represent the vertex 
i, the face opposite to the vertex i, and the edge with endpoints j and k, respectively, whereas VF represents the whole 
tetrahedron. The transformation from the hexagon to the tetrahedron can be obtained, for instance, by means of the map

1 �→ a 2 �→ b 3 �→ V 4 �→ c 5 �→ d 6 �→ F , (4)

where 1, 2, 3, 4, 5, 6 denote, as above, the six vertices of the hexagon. Under this identification, the points of the Fano 
plane of the seven residual triples in system 1b are precisely the six edges and the whole tetrahedron.
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Fig. 6. The hexagon-based system 1b.

Unlike the two models in [28], which are particularly suited to visualize some automorphisms of order three (that is, 
the rotations of the tetrahedron that fix one vertex), the new tetrahedron-based model of system 1b (obtained from Fig. 6
by means of the map (4)) provides a nice visualization of the order-4 automorphism ψ defined above in (3), since ψ fixes 
the whole tetrahedron and has three orbits of length four, which include the set of the four vertices and the set of the four 
faces.

We finally propose a new spatial representation of systems 1a and 1b based on a regular triangular bipyramid, which 
is particularly suitable to reflect an order-3 automorphism. A regular triangular bipyramid is a composite solid made up of 
two tetrahedra sharing a common face. The fifteen schoolgirls are represented as the five vertices, the nine edges, and the 
whole of the bipyramid, which we can identify with the common face of the two tetrahedra. Let us denote the five vertices 
by the numbers 1, 2, 3, 4, 5 as in Fig. 7. Each edge is denoted by a pair of the form ab, where a, b are the two vertices 
belonging to that edge. Also, the triple 234 denotes the whole of the bipyramid.

The underlying STS(15) is defined in a quite “natural” and symmetric way as follows. If e1, e2 are two disjoint edges, and 
v is the only vertex not belonging to either of the two edges, then {e1, e2, v} is a triple. If e1, e2 are two edges lying on the 
same face (including also the hidden face 234), and e3 is the third edge on that face, then {e1, e2, e3} is a triple. If e1, e2 are 
two edges with a common vertex and not lying on the same face, then {e1, e2, 234} is a triple. If v1, v2 are two vertices on 
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Fig. 7. The regular triangular bipyramid.

the same edge e, then {v1, v2, e} is a triple. If v1, v2 are two vertices not on the same edge (that is, {v1, v2} = {1, 5}), then 
{v1, v2, 234} is a triple. If v is a vertex in {2, 3, 4}, and {u, w} = {2, 3, 4} \ {v}, then {v, uw, 234} is a triple. If we define

φ = (2 3 4)(12 13 14)(23 34 24)(25 35 45)(1)(5)(234), (5)

then φ is an order-3 automorphism of the STS, which fixes 1, 5, and 234, and rotates counterclockwise, by 120 degrees, the 
twelve remaining points of the STS. A KTS(15) can now be defined by taking the orbits under φ of the three base parallel 
classes

{12,25,234} {3,4,34} {2,13,45} {1,24,35} {5,23,14}
{2,34,234} {1,4,14} {3,5,35} {12,13,23} {24,25,45}
{1,5,234} {23,24,34} {2,14,35} {3,12,45} {4,13,25}.

The resulting KTS is given in Table 22.

Table 22
The system 1b based on a triangular bipyramid.

Mon {12,25,234} {3,4,34} {2,13,45} {1,24,35} {5,23,14}
Tue {13,35,234} {4,2,42} {3,14,25} {1,32,45} {5,34,12}
Wed {14,45,234} {2,3,23} {4,12,35} {1,43,25} {5,42,13}
Thu {2,34,234} {1,4,14} {3,5,35} {12,13,23} {24,25,45}
Fri {3,42,234} {1,2,12} {4,5,45} {13,14,34} {32,35,25}
Sat {4,23,234} {1,3,13} {2,5,25} {14,12,42} {43,45,35}
Sun {1,5,234} {23,24,34} {2,14,35} {3,12,45} {4,13,25}

It can be readily seen that the KTS is isomorphic to system 1b by Theorem 2.4. Also, the seven residual triples are 
the blocks of the Fano plane constructed on the common face of the two tetrahedra. By construction, φ is an order-3
automorphism of the system, which induces on the parallel classes the order-3 permutation

(Mon Tue Wed)(Thu Fri Sat)(Sun).

By suitably reshuffling the triples in Thu, Fri, and Sat, one finds a KTS(15) isomorphic to system 1a, whose residual 
triples are the seven triples containing the common face 234. Again, φ is an automorphism of the system, inducing on the 
parallel classes the same order-3 permutation as for system 1b.
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