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Abstract 

Classical scoring functions from docking programs exhibit low accuracy in determining protein-

ligand binding affinity. The availability of protein structures with affinity data makes it possible 

to create machine-learning models focused on specific protein systems with superior predictive 

performance. Here, we report a new methodology that merges the AutoDock Vina 1.2 with 54 

regression methods available in Scikit-Learn to calculate the binding affinity based on protein-

ligand structures. This approach explores the concept of scoring function space. SAnDReS allows 

the development of machine-learning models based on crystal, docked, and AlphaFold-

generated structures. As a proof of concept, we examine the performance of SAnDReS-

generated models in six case studies. In the cases studied here, our models outperformed 

classical scoring functions. Also, SAnDReS-generated models showed predictive performance 

close to or better than other machine-learning models such as Taba, KDEEP, CSM-lig, and VinaRF20. 

SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres. 

  

https://github.com/azevedolab/sandres


Introduction 

Protein-ligand docking simulations rely on two computational methods: search algorithm and 

scoring function [1]. Search algorithms try to position a ligand into the binding pocket of a protein 

target. Scoring functions evaluate the binding of ligands into proteins [2]. This combination of 

algorithms allows the scanning of large small-molecule libraries, which makes docking the first 

choice to try to find a hit to bind to a protein target. The application of docking simulations to 

large datasets of potential binders is a fundamental step in the early stages of drug discovery [3, 

4].  

Analysis of several protein-ligand docking programs revealed that they most likely work to fit 

ligands into a binding pocket of a protein target [5, 6]. On the other hand, the prediction of 

binding affinity based on these atomic coordinates has low accuracy compared with 

experimental data. This lack of accuracy in estimating binding affinity strongly indicates the need 

for new computational approaches to address this problem. Most of the scoring functions 

employed in docking programs (e.g., AutoDock4 [7], Molegro Virtual Docker [8], and AutoDock 

Vina [9, 10]) rely on training a polynomial equation against a fixed training set. We named these 

scoring functions classical scoring functions [11] or universal scoring functions [12, 13]. These 

polynomial equations may have energy terms for physical intermolecular interactions [7, 8] or 

terms derived from a machine learning perspective [9, 10].  

Research in the field showed that the targeted scoring functions [12] outperform classical scoring 

functions available in most protein-ligand docking programs [11, 12]. Also, machine-learning 

models to predict binding affinity showed promising results (e.g., models based on the random 

forest method) [11]. In this scenario, new theoretical studies provided some framework to 

address this problem. The most notable being the scoring function space (SFS) concept [13]. The 

SFS is a mathematical set composed of infinite scoring functions. Each scoring function can 

predict the binding affinity based on the atomic coordinates of a protein-ligand complex. This 

complex could be an experimental structure (e.g., crystal structure) or a protein-pose complex 

generated through docking simulations [14-16].  

The SFS concept adopts a systems-level approach to address protein-ligand interactions. 

Research focused on biological systems considers the connections of abstract mathematical sets 

in contrast to the reductionist interpretation applied in biochemistry [17]. Computational 

simulations to find novel ligands for a particular protein target benefit from the SFS concept [18-

25]. Its usage enables it to address protein-ligand binding affinity as a system involving protein 

structures and binding-affinity data. Evaluation of the associations of the chemical [26] and 

protein [27, 28] spaces can contribute to the study of protein-ligand interactions. This view of 

machine-learning models to calculate binding affinity relies intensely on the concept of SFS. 

We envisage the SFS as a set of mathematical models to address the relationship of the protein 

and chemical spaces. To understand this concept, we may take one element of the protein space 

- an enzyme target. Then, we select a region of the chemical space composed of inhibitors of this 

protein target. Elements of the SFS are hypothesis functions (ℎ𝑖(𝜇𝑖 , 𝑓𝑖)) (or simply scoring 

functions) that take the model’s parameter vectors (𝜇𝑖) and instance’s feature vectors (𝑓𝑖) and 

estimate the binding affinity. We have a set indicated as SFS composed of infinite hypothesis 

functions (ℎ𝑖(𝜇𝑖 , 𝑓𝑖)) as follows. 

𝑆𝐹𝑆 = {ℎ1(𝜇1, 𝑓1), ℎ2(𝜇2, 𝑓2), ℎ3(𝜇3, 𝑓3),∙∙∙, ℎ𝑖(𝜇𝑖 , 𝑓𝑖), … } 



Each hypothesis function (ℎ𝑖(𝜇𝑖 , 𝑓𝑖)) is a scoring function to estimate the binding affinity for this 

targeted protein. Figure 01 illustrates the SFS concept with a few proteins and their respective 

hypothesis functions (ℎ𝑖(𝜇𝑖 , 𝑓𝑖)). Each dot (•) represented in the SFS is a hypothesis function 

developed for the protein target. The closer the dot is to the protein target, the better the 

predictive performance of this model. 

In Figure 01, we represent classical scoring functions (a.k.a. universal scoring function) as x, +, 

and . Since these functions did not take any specific target to generate their hypothesis 

functions (ℎ×(𝜇×, 𝑓×), ℎ+(𝜇+, 𝑓+), and ℎ∆(𝜇∆, 𝑓∆)), they are not close to any protein target. We 

may think of these classical scoring functions as protein-averaged models with an average 

performance for most of the proteins used in the training process. Therefore, their predictive 

performance is poor compared to targeted-scoring functions. For instance, let us consider we 

seek to develop a scoring function targeted to cyclin-dependent kinase 2 (CDK2) with Ki data (our 

protein system). Our approach generated a hypothesis function indicated as 

ℎ𝐶𝐷𝐾2(𝜇𝐶𝐷𝐾2, 𝑓𝐶𝐷𝐾2). In the SFS, ℎ𝐶𝐷𝐾2(𝜇𝐶𝐷𝐾2, 𝑓𝐶𝐷𝐾2) is closer to CDK2 than any other 

hypothesis function, including those available in docking programs (ℎ×(𝜇×, 𝑓×), ℎ+(𝜇+, 𝑓+), and 

ℎ∆(𝜇∆, 𝑓∆)). We do not expect classical scoring functions to outperform the CDK2-targeted 

scoring function (ℎ𝐶𝐷𝐾2(𝜇𝐶𝐷𝐾2, 𝑓𝐶𝐷𝐾2)).   

When building ℎ𝐶𝐷𝐾2(𝜇𝐶𝐷𝐾2, 𝑓𝐶𝐷𝐾2), we took ligands from the chemical space. Specifically, a 

sub-space of the chemical space made of inhibitors of CDK2 for which Ki is available. The 

challenge is to find an adequate hypothesis function (scoring function) in the SFS. This equation 

models a relationship between one element of the protein space (CDK2) and a limited region of 

the chemical space (CDK2 inhibitors with Ki data). Since we have infinite hypothesis functions in 

the SFS, it would be necessary to have an infinite computational time to find an ideal 

ℎ𝐶𝐷𝐾2(𝜇𝐶𝐷𝐾2, 𝑓𝐶𝐷𝐾2). On the other hand, we could devise strategies to investigate finite parts 

of the SFS using intelligent approaches as in machine-learning methods. Using supervised 

machine learning techniques, we can explore this SFS to build a computational model targeted 

to a specific protein system.  

We have the principles we defined above implemented in the program SAnDReS 2.0, which is an 

acronym for Statistical Analysis of Docking Results and Scoring Function. SAnDReS 2.0 can 

explore the SFS concept through the integration of recent progress in the fields of machine 

learning and protein-ligand docking simulations. This new version brings together AutoDock Vina 

(version 1.2) [10] and regression methods available in the Scikit-Learn (version 1.3) [29]. We have 

a collection of 54 regression methods available in SAnDReS 2.0 to generate new scoring 

functions. Also, we use statistical metrics designed to evaluate biological systems described in 

the DOME (Data, Optimization, Model, and Evaluation in Machine Learning) study [30]. We 

named these metrics the DOME strategy.  

This freedom to play with the features (energy terms, descriptors, and additional parameters) 

and regression methods makes it possible to explore a wider region of the SFS [13-15], increasing 

the chances of finding an adequate model for a protein system. Although on computational 

modeling, some argue that the data is more relevant than the machine learning algorithms for 

complex problems [31]. Several studies showed that variations of the machine learning 

algorithms may generate scoring functions with superior predictive power compared with 

classical scoring functions [32-37]. These results highlight the importance of trying different 

computational methodologies when studying complex systems. In SAnDReS, we adopt this idea 



of freedom to search unexplored regions of the SFS. We seek to find a machine-learning model 

just right for our protein system. 

One key aspect of SAnDReS is the freedom of choice. You can test several machine-learning 

models (hypothesis functions) and choose the model you find is adequate for the protein you 

are studying. With this view, we combine the holistic approach of systems biology with machine-

learning methods to contribute to the early stages of drug discovery projects [38]. As far as we 

know, SAnDReS 2.0 is the first computational tool to integrate the most recent versions of 

AutoDock Vina (version 1.2) and Scikit-Learn (version 1.3) in one package. Also, SAnDReS 2.0 is 

the first computational tool to include the DOME strategy to evaluate all machine-learning 

models developed to calculate protein-ligand binding affinity. In the following sections, we 

describe the main new aspects of SAnDReS 2.0 and analyze six case studies exploring different 

aspects of SAnDReS 2.0. We compare SAnDReS-generated models against similar computational 

tools. 

 

Methods 

Overview 

The central idea behind SAnDReS is the SFS concept [14]. SAnDReS navigates the SFS and builds 

a machine-learning learning model (ℎ(𝜇, 𝑓)) targeted to one protein system. However, the 

flexibility of SAnDReS also allows the development of universal scoring functions to predict pKi, 

pKd, and pIC50 (see case study 06). When targeting one protein system with SAnDReS, we gave 

up a one-size-fits-all approach [13] taken by the classical scoring functions employed in protein-

ligand docking programs (e.g., AutoDock Vina). Another concept to understand how SAnDReS 

works is the idea of a protein system.  

SAnDReS considers a protein system composed of M structures of a specific protein for which 

experimental affinity data is available. We rely on experimental binding affinity data from the 

following databases: BindingDB [39] and PDBbind [40]. For SAnDReS, a protein system has two 

types of data: experimental binding affinity and structures of protein-ligand complexes. These M 

protein-ligand complexes are structures for which we have affinity data. They could be crystal 

structures (e.g., case studies 01 and 06) or docked poses (e.g., case studies 03 and 05). We could 

also take computational models (e.g., models developed using AlphaFold [41]) of the protein 

targets to create a targeted scoring function (see case study 05). Taking this view, we focus on 

creating an adequate model from the SFS for one protein target. With this perception, we can 

apply the targeted scoring function (with N features) to choose protein-ligand complexes in 

virtual screening projects.  

SAnDReS 2.0 incorporates two main programs: SAnDReS tools and MLRegMPy (Machine-

Learning Regression Methods in Python). The first handles downloading of structures, file format 

conversion (PDB->PDBQT and mol2->PDBQT), protein-ligand docking simulations with AutoDock 

Vina 1.2 [10], statistical analysis (using SciPy and Scikit-Learn [29]), and plot generation (using 

Matplotlib). MLRegMPy carries out machine-learning modeling using Scikit-Learn [29]. Figure 02 

shows a flowchart with all tasks available in SAnDReS 2.0.  

In a typical project developed with SAnDReS, we aim to create a machine-learning model 

(ℎ(𝜇, 𝑓)) using protein-ligand complexes and binding affinity data. In the first step, we set up a 

project directory. We expect to have one project directory for each protein system. Then, we add 



the PDB access codes used in the project. After, we prepare the ligand data and download the 

structures (PDB files). In the following, we generate PDBQT files for docking simulations and 

calculate energy terms from the AutoDock Vina 1.2 force field (VinaFF) [10]. Then, we can carry 

out protein-ligand docking simulations. The next step calculates energy terms (VinaFF), 

descriptors, and additional parameters (described later in the text) for docked and 

crystallographic structures. This part provides the potential features (𝑓) we will employ to 

generate our hypothesis functions (ℎ(𝜇, 𝑓)). 

In the following, we use the virtual screening option. In the sequence, we have the machine-

learning box encapsulating all regression methods. Then, we may apply the machine-learning 

models to docking results and virtual screenings. Finally, we can perform statistical analysis of 

machine-learning models and evaluate intermolecular contacts for protein-ligand structures in 

the dataset.  

We do not need to use all tasks shown in Figure 02 for a project using SAnDReS. The flexibility of 

SAnDReS allows the users to choose the set adequate to their project. To illustrate this flexibility, 

we describe here six case studies highlighting which tasks are necessary for each type of project. 

Also, to facilitate its use, SAnDReS 2.0 has five out of six case studies integrated as tutorials to its 

code. These tutorials allow the users to have a self-learning platform to study how to apply 

SAnDReS to a wide range of drug discovery projects. 

SAnDReS 2.0 has more regression methods (54 techniques) than the previous version (9). Also, 

it incorporated novel developments in the statistical analysis of the machine-learning models. 

Recently, a consortium of machine learning researchers (ELIXIR Machine Learning Focus Group) 

recommended a set of metrics to assess machine learning models applied to biological systems 

[30]. For regression models developed for biological systems, they indicated the application of 

the following metrics: coefficient of determination (R2), root mean squared error (RMSE), and 

mean absolute error (MAE). SAnDReS adds the DOME strategy to the set metrics commonly used 

to evaluate the performance of machine-learning models. With this set of metrics, we aim to 

establish standards to validate machine-learning models focused on protein systems. Also, 

SAnDReS 2.0 relies on the most recent version of AutoDock Vina (version 1.2). This new version 

has a tool to explore the SFS and create a hypothesis function (model) for a specific protein 

system (our main goal) or a universal scoring function. 

 

Exploring the SFS 

The main novelty of SAnDReS 2.0 is a tool to explore the SFS (explore-sfs tool). Figure 03 

illustrates a flowchart of the explore-sfs tool. Initially, we define a set of features based on VinaFF 

energy terms, ligand descriptors, and additional parameters (e.g., B-factors) (supplementary 

material 01). Taking this set of input features, we generate a combination of possible models to 

estimate the binding affinity. SAnDReS determines a regression model (for each combination) 

that takes input features, as shown in the following equation, 

𝑃𝐵𝐴 = ℎ(𝜇0, 𝜇1, 𝜇2, . . , 𝜇𝑛 , 𝑓0, 𝑓1, 𝑓2, … , 𝑓𝑛) 

where PBA is the predicted binding affinity value, n is the number of features, fi is the i-th feature 

value, μi is the i-th model parameter (including the bias term μ0 and the feature weights μ1, μ2, 

…, μn), and h is a hypothesis function involving μi and fi. 

In a vectorized form, we can express the above equation as follows, 



𝑃𝐵𝐴 = ℎ(𝜇, 𝑓) 

where ℎ(𝜇, 𝑓) (hypothesis function) is the SAnDReS-generated model using 𝜇 and 𝑓, 𝜇 is the 

model’s parameter vector (μ0, μ1, μ2, …, μ0), 𝑓 is the instance feature vector (f0, f1, f2, …, fn where 

f0 = 1).  

With 14 variables, we could evaluate all hypothesis functions with eight input features (𝑓): C14,8 

combinations of 𝑓. Then, SAnDReS trains each combination of 𝑓 using 54 regression methods 

available in the Scikit-Learn library (supplementary material 02). For each machine-learning 

model, SAnDReS apply the DOME strategy [30]. For the example of 14 features taken eight at a 

time without repetition, we have 54x3003 = 162,162 machine-learning models (ℎ(𝜇, 𝑓)). Since 

the regression methods are fast in Scikit-Learn, we can generate a statistically relevant number 

of models with modest computational resources. For instance, using an Intel Core i5-10300H 

processor, it took 11 hours and 33 minutes to create 162,162 regression models (ℎ(𝜇, 𝑓)) to 

predict pIC50 for CDK2 (EC 2.7.11.22) (Case Study 01).  

SAnDReS reads the file ml.in to define the parameters to explore the SFS. We describe the main 

command lines (input file ml.in) in Table 01. SAnDReS 2.0 aims to develop machine-learning 

models to predict binding affinity. This version of SAnDReS focuses on six possible target 

functions to represent binding affinity. Table 02 shows all target functions available in SAnDReS. 

Further details are available in a User Guide provided along with the code: 

https://github.com/azevedolab/sandres. 

 

Dataset 

Here, we prepare all protein-ligand structures for docking, energy terms evaluation, and virtual 

screening. This part involves downloading from the protein data bank (PDB) and converting it to 

PDBQT format. SAnDReS has predefined ligand data with experimental binding affinities (Ki, Kd, 

and IC50) and generated PDBQT files for ligand structures. We previously created ligand 

structures using ADFRsuite [42]. The users can add any ligand structures not present in the 

current dataset. We employed the affinity data in the PDBbind version 2020 [40] to generate files 

with ligand information (bind_IC50.csv, bind_Kd.csv, and bind_Ki.csv). SAnDReS adds hydrogen 

atoms to protein coordinates using the program reduce [43] and automatically converts PDB 

protein structures to PDBQT using ADFRsuite [42].  

  

Docking Hub 

SAnDReS can carry out redocking for all crystallographic structures in a dataset. The goal is to 

validate a docking protocol using AutoDock Vina 1.2 [10]. Then, we can apply the best docking 

protocol to virtual screening (VS). Also, we may employ a SAnDReS-generated scoring function 

to sort docking results and predict binding for poses generated during the docking simulations. 

SAnDReS creates biological units of the protein structure because we may have a protein for 

which the active site lays between monomers (e.g., human purine nucleoside phosphorylase). 

The asymmetric unit of purine nucleoside phosphorylase is a monomer, and the biological 

assembly is a trimer. Also, the binding pocket of this enzyme sits between the monomers (see 

structure 1V2H) [44].   

https://github.com/azevedolab/sandres


At the end of docking simulations, SAnDReS takes all results and determines the root-mean-

squared deviations (RMSD) and docking accuracies DA1(a, b) and DA2(a, b, c) defined as follows. 

𝐷𝐴1(𝑎, 𝑏) = 𝑓𝑎 + 0.5(𝑓𝑎 − 𝑓𝑏) 

𝐷𝐴2(𝑎, 𝑏, 𝑐) = 𝐷𝐴1(𝑎, 𝑏) + 0.25(𝑓𝑐 − 𝑓𝑏) 

where fa is the fraction poses for which the docking RMSD is less than a and fb is the fraction 

poses for which the docking RMSD is less than b, where a<b and fc is the fraction poses for which 

the docking RMSD is less than c, where a<b<c [45]. In the current version of SAnDReS, the values 

for a, b, and c are 2.0, 3.0, and 4.0 Å, respectively. We evaluate the docking RMSD by the 

following equation. 

𝑅𝑀𝑆𝐷 = √
∑ [(𝑥𝑒 − 𝑥𝑡)2 + (𝑦𝑒 − 𝑦𝑡)2 + (𝑧𝑒 − 𝑧𝑡)2]𝑁

𝑖=1

𝑁𝑎
 

where xe, ye, and ze are the experimental coordinates (e.g., crystallographic structure) for the 

ligand, and xt, yt, and zt are the atomic coordinates for the position generated by the docking 

simulation (pose). When we calculate the summation, we consider the Na nonhydrogen atoms 

in the ligand structure.  

 

Scoring Function 

Now, we calculate the energy terms, descriptors, and additional parameters for the 

crystallographic positions and poses generated during the docking simulations. SAnDReS 

employs energy terms available on the VinaFF [10]. We use these terms as features of our 

machine-learning models (ℎ(𝜇, 𝑓)). Also, SAnDReS calculates a few descriptors, such as the 

number of atoms found in the structure of the ligands (e.g., C, N, O). SAnDReS calculates 

additional parameters based on crystallographic information (e.g., Ligand B-factor). It is possible 

to generate hybrid scoring functions involving energy terms (VinaFF), descriptors, and additional 

parameters (see case study 01).  

 

Virtual Screening 

Here, we use AutoDock Vina 1.2 [10] integrated into SAnDReS 2.0 to perform docking screens 

for a set of potential ligands or known ligands against our protein target. We may carry out 

docking simulations for known inhibitors to use protein-pose complexes to build novel scoring 

functions. We start this part with a selection of a mol2 file. This file has all small molecules 

intended for screening. SAnDReS has a built-in tool to split this mol2 file and generate PDBQT 

files for individual molecules. In the following, SAnDReS checks the previous redocking results 

for all structures in the dataset and selects the config.txt file for the best result. We consider the 

best result the one with the lowest RMSD. SAnDReS uses the coordinates of the receptor for 

which we have the lowest RMSD to run the virtual screening. The user may change it, but the 

default strategy is to take the structure with the lowest RMSD. 

 

Machine Learning Box (For Modeling) 



Here, we generate a machine-learning model for a targeted protein and save it for further use. 

SAnDReS 2.0 relies on Scikit-Learn [29] to create multiple machine-learning models to predict 

binding affinity. We may employ crystallographic structures or docked poses (receptor-pose 

complexes) to develop our scoring functions. Also, we have two sources of experimental data: 

the crystallographic structures and the affinity data (e.g., pIC50). We can have pIC50 (or pKi or pKd) 

as our target functions. SAnDReS employs the structures to calculate the VinaFF energy terms 

(Gauss 1, Gauss 2, Repulsion, Hydrophobic, Hydrogen, Torsional), descriptors, and additional 

parameters. These are the features used in machine learning modeling. 

We have 54 regression methods (Supplementary Material 02) available in SAnDReS to generate 

new scoring functions. This freedom to play with the features and regression methods makes it 

possible to explore a wider region of the SFS [38], increasing the chances of finding an adequate 

model for our protein system.  

Half of the regression methods available in SAnDReS use cross-validation (CV). We implemented 

the Kfold class from Scikit-Learn to perform cross-validation. The Kfold class builds an n-fold 

cross-validation loop and tests the generalization ability of regression. Cross-validation better 

estimates of how well we could generalize to predict unseen data. Scikit-Learn [29] provides 

some regression classes with built-in cross-validation implementation, e.g., ElasticNetCV. 

However, this inclusion of built-in CV is not available for all regression methods (e.g., 

AdaBoostRegressor). Therefore, we adopted the same CV approach [46] for the regression 

methods in SAnDReS 2.0. The MLRegMPy package has a class (ValidationLoop) that carries out 

cross-validation for all CV methods. 

For all machine-learning models generated in this part, we have an evaluation of the predictive 

performance using the DOME strategy. Once we select an adequate machine-learning model, 

SAnDReS saves it as a joblib file. Then, it is possible to apply it to other structures of the same 

protein system. With SAnDReS, we may employ a previously generated machine-learning model 

in our protein system. It is possible to share these models and make them available on GitHub. 

 

Machine Learning Box (For Docking Results) 

Now, we use the docking results and apply our machine-learning models against them. We may 

calculate binding affinity using the machine-learning models generated in the previous section. 

It is also possible to download a previously built machine-learning model and use it to predict 

binding affinity for docked poses. Here, SAnDReS does not perform machine learning regression. 

It only applies the created models (joblib files) to the docking results. In this part, SAnDReS 

evaluates the predictive performance of the machine-learning models used for docked poses. It 

also verifies the performance of the SAnDReS-generated scoring functions to rank poses and 

determine docking RMSD and docking accuracy (DA1 and DA2). 

 

Machine Learning Box (For Virtual Screening Results) 

Here, we apply a SAnDReS-generated machine-learning model to the results of our VS 

simulation. We employ one regression model only. The goal is to use a machine-learning model 

to sort VS poses, selecting the most promising ones (lowest score).  

 



Statistical Analysis 

DOME strategy calculates an Euclidean distance (called L2-Norm) using the metrics specified by 

Walsh et al. 2021 for regression models of biological systems [30]. Our goal is to evaluate the 

Euclidean distance of a machine-learning model from an ideal model with the following 

coordinates: Root-mean squared error (RMSE) = 0.0, mean absolute error (MAE) = 0.0, and 

coefficient of determination (R2) = 1.0. We also have derived metrics merging the DOME strategy 

with the evaluation of Spearman’s () and Pearson’s (r) correlations named EDOME (Extended 

DOME).   

We define the expressions for , r, RMSE, MAE, R2, DOME, EDOMEr2, EDOME, and EDOME in 

Table 03. The metrics EDOMEr2 and EDOME add r2 (squared Pearson correlation) and  

(Spearman correlation) to the Euclidean distance equation (DOME), respectively. The ideal 

model has r2 = 1.0 and  = 1.0. The last metric is EDOME. We have a space composed of r2, , 

RMSE, MAE, and R2. Our goal is to evaluate the distance of a machine-learning model from an 

ideal model with the following coordinates: r2 = 1.0,  = 1.0, RMSE = 0.0, MAE = 0.0, and R2 = 1.0. 

An ideal model has DOME = EDOMEr2 = EDOME = EDOME = 0.0. 

For every model generated to explore the SFS, SAnDReS determines the following nine metrics: 

RMSE, MAE, R2, DOME, r2, , EDOMEr2, EDOME, and EDOME. We will apply this statistical 

analysis for all SAnDReS-generated models described in the following case studies. For 

benchmark purposes, we will determine the predictive performance for models to estimate pKi 

using alternative approaches. We focused on the CASF-2016 test set [47] to evaluate the 

predictive performance of SAnDReS-generated models against external scoring functions (case 

study 06). Amongst these scoring functions, we have classical scoring functions and machine-

learning models (KDEEP [48], CSM-lig [49], and VinaRF20 [50]).  

 

Case Studies 

Here, we find five case studies focused on a protein system and one study to build a universal 

scoring function (case study 06). A protein system has one target and binding affinity data. Taking 

this definition, CDK2 with IC50 (case study 01) is a protein system different from CDK2 with Ki data 

(case study 03). In case study 06, we do not focus on one protein system. We train our scoring 

functions using a data set of high-resolution crystallographic structures. Our goal in case study 

06 is to check the predictive performance of a universal scoring function generated with 

SAnDReS and other functions against the CASF-2016 [47] benchmark with a test with Ki data. 

 

Case Study 01: CDK2 with IC50 Data 

Our goal in this case study is to build a machine-learning model based on the crystallographic 

positions of the ligands. We did not use docked poses to generate our machine-learning model. 

We also run re-docking simulations of the structures in this dataset to evaluate the predictive 

performance of the SAnDReS-generated scoring functions to rank poses. We determined docking 

accuracy and RMSD to reranked poses using our machine-learning models. Figure 04 Indicates 

all steps of this case study. We set up a dataset of CDK2 structures complexed with different 

inhibitors. We eliminated repeated ligands from the dataset. Then, we used SAnDReS to generate 

PDBQT files for all structures in this dataset and carried out docking using the Docking Hub of 

SAnDReS. Later, we calculated the affinity using the Scoring Function interface of SAnDReS. We 



intend to compare the ranking of poses using a SAnDReS machine-learning model with the 

Affinity function of AutoDock Vina 1.2. In the following, we generated machine-learning models 

based on the energy terms calculated using VinaFF and additional descriptors. The best machine-

learning model was applied to evaluate docking results. We determined the predictive 

performance of machine-learning models for all case studies using previously described metrics. 

 

Case Study 02: Application of a Machine Learning Model to CDK2 Docked Structures with IC50  

This case study shows the application of a machine-learning model built in case study 01 to 

docked structures. We saved the previously generated regression model as 

CDK2_IC50_ExtraTreeRegressor. This model is to predict binding affinity (pIC50) for CDK2 

structures based on the atomic coordinates of protein-ligand complexes. Figure 05 illustrates the 

steps we followed for this case study. Here, we employed affinity data available in BindingDB [39] 

to test the predictive power of our machine-learning model. We prepared a mol2 file with a toy 

dataset from the BindingDB for which IC50 data is available but no crystal structures of the 

protein-ligand complexes. We randomly selected 50 ligands from the BindingDB with pIC50 

ranging from 4.25 to 8.7. We generated the complexes using docked structures of the ligands 

against the structure 2DS1 [51]. We employed AutoDock Vina 1.2 to perform a short docking 

screen of known inhibitors against our protein target, the CDK2. We restricted our docking 

simulations to a cube (16 Å x 16 Å x 16 Å) centered at the ATP-binding pocket with the following 

coordinates: x = -9.060 Å, y = 10.360 Å, and z = 13.454 Å. SAnDReS generated a file with virtual 

screening results (virtual_screening.csv) for these complex structures of CDK2 inhibitors. This file 

has descriptors, additional parameters, and VinaFF energy terms for each pose calculated for all 

ligands used in the dataset, which allow us to apply the CDK2_IC50_ExtraTreeRegressor model 

to predict pIC50 for these structures. We applied the DOME strategy to evaluate all models. 

 

Case Study 03: CDK2 Docked Structures with Ki Data   

Here, we studied docked structures of CDK2 complexed with known inhibitors for which Ki data 

is available. We built a machine learning model to predict pKi using docked structures. Figure 06 

highlights all the steps followed for this case study. We used binding affinity data and ligand 

structures from the BindingDB (search performed on November 20, 2023). We prepared a mol2 

file with molecules available in the BindingDB. We docked all inhibitors against the structure of 

CDK2 (PDB access code: 2DS1) as previously described in case studies 01 and 02. The resulting 

docked structures and binding affinity data were the source to train our models to predict pKi. 

We selected the best model based on the performance metrics for the test set. 

 

Case Study 04: Application of a Machine Learning Model to CDK2 Structures with Ki    

Here, we applied the machine-learning model generated using docked structures (case study 03) 

to another dataset of docked structures of the same protein target. Figure 05 shows all the steps 

of this case study. We run our docking simulations using the ligands extracted from the 

crystallographic structures of the Taba test set [35]. We employed the same docking protocol 

described in case studies 02 and 03. We used the coordinates of 2DS1 [51]. In previous case 

studies, we compared the predictive performance of SAnDReS-generated models against 

classical scoring functions. Now, we applied the machine-learning model generated in case study 



03 to predict binding affinity for structures in a test set used in Taba development. Taba uses 

regression methods to create a machine-learning model based on a spring-mass system to assess 

intermolecular interactions [35]. We applied the CDK2_Ki_DecisionTreeRegressorCV model to 

the ligands used as a test set in the development of Taba. 

 

Case Study 05: AlphaFold Model of CDK19 with IC50 Data  

This case study focuses on developing a machine-learning model to predict inhibition (pIC50) of 

cyclin-dependent kinase 19 (CDK19). Figure 07 illustrates all the steps used in this case study. 

The experimental structure for this enzyme is not available (PDB search performed on November 

20, 2023). Therefore, we employed a model (PDB access code: (AF_AFQ9BWU1F1) generated 

using AlphaFold [41]. We superposed the structure of CDK19 (AF_AFQ9BWU1F1) onto the crystal 

structure 2DS1 [51]. Then, we transferred the inhibitor of 2DS1 (ligand CD1) to the superposed 

CDK19. Finally, we carried out model optimization of the CDK19-1CD structure using the 

minimization of sidechain positions. We employed Molegro Virtual Docker [8] to optimize the 

CDK19-CD1 complex. We validated the docking (re-docking) using the protocol described in 

Cases 02-04 for structure 2DS1 using AutoDock Vina 1.2. The RMSD (docking) between the 

docked and the model of the CDK19-CD1 complex is 1.133 Å. We employed ligand structures 

(mol2 format) and IC50 data in the BindingDB. We identified 127 unique molecules for which IC50 

data for CDK19 is available in the BindingDB (search performed on November 20, 2023). We 

followed the same procedures described in Case Study 03. We run all docking simulations using 

AutoDock Vina 1.2 integrated into SAnDReS. We created our machine-learning models 

employing these docked structures and set up 12 features, taking eight at a time without 

repetition. We also used the DOME strategy to choose our best machine-learning model. 

 

Case Study 06: CASF-2016 with Ki Data  

Here, we develop a universal scoring function to predict inhibition (pKi). Figure 08 shows all the 

steps used in this development. We selected crystallographic structures for which Ki data is 

available. We filtered our training set by choosing the structures with a resolution of 1.8 Å or 

better. Also, we eliminated structures for which active ligands (small-molecule inhibitors) 

presented an occupation factor below 1.0. In doing so, we focused on ligand structures with one 

position for the active ligands. These structures comprised our training set. Our goal in the case 

study is to evaluate the predictive performance of SAnDReS-generated scoring functions against 

36 external scoring functions, including three obtained using machine learning approaches 

((KDEEP [48], CSM-lig [49], and VinaRF20 [50])). Supplementary material 03 has all scoring functions 

for the CASF-2016 test set with Ki data. The original CASF-2016 test set comprises 

crystallographic structures with Ki and Kd data. We focus our study on PDBs with Ki information. 

 

Results and Discussion 

We applied SAnDReS 2.0 to six case studies to highlight its flexibility and ability to automatize 

docking simulations and machine-learning modeling. In the first five case studies, we focused on 

CDKs due to structural and binding data availability for these proteins. Another reason to focus 

on CDK2 and CDK19 is their importance as protein targets for drug development. CDK2 and 

CDK19 are targets of anticancer drugs [52-55]. Many CDKs had their structures determined due 



to their role in cell cycle progression. For instance, CDK2 inhibition causes the blockage of cell 

cycle progression. This halt of cell cycle progression may lead to apoptosis of DNA-damaged cells 

[52]. 

So far, we have over four hundred CDK2 structures available in the PDB (search performed on 

November 20, 2023). This richness of structural information has paired with binding affinity data. 

On the other hand, CDK19 has no crystallographic structure. Nevertheless, we found an 

AlphaFold model for this protein (case study 05). In case study 06, we have a test of the SAnDReS 

scoring function against CASF-2016 test set structures with Ki data.  

We organized the following sections focusing on different protein systems (crystallographic 

structures plus binding data) with one exception: case study 06. This last case study dealt with a 

benchmark based on the CASF-2016 test set. The first five case studies reported scoring functions 

developed for specific protein systems: CDKs. They presented situations faced in the early stages 

of drug discovery projects. They involved machine learning modeling using crystal structures 

with IC50 (case study 01). We also developed models based on docked poses (case studies 03 and 

05). We described the application of previously generated machine learning models in case 

studies 02 and 04. 

 

Case Study 01: CDK2 with IC50 Data 

Our approach to chemical inhibition of kinase activity considers that ATP-competitive inhibitors 

of CDK2 reduce activity by physically blocking the ATP-binding pocket. For activation, CDK2 needs 

binding to a partner protein named cyclin and phosphorylation of residue Thr160 by CDK7 [52]. 

Also, it is necessary to dephosphorylation of residue Tyr15 by the phosphatase CDC25A [56, 57]. 

A previous computational study [58] focused on Xenopus eggs indicated that activation cdc2 

behaves as an oscillatory system. We may take the cdc2-cyclin complex in Xenopus eggs as a 

prototype to evaluate the activation of cell-cycle human CDK2. In the Xenopus system, cyclin 

level varies during cell cycle progression, and the peak of kinase activity occurs after cdc2-cyclin 

complex formation in the late phase of the modeled cycle [58].  

We propose that the inhibitors bind to cdc2 (or CDK2) early in the cell cycle, which blocks the 

ATP-binding pocket. Inhibitors prevent enzyme activation even with the binding of the cyclin 

partner. In this case study, we used the crystallographic structure of CDK2 not complexed with 

cyclin (monomeric CDK2 structure). We also filtered our dataset to have unique CDK2-inhibitors. 

After data filtering, we ended up with a dataset composed of 104 crystallographic structures of 

CDK2 complexed with inhibitors for which binding data is available. We split this dataset into 

training (74 structures) and test (30 structures) sets. SAnDReS downloaded the PDB structures 

listed in the supplementary material 04.  

We used eight independent variables out of 14 features to generate our machine-learning 

models. SAnDReS built 162,162 scoring functions (54 x C14,8 = 54 x 3003 = 162,162 machine-

learning models). Taking the lowest EDOME among machine-learning models, we selected the 

ExtraTreeRegressor model with the following features: Torsions, B-factor ratio (Ligand/Receptor), 

Q, Gauss 1, Ligand Occupation Factor, Gauss 2, Ligand B-factor(A2), Receptor B-factor(A2). This 

machine learning model (r2 = 0.297416,  = 0.547917, RMSE = 1.23548, and EDOME = 1.99604) 

shows superior predictive performance compared with AutoDock Vina scoring function (r2 = 

0.0711395,  =-0.341382, RMSE = 14.1781, and EDOME = 158.617) for test set structures. Figures 

09A and 09B show the predictive performance using previously defined metrics (r2, , and 



EDOME) and the scattering plot (Predicted pIC50 vs. Experimental pIC50) for all structures in the 

test set. 

We applied the ExtraTreeRegressor model to evaluate its performance in predicting affinity and 

ranking poses. Figures 10A and 10B show the predictive performance (r2, , and EDOME) and 

the scattering plot (Predicted pIC50 vs. Experimental pIC50) for test set structures. Our machine 

learning model (ExtraTreeRegressor) shows the best predictive performance for docked poses 

for prediction of pIC50 (r2 =0.200877,  =0.414735, RMSE = 1.34298, and EDOME = 2.27428) 

against Affinity (AutoDock Vina scoring function) (r2 = 0.0280475,  =-0.291977, RMSE = 15.4249, 

and EDOME =187.519). Supplementary material 05 brings the predictive performance for all 

terms and machine learning models determined for the selected set of features in the scoring 

function.  

We have the analysis of docking accuracy (DA) [34] in supplementary material 06. The 

ExtraTreeRegressor model performs better than the Affinity function (see docking accuracy) [34]. 

The performance is also better for r2, , RMSE, and EDOME for the predicted affinity. Amongst 

all these metrics, we may say that the most demanding for a machine learning model trained 

against binding affinity data and crystal structures is the docking accuracy (DA), and our model 

has an improvement from 21.6667 to 26.6667 % for DA1 compared with the Affinity scoring 

function of AutoDock Vina. Additionally, we may take a machine-learning model to predict 

binding affinity and a different model to sort docking poses. In summary, the overall performance 

of the ExtraTreeRegressor model is better for sorting poses and predicting the binding affinity 

(pIC50). 

We used all structures in this dataset to evaluate intermolecular interactions involving all ligands 

and their respective protein coordinates. SAnDReS took all structures and determined all 

contacts, splitting the plots into the main chain, side chain, and all atoms (supplementary 

materials 07, 08, and 09, respectively). Figure 11 shows the intermolecular contacts for main-

chain atoms of CDK2. We find a concentration of peaks in the region close to residues Glu81, 

Phe82, and Leu83. The main-chain atoms of these residues comprise the molecular fork of CDK2 

responsible for most of the contacts observed in CDK2-inhibitors complexes [59, 60].   

 

Case Study 02: Application of a Machine Learning Model to CDK2 Docked Structures with IC50  

In this case study, we focused on the previously generated machine-learning model 

(CDK2_IC50_ExtraTreeRegressor) to estimate binding affinity based on docked structures. As a 

proof-of-concept project, we randomly selected 50 CDK2 inhibitors for which experimental IC50 

data is available at the BindingDB. There are no crystal structures of CDK2 in the complexes with 

these selected ligands. This docking protocol generated an RMSD of 0.234 Å for the ligand 1CD. 

Then, we docked these 50 ligands against the structure of CDK2 (PDB access code: 2DS1) using 

the docking protocol chosen in case study 01. Figure 12 shows the docked results for all inhibitors 

against the ATP-binding pocket of CDK2. We see all docked structures inside a sphere (radius of 

12 Å) centered at the ATP-binding pocket (including the molecular fork). These poses exhibit the 

same pattern of intermolecular interactions identified in crystal structures of CDK-inhibitor 

complexes (case study 01).  

SAnDReS calculated the same group of descriptors, additional parameters, and VinaFF energy 

terms for each pose obtained for all inhibitors docked to CDK2 structure, which let us apply the 

CDK2_IC50_ExtraTreeRegressor model to predict pIC50 for these complexes. Some may argue 



that the set of features employed in the CDK2_IC50_ExtraTreeRegressor model is inadequate to 

predict pIC50 based on docked structures since it relies on crystallographic-derived parameters 

such as B-factor ratio (Ligand/Receptor), Ligand B-factor(A2), and Receptor B-factor(A2). For the 

protein coordinates, we took the crystallographic-related parameters from the crystal structure 

(PDB: 2DS1). For the docked ligands, we may determine B-factors using molecular dynamics [61-

63]. To avoid running molecular dynamics simulations for 50 complexes, we may set all ligand B-

factors to 20.0 Å2 and ligand occupation factors to 1.0. Alternatively, we may eliminate the 

contribution of these features and set ligand B-factors to 0.0 Å2 and ligand occupation factors to 

0.0. We adopted the last one for the ligands. To avoid any problems with crystallographic-related 

parameters, we may omit them from the machine learning modeling (see case studies 03 and 

05). 

Figures 13A and 13B present the predictive performance (r2, , and EDOME) and the scattering 

plot (Predicted pIC50 vs. Experimental pIC50) for all structures. Our ExtraTreeRegressor model 

exhibits a superior predictive performance to predict pIC50 (r2 = 0.108508,  = 0.316343, RMSE = 

1.38903, and EDOME = 2.61879) compared with the Affinity function of AutoDock Vina (r2 = 

0.0636156,  =-0.151142, RMSE = 6.89501, and EDOME = 45.8168) and all other energy terms 

and descriptors analyzed for this dataset (supplementary material 10). Although the machine-

learning model shows superior predictive performance compared with the Affinity function, the 

precited values concentrated around two values (4.8 and 7.3) with poor predictive performance. 

In case study 03, we will build a machine-learning model based on docking poses. 

In summary, we highlighted the application of a machine learning model developed using 

crystallographic structures to predict the binding affinity (pIC50) of docked ligands against the 

same protein system. Furthermore, we showed the potential of integration of SAnDReS into 

ongoing docking projects. Once one research group develops a machine-learning model for a 

protein system, another researcher can integrate it into a docking screen project. To predict pIC50 

of CDK2, we made available this machine learning model in the GitHub 

(https://github.com/azevedolab/sandres/blob/master/CDK2_IC50_ExtraTreeRegressor.zip). We 

suggest that all potential new users of SAnDReS take this strategy and make available their 

models to researchers working on the same protein systems. 

 

Case Study 03: CDK2 Docked Structures with Ki Data   

Now, we have changed the focus to scoring functions based on docked poses against CDK2. In 

case study 01, we generated a machine learning model to predict pIC50 and applied it to predict 

the affinity of docked poses (case study 02). We based our machine learning modeling on two 

sources of experimental data: crystallographic structures of protein-inhibitor complexes and 

binding affinity data. It is worth noting that crystallographic coordinates for protein-ligand 

complexes may insert the uncertainties inherent to this source of experimental data: the most 

notable is the crystal packing effects on ligand position [64]. Energy minimization of protein-

ligand structures may reduce these crystal-packing effects. The same holds for molecular 

dynamics simulations [63] before machine learning modeling.  

To partially avoid these crystal packing effects on ligand coordinates, we designed SAnDReS to 

accommodate machine learning modeling using docking results. In doing so, we provide the 

flexibility to choose the most adequate approach to the protein system under study. Also, we 

overcome the limitation of experimental data for crystallographic structures of protein-ligand 

https://github.com/azevedolab/sandres/blob/master/CDK2_IC50_ExtraTreeRegressor.zip


complexes with binding affinity data. We have 2.8.106 compounds with binding data available in 

the BindingDB [39] against 2.2.105 structures determined in the PDB [65] (search performed on 

November 20, 2023). The difference is even higher since only a fraction of the data deposited in 

the PDB has ligands bound to their structures [1].  

We prepared a mol2 file with molecules for which Ki data is available in the BindingDB. In the 

data preparation, we eliminated ligands for which binding affinity data showed undefined values 

for the affinity (e.g., >1000 or < 3.5). Our final dataset set has 97 unique inhibitor molecules 

(supplementary material 11). SAnDReS ran all docking simulations using AutoDock Vina 1.2 

integrated into it. We used these docked structures to generate a set of machine-learning 

models. In the explore-sfs option of SAnDReS, we set up 12 features taken eight at a time without 

repetition. We built a total of 495x54 (26,730) regression models. SAnDReS selected these 12 

features from a pool of 14 potential features (Torsions, Q, Average Q, C, N, O, S, 

Affinity(kcal/mol), Gauss 1, Gauss 2, Repulsion, Hydrophobic, Hydrogen, Torsional). Among these 

14 features, SAnDReS chooses the top 12 with higher correlation (r2) with experimental affinity 

(e.g., pKi). We employed these 12 features to generate the combinations (C12,8) during the 

explore-sfs phase. 

Figures 14A and 14B present the map of metrics (r2, , and EDOME) and the scattering plot 

(Predicted vs. Experimental values) for the test set. Taking the EDOME as a selection criterion, 

the best model is the DecisionTreeRegressorCV with the following features: Gauss 2, C, Average 

Q, Gauss 1, Q, Torsional, Torsions, and Repulsion. This machine-learning model (r2 = 0.627354,  

= 0.598595, RMSE = 0.698289, and EDOME = 1.1024) exhibits superior metrics compared with 

the Vina Affinity function (r2 = 0.179336,  = 0.351028, RMSE = 15.775, and EDOME = 278.755) 

for the test set. This machine-learning model is available on GitHub 

(https://github.com/azevedolab/sandres/blob/master/CDK2_Ki_DecisionTreeRegressorCV.zip). 

Also, comparing the predictive performance of the models generated in case studies 01 and 03, 

we see a substantial improvement when using docked structures (this case study). We suggest 

the following possible causes for this improvement in the predictive performance. Firstly, the use 

of docked structures seems to pay off. The computationally adjusted positions of the ligands in 

the ATP-binding pocket of CDK2 capture a more realistic view of these protein-ligand 

interactions. Another possibility is the target function employed in the machine learning 

modeling. IC50 is notoriously noisier than Ki [66]. We should expect a more reliable model using 

pKi as a target function. 

 

Case Study 04: Application of a Machine Learning Model to CDK2 Structures with Ki    

In this study, we applied the machine learning model generated in case study 03 

(CDK2_Ki_DecisionTreeRegressorCV model) to predict binding affinity for all structures in a test 

set used in the development of Taba [35]. Figures 15A and 15B present a map of selected metrics 

(r2, , and EDOME) and the scattering plot (Predicted pKi vs. Experimental pKi) for all structures 

in the Taba test set [35], respectively. Figure 15A shows the predictive performance for all 

regression methods used to generate models that predict pKi for CDK2 with SAnDReS and Taba 

scoring function (supplementary material 12).  

The CDK2_Ki_DecisionTreeRegressorCV model has predictive performance to estimate pKi (r2 = 

0.157647,  = 0.655468, RMSE = 1.5449, and EDOME = 2.28673) inferior to the Taba scoring 

function (r2 = 0.657051,  = 0.766667, RMSE = 1.52644, and EDOME = 2.3505) for almost all 

https://github.com/azevedolab/sandres/blob/master/CDK2_Ki_DecisionTreeRegressorCV.zip


metrics. The Taba scoring function shows the best metrics for r2 and . They have almost the 

same RMSE. On the other hand, the CDK2_Ki_DecisionTreeRegressorCV model has the best 

performance considering EDOME (2.28673 against 2.3505 for Taba) and MAE metrics (1.13555 

against 1.33171 for Taba). Since the EDOME metric has more dimensions (RMSE, MAE, R2, r2, and 

), we may say that the CDK2_Ki_DecisionTreeRegressorCV model has a slightly superior 

performance in predicting pKi for CDK2. In case study 06, we carried out a complete benchmark 

study comparing the predictive performance of a SAnDReS-generated model against 36 external 

scoring functions using the CASF-2016 test set for pKi. 

 

Case Study 05: AlphaFold Model of CDK19 with IC50 Data  

Here, we focus on the AlphaFold model of CDK19 complexed with inhibitors obtained through 

docking simulation. We generated the complex structures using AutoDock Vina integrated into 

SAnDReS. We employed these docked structures to create our machine-learning models with 

SAnDReS. Figures 16A and 16B show a map of selected metrics (r2, , and EDOME) and the 

scattering plot (Predicted vs. Experimental values) for all protein-ligand complexes in the test set 

(supplementary material 13). We also took the EDOME as a selection criterion, the best model 

is ExtraTreeRegressor with the following features: C, O, Hydrophobic, Gauss 2, Hydrogen, 

Torsional, Gauss 1, S. This machine learning model (r2 = 0.378834,  = 0.601846, RMSE = 

0.878856, and EDOME = 1.48754) shows superior metrics compared with the Vina Affinity 

function (r2 = 0.00113771,  = -0.170391, RMSE = 15.5999, and EDOME = 290.232) for the test 

set. This machine-learning model is available on GitHub 

(https://github.com/azevedolab/sandres/blob/master/CDK19_IC50_ExtraTreeRegressor.zip). As 

observed for case study 03, there is a substantial improvement in using docked structures to 

generate machine learning models.  

 

Case Study 06: CASF-2016 with Ki Data 

SAnDReS is an open-access computational tool to generate machine-learning models for 

targeted protein systems. Nevertheless, due to the easiness of use and flexibility of SAnDReS, we 

proposed an ultimate test: a universal scoring function to predict Ki. Our goal with this last case 

study is to develop a scoring function without targeting any protein system. We employed a 

diverse dataset with 991 crystallographic structures with the filtering defined in the methods 

section (supplementary material 14). To test the predictive performance of our machine learning 

models generated using SAnDReS, we predicted pKi of the CASF-2016 test set [47].  

The original CASF-2016 dataset has structures with both Kd and Ki. One way to represent the 

relationship between Ki and Kd is using the Cheng-Prusoff equation [67], where we may 

determine Ki from Kd and IC50. But they are not the same (for instance, the inhibition of CDK2 by 

Roscovitine) [60] indicates different values for Ki and Kd (Ki = 250 nM and Kd in the range of 2900 

nM to 3400 nM). In summary, the distinction between them is that Kd is a more general term. Ki 

also represents a dissociation constant, but more narrowly for the binding of an inhibitor to an 

enzyme. That is a small-molecule inhibitor whose binding decreases the catalytic activity of a 

target enzyme. The value of Ki depends on the specific kinetic mechanism of the enzyme 

inhibition (e.g., competitive and uncompetitive inhibitors) [68]. To develop a more realistic 

machine learning model, we focused on Ki. We suggest that any scoring function should follow 

this path: not using mixed datasets with Ki and Kd.  

https://github.com/azevedolab/sandres/blob/master/CDK19_IC50_ExtraTreeRegressor.zip


We used structures of the CASF-2016 test set with Ki data. The CASF-2016 has 285 structures 

combining both Ki and Kd data. Specifically for Ki, we have 175 structures. We further filtered the 

CASF-2016 test set to eliminate structures with ligands showing occupancy factors below 1.0 and 

those with weak electron density for part of the ligand structures. The final test set has 155 

structures (supplementary material 15). We name this dataset as the CASF-2016 Ki test set. 

SAnDReS employed high-resolution crystallographic structures as the training set. We created 

our universal scoring function with 14 independent variables out of 16 features. SAnDReS built 

6,480 scoring functions (54 x C16,14 = 54 x 120 = 6,480). Figures 17A and 17B present the predictive 

performance using defined metrics (r2, , and EDOME) and the scattering plot (Predicted pKi vs. 

Experimental pKi) for all structures in the test set (CASF-2016 Ki test set). Taking the lowest 

EDOME among SAnDReS models, we selected the ExtraTreesRegressorCV model (supplementary 

material 15). We named this model KiETR_F14 (a model to calculate Ki using Extra Trees 

Regressor with 14 variables). KiETR_F14 has the following features: Gauss 2, C, Gauss 1, 

Hydrophobic, N, Torsional, B-factor ratio (Ligand/Receptor), Torsions, S, Receptor B-factor(A2), 

Q, Average Q, Hydrogen, O. This machine learning model has following metrics: r2 = 0.737876,  

= 0.854758, RMSE = 1.23658, and EDOME = 1.65883. 

In Figure 17A, we show the performance of 107 scoring functions and features (supplementary 

material 15). Among the scoring functions, we have 54 regression models generated with 

SAnDReS, 34 scoring functions available for the CASF-2016 Ki test set, 16 features, and three 

additional external machine learning models (KDEEP [48], CSM-lig [49], and VinaRF20 [50]). All 

metrics calculated here used the same 155 structures of the CASF-2016 Ki test set. KiETR_F14 

model shows superior predictive performance compared with classical scoring functions for test 

set structures. Taking EDOME as a criterion, the top-ranked models are KDEEP, VinaRF20, and 

KiETR_F14). On the other hand, using r2 to evaluate all models, the KiETR_F14 outperforms all 

other models. Strictly comparing them, KDEEP and KiETR_F14 have similar performance, followed 

by VinaRF20.  

 

Future Studies 

We intend to keep incorporating the new developments of machine learning regression 

methods. These new developments of SAnDReS will focus mainly on ensemble methods [29, 69, 

70]. Some of these ensemble methods are already among the 54 techniques available in 

SAnDReS (e.g., Voting Regressor). These novel amendments will combine machine learning 

regressors and return the average predicted binding affinities. Also, we expect a rise in the 

number of SAnDReS users. The increasing number of validated machine-learning models will 

provide the raw data to create a database of scoring functions. We are developing a scoring 

function database to have a set of ready-to-use models for a wide range of protein targets. 

 

Conclusion 

SAnDReS is an open-source computational to explore the SFS concept based on advanced 

machine-learning methods. This new version is a different computational tool that allows us to 

computationally navigate through the SFS, finding an adequate machine-learning model for a 

protein system of interest. We explained SAnDReS functioning and described six new case 

studies highlighting the different functionalities. Four case studies focused on CDK2, using 



crystallographic and pose positions to train our models. At least for CDK2, the machine learning 

models based on docked structures showed superior predictive performance, most likely due to 

the use of energy-minimized positions of ligands resulting from docking simulations. Also, we 

developed a model using the atomic coordinates of CDK2 generated using AlphaFold. This study 

of a SAnDReS-generated model focused on an AlphaFold structure paves the way to expand the 

application of targeted scoring functions to deep-learning models of protein structures. Finally, 

we highlight the adequacy of SAnDReS to generate a universal scoring function with predictive 

performance superior to classical scoring functions and at least the same performance as other 

machine-learning scoring functions (KDEEP, CSM-lig, and VinaRF20). 
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Comments: 
 
Dear Walter, 
 
First of all, thank you for involving me in this project. 
 
I read the draft of the manuscript several times. The computational work behind this draft is very 
hard and challenging. The idea is original, and the final goal of the work is clear, but in my humble 
opinion the draft is not too easy to read and follow the workflow. I think that it needs several 
corrections before submitting it. 
 
Following some suggestions, I hope can be useful for the better comprehension of the text: 
 

1) Introduction section, it would be useful to add one figure and some equations 
equations to explain better the concept of scoring functions. This could make the 
text easier to read for non-expert researchers in the field or people approaching 
docking and scoring functions. 

2) It would be useful to explain the difference between knowledge-based, force field-
based, and empirical scoring functions. Related to this one, when you write of 
universal or classical scoring functions, do you refer to empirical scoring 
function? Don’t you? 

3) Hi (ui, fi) are defined in a not so clear way. The ui parameters and fi instance’s 
vectors should be better defined. 

4) Sometimes the text is redundant in the introduction, material and methods, and 
results and discussion. This makes reading the draft not so smooth 

5) Figure 1 should be improved to allow a better ocomprehension of SFS. 
6) The limit of this kind of approach is the knowledge of experimental data. This 

should be underlined. 
7) The statistical metrics used in DOME should be reported not only cited to help 

the comprehension of the workflow. 
8) Figure 2: captions do not explain the workflow 
9) The validation of the docking protocol: why did you use the nucleoside 

phosphorylase? 
10)  The definition of the indipendent varaiables, the descriptors used are not clear in 

each case study. For instance, C14,8, What the meaning of 
11) What kind of descriptors have been used? The number? Are they constitutional 

1D descriptors? In any case, could these kinds of descriptors be too simple to 
describe the ligands. 

12)  Page 8, VS paragraph. I am a bit confused when you use the term Virtual 
screening. Usually, I intend the screening of unknown molecules on a 
computational model (Pharmacophore model, docking model obtained by the 
validation of the scoring functions) I am sorry, but it is difficult to understand for 
me as it is written at this moment 

13)  Machine learning for modeling, please improve it 
14)  I suggest a more ordered definition of the case study 
15) Case 02: why did you conserve the previously generated model? What the 

meaning of VS in this workflow 
16) Why the use of 2DS1? 
17) Why in Case 02 is there no model generation and in Case 03 yes? 
18) Case 01: the predictive performance is quite low, could it be an issue? 
19) Figures of the workflow are not so clear and not well-explained in the captions. 



20) I suggest adding a Table to compare the predictive performance of all the case 
studies, and a cumulative figure of EDome plots. 

21) As I have understood, the use of Ki gives more predictive performance than IC50, 
and crystal structure are more reliable of docking poses. It should be stressed. 

22)  What is TABA? A citation is not enoughin my humble opinion. 

 
I understand the hard work you do to put your idea of SFS in practice creating SanDres, 
and how difficult it is to explain what is behind a computational approach. 
 
I hope these suggestions could be useful to improve the manuscript. 
 
I have just the regret that I have not the time to test Sandres with a dataset of mine. 
Maybe I would have understood better all the workflow. I hope to make this in the next 
future and involve you in a new project. 
 
  


