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Abstract—To date, one of the main tools for evaluating the
reliability of an insulation system is the continuous monitoring
of those phenomena which, by interacting with the elements of
the system, can induce aging processes or failures. For power
grids, a signal that identifies possible aging or improper use
of the component is Partial Discharge (PD) activity. Generally,
the evaluation of the PD phenomenon is carried out through
a two-step procedure: measurement and data analysis. To
optimize the PD analysis process, increasingly sophisticated PD
separation/classification algorithms are needed. Especially for
the measurements carried out in HVDC systems for which the
absence of a phase reference makes more difficult to identify
the different types of discharge. The purpose of this article
is to investigate the possibility of optimizing the input data
to a hierarchical clustering algorithm in order to obtain a
subdivision of the dataset more faithful to the real behavior
of the phenomena. Specifically, the proposed approach is based
on the use of the cross-correlation matrix to carry out the
clustering operation. This matrix replaces the matrix of the
distances among the points distributed in the map used for
the representation of the data. Results show that with this
modification it is possible to separate phenomena that present
partially or completely overlapping patterns. Moreover, the
algorithm turns out to be automatic and does not require the
choice of references or thresholds to define the similarity among
pulses.

Index Terms—Cross-Correlation, Hierarchical Clustering,
HVDC, Partial Discharge, Pattern Recognition.

I. INTRODUCTION

The increased sensitivity, acquired over the years, to en-
vironmental issues has raised new challenges in the field
of technological and industrial development. Indeed, today’s
goal is to make the globalization process compatible with
the impact that certain activities, industrial and otherwise,
have on the planet. In the energy sphere, this translates into
a transition to a system supported by source diversification,
reduced fossil fuel use, and optimization and upgrading of
grids. In this scenario, High-Voltage-Direct-Current (HVDC)
technology for power transmission over long distances and
with cable lines (underground or submarine) is going through
a period of diffusion and expansion due to its advantages over
a traditional transmission system [1], [2]. An important aspect
of assessing the reliability of these systems is the continuous
monitoring of phenomena that, by interacting with sensitive
elements or components, can lead to failure. In power grids,
one of the most failure-prone elements is the electrical
insulation system, and a signal that identifies possible aging
or improper use of the component is Partial Discharge (PD)

activity [3], [4]. Generally speaking, evaluation of PD on
components can be traced back to two operations, which are
summarized in Fig. 1 [3]. First operation is measurement,
in which some devices and sensors are used to detect and
acquire a dataset of variables or quantities related to the
phenomenon to be analyzed. In the case of PD, for example,
acoustic, electrical, chemical or thermal measurements can be
made [5]. In this paper, focus is on the second operation, the
data analysis. Since PD can occur with different features, an
analysis phase of the collected data is also necessary in order
to recognize the amount and type of involved phenomena.
In addition to the identification among the main discharge
phenomena (corona, internal, surface and treeing) it is indeed
advisable to evaluate and eliminate any background noise
acquired during the measurement. The typical structure of PD
data analysis process is also shown in detail in Fig. 1. The
first step is to choose suitable features that can provide the
user with useful information about the observed phenomenon.
A distinction is made between selected or extracted features.
In the former case it is a subset of magnitudes selected from
those measured. For example, the amplitudes of each pulse
or the occurrence phase are features provided directly by the
instrumentation. In the second case, the features are obtained
by processing the original data. Statistical features are derived
by processing the measured features. The next step is the
representation of the features through tables or maps (2D or
3D) useful for identifying the presence of patterns within
the observed phenomenon. Whenever it is not possible to
identify the discharge phenomena directly from the patterns,
these maps are used as support for the application of non-
supervised (clustering) or supervised (deep neural networks)
algorithms that carry out the procedure of data separation and
classification [6], [7]. In AC field, the most used method for
data representation is the Phase-Resolved-Partial-Discharge
(PRPD) Pattern, in which the apparent charges or amplitudes
of voltage signals acquired by instrumentation are plotted as
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Fig. 1. Main operations for the analysis of a partial discharge phenomenon.
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Fig. 2. TRPD pattern and applied voltage profile (in blue colour).

a function of the occurrence phase angle. In most cases, this
map does not require the application of more sophisticated
techniques for classification, since a correlation between the
shape and position of the patterns and the type of discharge
phenomenon is shown to exist. A phase reference, on the
other hand, is not available in DC. Therefore, the main
challenge for PD analysis in HVDC systems is to find a rep-
resentation, separation, and classification procedure that can
guarantee good accuracy and reliability in the obtained result.
To date, there is no reference standard for the PD analysis
under HVDC stress and the proposals in the literature are
quite varied. Some examples for feature representation that
can be used in DC are the Time-Resolved-Partial-Discharge
(TRPD) pattern, the Time-Frequency Map (TF Map) or the
space of principal components extracted with the Principal
Component Analysis (PCA) [8]-[10]. As mentioned above,
maps are used as support for the application of algorithms.
Thus, these algorithms often rely on processing the data
provided by the maps to conduct separation and recognition
operations. The main information is the distances among
points. Distance is used as a metric to evaluate the similarity
among the acquired signals. In section III, the application
of the hierarchical clustering algorithm for separating data
from a HVDC PD measurement represented on the TF Map
is given as an example. The aim of this paper is to propose a
different approach based on the cross-correlation operation
for evaluating the similarity among pulses and thus the
data that are provided as input to the hierarchical clustering
algorithm. This approach is also illustrated in section III
and compared with the original approach. Section II shows
the measurement from which the data have been obtained.
Instead, section IV shows the results for the two different
approaches.

II. PD MEASUREMENT

The data analyzed in this paper have been obtained through
a PD measurement performed on XLPE insulated model
cable subjected to HVDC stress. The test lasted one hour
in which the voltage profile reported in Fig. 2 has been
applied at the terminations spliced in order to form a loop.
An artificial defect is made on the cable to simulate the
presence of a cavity between the dielectric and the outer
semiconductive layer. The measurement has been carried out
with a PD detection device consisting of an ultra-wide band
spherical antenna sensor [12]. The use of ultra-wide band
instrumentation allows to acquire the PD pulses with a good
fidelity to the original signal. This is an important key aspect

since the aim is to divide a dataset into subgroups based on
the similarity among pulses. At the end of the measurement,
the acquired dataset consists of 1035 pulses.

III. PD SEPARATION
A. Original approach

In this paper, the dataset obtained as a result of the PD
measurement are represented through the TF Map, which is
constructed through the analysis of each individual pulse in
the time and frequency domain, the information of which is
summarized in two parameters called Equivalent Timelength
(T) and Equivalent Bandwidth (F). The expressions for
calculating these quantities are given in 1 and 2, respectively.
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where 5(t) e |S(f)| are respectively the normalized pulse
with respect to its own energy and the modulus of the related
Fourier transform. ¢ty and f, are the temporal and spectral
centroids of the pulse and its transform [11]. A hierarchical
clustering algorithm has been chosen for partitioning the
dataset into subgroups. This algorithm performs a partitioning
of the dataset by following two different procedures called
agglomerative and divisive. In the first case each object is
initially considered a cluster unto itself and the algorithm
proceeds by clustering subgroups of objects at each iteration
until a single cluster is obtained. The divisive procedure, on
the other hand, follows the opposite philosophy. In this paper
the agglomerative procedure has been applied. The main
input data of the algorithm is the matrix of distances among
the points given in the TF Map and representative of each
pulse. This matrix, of size nxn, is symmetric, characterized
by a diagonal of null elements and, if the map is normalized,
consisting of elements enclosed in the 0 - 1 range. From
this matrix, the algorithm evaluates the position (i,j) of the
smallest element (pair of elements due to symmetry) and
thus of the two nearest points on the map. These points are
subsequently grouped into a single object (cluster). As shown
in Fig. 3, in numerical terms, this operation results in the
union of the i-th and j-th rows and columns, reducing the size
of the matrix by 1. The distances among the remaining points
and the identified object, or among objects for subsequent it-
erations, can be determined in different ways. Typical choices
are shown in Tab. I. Step by step the algorithm gathers
subgroups of objects until a single cluster is obtained. As
a result, the algorithm provides the hierarchical structure by
which the clusters were identified and grouped. This structure
is represented with a scheme called dendogram. Fig. 4 shows
the dendogram obtained for the measurement described in
section II. Using this diagram, it is possible to choose how
many clusters to subdivide the dataset into. The procedure
described is a typical procedure used to analyze a dataset
with a hierarchical clustering algorithm.



TABLE I
MAIN CHOICES FOR CALCULATING THE DISTANCE BETWEEN TWO
CLUSTERS A AND B

Distance Dist(A, B) Formula
Single distance min  dist(a,b)
a€A,beB

Complete distance max dist(a, b)

acA,be

Average distance

WI\B\ > > dist(a,b)

acEAbeEB

Centroid distance dist(Ca,CB)

B. Improved approach

In the proposed approach, the similarity among pulses is
evaluated through the cross-correlation operation and not in
terms of distances on a map. The similarity between two
signals can be evaluated by solving the following integral:

Ruy(r) = /OO 2(t) - y(t+7) - dt 3)
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Where R, is the cross-correlation function, z and y the two
signals to be compared. By considering a time shift of y with
the 7 factor, it is possible to take into account all possible
lags between the two signals and thus evaluate their best over-
lap [13]. This information is quantified with the maximum
value of the R,, function. If one chooses to normalize the
pulses with respect to their energy, the correlation function
turns out to be within the range O - 1. By calculating all
possible correlations among all the pulses in the dataset it is
possible to construct the correlation matrix. The properties
of this matrix, under certain conditions, are similar to that
of the distances matrix. The matrix is symmetric and with
elements on the diagonal equal to 1. Due to normalization
all elements of the correlation matrix have values included
between 0 and 1. A value close to one indicates a high
degree of similarity, while a value close to zero indicates
a low similarity. Consequently, before supplying the input
matrix to the algorithm, its complement to unity is performed.
To evaluate the correlation between two objects, the average
value has been chosen.
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Fig. 3. In one iteration of the hierarchical clustering algorithm, the rows and
columns identified by the smallest pair of elements (orange), are overlaid.
The values of the elements in the new row and column are determined by
one of the formulas in Tab. L.
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Fig. 4. Example of dendrogram.

IV. RESULTS ANS DISCUSSION

Fig. 5 shows the comparison between the result obtained
by clustering with the classical approach and the improved
approach. The first difference that can be seen is that the dis-
tance matrix approach results in the formation of clusters that
are adjacent to each other but never overlapping. However,
this separation does not reflect the real phenomena behavior.
Whereas with the correlation matrix, clusters are identified
on the basis of the similarity between the waveforms of
the pulses, and thus, if the phenomena generate partially
overlapping patterns, the algorithm is not affected by this
arrangement. Specifically, in the map there are two main
patterns of linear and quasi-parallel shape, which are clearly
separated using the cross correlation matrix, while they
are broken into several clusters using the distance matrix.
Being able to separate phenomena that generate overlapping
patterns is an important feature for PD analysis, as it allows
more information to be extracted from the acquired dataset.
Examples of the waveforms based on which the algorithm
divided the dataset are shown in Fig. 6 and Fig. 7. The
first case shows signals potentially related to partial discharge
phenomena, while the second case shows some waveforms
typical of a background noise.

V. CONCLUSION

In this work separation process of PD data based on the
analysis of the cross-correlation among the acquired pulses
is investigated. This information is provided, in the form
of a matrix, as input to a hierarchical clustering algorithm,
typically used for data separation based on the distances
among points on the data representation map. This in-depth
analysis of the phenomenon is necessary when with the map
it is not possible to identify specific patterns for the discharge
phenomena. To date this issue is typical for HVDC systems
for which it is not possible to recognize the PD on the basis
of a phase reference. The results obtained show how it is
possible with this approach to separate overlapping patterns,
thus guaranteeing a subdivision of the dataset into subgroups
characterized by similar impulses. This separation process
makes it possible to easily identify the number of main dis-



Hierarchical Clustering (Distance Matrix)

1
L] -l.
£, e
0.8r & - 'h.. o A m i
. )
0.6 5 1
]
0.4 : ]
v vw
021 1
0 I I I I
0 0.2 0.4 0.6 0.8 1

Hierarchical Clustering (XCorr Matrix)

04r

0
0

0.2 0.4 0.8 1

Fig. 5. Clustered and normalized TF Maps. On the left is the result of the distance matrix approach. On the right the result based on correlation matrix.

charges phenomena present and can also be used to eliminate

the background noise acquired during the measurement.
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Fig. 6. Pulses and signal spectra characterizing the clusters related to PD
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Fig. 7. Pulses and signal spectra characterizing the clusters
background noise.
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