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❼ Optimal design of Tuned Liquid Column Damper Inerter for single degree
of freedom structures is studied;

❼ A straightforward numerical approach is developed for its optimization;

❼ An analytical solution for the optimal design of TLCDI parameters is
derived;

❼ Analyses are performed using random base excitations and real earthquake
records.
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Abstract

In this paper, the use of a novel passive control device defined as Tuned Liquid
Column Damper Inerter (TLCDI) is studied to control the seismic response of
structural systems. The TLCDI, recently introduced as an enhanced version of
the conventional Tuned Liquid Column Damper, may achieve improved seismic
performances by exploiting the mass amplification effect of the so-called inerter
device. For this purpose, an optimization procedure for the design of the TL-
CDI based on a statistical linearization technique and the minimization of the
structural displacement variance is proposed. Notably, by assuming a white
noise base excitation and considering some additional approximations, perti-
nent closed-form expressions for the optimal TLCDI parameters are provided.
The reliability of the proposed analytical solutions is proved by a comparison
with numerical results obtained by a more computationally demanding iterative
optimization technique on the original damped system. Finally, the efficiency of
the control performance of TLCDI-controlled structures is examined using real
recorded seismic signals as external excitation.

Keywords: Tuned Liquid Column Damper, Inerter, Optimal design,
Statistical Linearization Technique

1. Introduction

In the field of passive vibration control devices, the use of mechanical dampers
has nowadays become a common strategy to mitigate vibrations of structures
subjected to dynamic loads. In this context, Tuned Mass Dampers (TMDs)
[1, 2], Tuned Liquid Dampers (TLDs) [3–5] and Tuned Liquid Column Dampers
(TLCDs) [6, 7] are among the most widely used damping devices for reducing
structural vibrations caused by wind or earthquakes. They have been already
installed on the top of many tall buildings and proved to be efficient in success-
fully protecting these structures from real dynamic excitation.

However, these devices may require large masses to be effective. Conse-
quently, the idea to combine these dampers with mass amplifying mechanisms,
such as inerter-based devices, has gradually became the current favoured trend
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for structural vibration control. The inerter, firstly introduced by M. Smith
[8, 9], is a two terminal mechanical device capable to generate a resisting force
proportional to the accelerations of its extremities with a constant referred to
as inertance, measured in mass units. Technologically, inerter prototypes, with
inertance values hundreds of times larger than the device physical mass, have
been experimentally tested considering mechanisms transforming the transla-
tional motion of the device ends into rotational motion (i.e. rack and pinion,
ball-screw and fluid inerters) [10–13]. Notably, the inclusion of the inerter vir-
tually increases the effect of the mass of the secondary system to which it is
connected [14]. In this regard, the inerter has been firstly integrated in the clas-
sical TMD to constitute a device known in literature as Tuned Mass Damper
Inerter (TMDI) [15]. In this way, the inerter is able of generating a sort of mass
amplification effect, making the TMDI behaving like a TMD with a larger mass,
to achieve enhanced performance compared to the classical TMD.

In [15] it has been demonstrated that the TMDI outperforms the TMD in
controlling structural vibrations and proposed analytical formulae of the op-
timal TMDI parameters to design the device. Many variants of inerter-based
configurations have been developed in recent years. The installation of the
TMDI has been considered also for base isolated structures with the aim of re-
ducing the displacements of the base isolation system during severe earthquakes
[16, 17]. Moreover, a nontraditional version of the TMDI, referred to as New
TMDI, obtained varying the damper position, has been introduced in [18] as
an alternative and more practical solution to reduce vibrations in base isolated
structures.

Clearly, following the trend related to the development of the TMDI, some
liquid-based devices have been proposed in combination with the inerter as
promising passive control strategies [19–21]. Liquid-based dampers, such as the
TLDs [3] and TLCDs [6], are containers filled with liquid (usually water) rigidly
fixed to the structure to be controlled and their capacity to absorb and dissi-
pate vibration energy depends essentially on the motion of the liquid inside.
Compared to the several types of TMDs, liquid-based dampers show some con-
venient characteristics such as low cost, easy implementation, lack of required
maintenance, the possibility to use the liquid for both water supply and fire-
fighting purposes. In this regards, by combining the advantage of TLD and the
inerter, in [19] a novel device, the Tuned Liquid Inerter system (TLIS) has been
proposed. In this study, they derived a closed form solution of the TLIS optimal
parameters for an undamped single degree of freedom (SDOF) system. They
concluded that the TLIs can achieve the same or even higher mitigation effects
with a smaller quantity of liquid mass compared to the classical TLD.

Further, in [20] it has been showed that significant improvement, over the
classical TLCD, can be achieved by integrating an inerter in the TLCD itself.
The TLCDI dissipates the structural vibrations by means of a combined action
which involves the vertical motion of the liquid inside a U-shape tank and the
horizontal motion of the container. Indeed, unlike the classical TLCD, the
TLCDI is supposed to be able to translate through a sliding support and it is
connected to the structure by a linear spring and a damper and to the ground
by an inerter. In [21], benefits due to the installation of a TLCDI as link
between high-rise adjacent buildings to control their seismic response have been
investigated.

Clearly, the optimal design of the TLCDI plays a key role to obtain the
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best mitigation effect of the structural response. However, note that in all
the previous studies the optimal TLCDI parameters have been derived for TL-
CDI controlled structures only by means of numerical procedures based on the
minimization of different objective functions (see [20] and references therein).
Therefore, these procedures may be computationally demanding in a design
phase and may lead to parameters not easily applicable in real design processes
[20].

On this base, the present work focuses on providing analytical closed-form
solutions for determining, in a straightforward way, the TLCDI optimal design
parameters for a SDOF structure subjected to a base excitation. In this regard,
the nonlinear equations of motion are established and TLCDI optimal param-
eters are evaluated by taking into account a statistical linearization technique.
Specifically, the proposed optimization procedure is based on the minimization
of the variance of the structural response, which is found in closed-form by as-
suming some reasonable hypotheses. Notably, the obtained closed-form expres-
sion leads to very accurate results, without requiring any computational effort
as in the case of classical numerical procedures. In this manner, the effectiveness
of the optimized TLCDI on the seismic response of structures is investigated. In
particular, the control performance of TLCDI controlled structures is discussed
for both white noise excitation, broad-band excitation, as well as considering
real earthquake records. Numerical analyses have confirmed the validity of the
proposed optimization procedure, even for real seismic records, indicating that
coupling the inerter with a TLCD device significantly reduces the structural
responses of the uncontrolled structure compared to the traditional TLCD.

2. Problem formulation

Consider the case of a SDOF system (main structure) equipped with a TL-
CDI device, as shown in Fig. 1, under a base excitation. The TLCDI, as shown

Figure 1: SDOF structure equipped with a TLCDI.

in Fig. 1 comprises a U-shape tank characterized by a cross sectional area A,
with dimensions Lv and Lh for the vertical and horizontal liquid length, respec-
tively; thus, L = Lh + 2Lh is the total length of the liquid inside the TLCDI.
The mass of the container is Mc, while the liquid mass is ml = ρAL being ρ the
density of the liquid. The TLCDI is connected to the main structure by a spring
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and a damper with stiffness and damping coefficient k2 and c2, respectively, and
to the ground by an inerter element with inertance b. The vertical motion of
the liquid in the U-shape tube is denoted as u(t), while the horizontal motion
of the container relative to the primary structure is y(t). As far as the SDOF
structure is concerned, Ms indicates the mass, Ks and Cs are the stiffness and
damping parameters, respectively, and xs(t) is the displacement of the main
system relative to the ground. The response of this TLCDI-equipped SDOF
structure subjected to a horizontal ground acceleration ẍg(t), is governed by
the following equations [20]

Msẍs(t) + Csẋs(t) +Ksxs(t)− c2ẏ(t)− k2y(t) = −Msẍg(t)

(ρAL+Mc + b) ÿ(t) + (ρAL+Mc + b) ẍs(t) + ρALhü(t) + c2ẏ(t) + k2y(t) =
= − (ρAL+Mc) ẍg(t)

ρALhẍs(t) + ρALhÿ(t) + ρALü(t) + ρA
2 ξ|u̇(t)|u̇(t) + 2ρAgu(t) = −ρALhẍg(t)

(1)

where g is the gravity acceleration, a dot over a variable stands for derivation
with respect to time t, and ξ is the so-called head loss coefficient, introduced
to represent the hydrodinamic head losses that arise during the motion of the
liquid inside the vessel [22–24]. Further, dividing Eq. 1 by Ms, and by ρAL the
last two equations, yields

(1 + µt + β) ẍs(t) + (µt + β) ÿ(t) + αµlü(t) + 2ωsζsẋs(t) + ωs
2xs(t) =

= − (1 + µt) ẍg(t)

(µt + β) ẍs(t) + (µt + β) ÿ(t) + αµlü(t) + 2µtω2ζ2ẏ(t) + µtω2
2y(t) = −µtẍg(t)

αẍs(t) + αÿ(t) + ü(t) + 1
2Lξ|u̇(t)|u̇(t) + ωl

2u(t) = −αẍg(t)

(2)

where ωs =
√

Ks/Ms and ζs = Cs/(2ωsMs) are the natural frequency and
damping ratio of the main SDOF structure, while α = Lh/L is the length ratio
and β = b/Ms the inertance ratio. Further, µt = µl + δ denotes the total mass
ratio where µl = ρAL/Ms and δ = Mc/Ms, are the liquid and the container
mass ratio, respectively.

In addition, ω2 =
√

k2/(µtMs) and ζ2 = c2/ (2ω2µtMs) are the natural

frequency and damping ratio of the liquid container, and ωl =
√

2g/L is the
natural frequency of oscillation of the liquid inside the TLCDI. Note that Eqs. 2
represent a set of three differential equations, with the second comprising a non-
linear term, generally used to model head losses caused by the presence of an
orifice inside the TLCDI and viscous interaction between the liquid and rigid
container wall [25–27]. Since the damping term in Eq. 2 is nonlinear, even as-
suming that the main structure behaves linearly, the whole system experiences
inherent nonlinear properties. Consequently, some issues may arise for the op-
timal design of the damper device aiming at reaching the maximum reduction
of the displacement demand of the SDOF system. For this reason, an equiv-
alent linearization procedure, which facilitates the optimal design process, is
considered here.
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2.1. Statistical linearization technique

The nonlinear equations of motion Eqs. 2 can be linearized by adopting
techniques such as the Statistical Linearization Technique (SLT). In this regard,
suppose that the main SDOF system equipped with a TLCDI is driven by a
random excitation modeled as a zero mean Gaussian white noise process. It
follows that liquid and system displacements and their derivatives are stochastic
processes too (denoted by capital letters, as customary) [27]. Thus, taking full
advantage of the powerful tool of the SLT, the original nonlinear system Eqs. 2
can be replaced by a linear equivalent one as

(1 + µt + β) Ẍs(t) + (µt + β) Ÿ (t) + αµlÜ(t) + 2ωsζsẊs(t) + ωs
2Xs(t) =

= − (1 + µt) Ẍg(t)

(µt + β) Ẍs(t) + (µt + β) Ÿ (t) + αµlÜ(t) + 2µtω2ζ2Ẏ (t) + µtω2
2Y (t) = −µtẌg(t)

αẌs(t) + αŸ (t) + Ü(t) + 2ωlζlU̇(t) + ωl
2U(t) = −αẌg(t)

(3)

which is now simply a set of three linear differential equations. Specifically, the
term 1

2Lξ|U̇(t)|U̇(t) has been replaced by 2ωlζlU̇(t) and the equivalent damping
ratio ζl has been introduced. The error between the nonlinear TLCDI-SDOF
system and its equivalent linear is

ǫ = 1
2Lξ|U̇(t)|U̇(t)− 2ωlζlU̇(t) (4)

Therefore, the term ζl is obtained minimizing the mean square of the error
with respect to ζl [28]. Specifically, following the analysis in [25, 29, 30], the
expression for the equivalent damping ratio becomes

ζl =
ξ

2Lωl

√

2
π
σU̇

(5)

where σU̇ is the standard deviation of the velocity of the liquid inside in the
TLCDI defined as in Appendix A.

3. Optimization procedure

Once the equations of motion are stated, the determination of the optimal
TLCDI design parameters can be pursued. As it can be seen in Eq. 3, in general
there are seven main TLCDI parameters governing the response of the system,
that is: the inertance ratio β, the mass ratios µl and δ, the natural frequency ω2,
the damping ratio ζ2 of the container, the natural frequency ωl, the equivalent
damping ratio ζl of the liquid and the length ratio α. Clearly, best control
performances can be obtained only appropriately chosing the aforementioned
parameters. However, some of these variables are often determined a priori due
to structural constraints, such as µl, β, δ and α.

Therefore, only the design parameters ζ2, ζl, ωl and ω2 (or equivalently
the so-called frequency ratios νl = ωl/ωs and ν2 = ω2/ωs), are required to be
appropriately chosen through an optimization procedure.
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As usually done in the relevant literature for TLCDI-based control strategies,
these parameters can be sought by minimizing a specific quantity representa-
tive of the dynamic response of the structural system, such as the response in
terms of displacement or acceleration variance of the considered system. In
this regard, the structural displacement variance of the main SDOF structure is
here employed as the objective of the optimization procedure. Specifically, the
response variance in terms of displacement can be expressed as

σ2
Xs

=

∞
∫

0

|HXs
(ω)|

2
G0 dω (6)

in which G0 is the one-sided Power Spectral Density (PSD) of the white noise
input and HXs

(ω) is the displacement transfer function of the main structure
in the equivalent linear system described by Eqs. 3, defined as in Appendix A.

However, in this case, the mean-square responses need to be calculated nu-
merically by means of algorithms which might result cumbersome and time
consuming in design phases [19–21]. Moreover, as far as the optimization of
the equivalent damping ratio ζl is concerned, an iterative procedure has to be
pursued since σU̇ is unknown and implicitly depends on ζl, thus, the use of Eq. 5
for design purposes is not straightforward [20, 25, 30, 31] (see Appendix A for
details).

Therefore, in order to provide a tool to promptly compute the optimal TL-
CDI parameters, a direct analytical approach is proposed in the following sec-
tion.

3.1. Approximate evaluation of the response variance

In order to determine the optimal design parameters of the TLCDI in a
straightforward manner, a closed-form solution in terms of steady state response
statistics is proposed. In this regard, Eqs. 3 are recast in compact matrix form
as

M̃Z̈+ C̃Ż+ K̃Z = −M̃r̃ẍg (7)

where Z =
[

Xs (t) Y (t) U (t)
]T

is the vector collecting the displacement

of the degrees of freedom, r̃ =
[

1 β
α2µl−β−µt

β
α2µl−β−µt

]T

is the location

vector and the transpose operation is denoted with the apex T.
M̃, C̃, and K̃ are the mass matrix, the damping matrix and the stiffness

matrix, respectively, particularized as

M̃ =





1 + µt + β µt + β αµl

µt + β µt + β αµl

α α 1





C̃ =





2ζsωs 0 0
0 2ζ2ω2µt 0
0 0 2ζlωl





K̃ =





ω2
s 0 0
0 µtω

2
2 0

0 0 ω2
l





(8)
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Since the input is modeled as a zero-mean stationary Gaussian white noise
process, the corresponding Lyapunov equation of the evolution of the covariance
matrix [25] can be written as

Σ̇Q (t) = DSΣQ (t)+ΣQ (t)DT
s +GSG

T
S πG0 (9)

where Q =
[

Z Ż
]T

is the vector of the state variables, ΣQ (t) represents the
covariance matrix given as

ΣQ =



















σ2
Xs

σ2
XsY

σ2
XsU

σ2
XsẊs

σ2
XsẎ

σ2
XsU̇

σ2
Y σ2

Y U σ2
Y Ẋs

σ2
Y Ẏ

σ2
Y U̇

σ2
U σ2

UẊs
σ2
UẎ

σ2
UU̇

σ2
Ẋs

σ2
ẊsẎ

σ2
ẊsU̇

sym σ2
Ẏ 2

σ2
Ẏ U̇

σ2
U̇



















(10)

while DS and GS are given as [32]

DS =

[

0 I3

−M̃−1K̃ −M̃−1C̃

]

, GS =

[

0

r̃

]

(11)

with I3 a 3× 3 identity matrix.
Solution of Eq. 9 gives the evolution of all the response statistics of the sys-

tem in Eqs. 3. However, since only the steady-state variance must be computed,
Σ̇Q (t) can be equated to zero.

Further, with the aim of directly determining the optimal parameters, the
analytical form of the structural displacement variance σ2

Xs
is required and some

additional approximations need to be introduced. Specifically, the approximate
behavior of an undamped SDOF structure can be assumed, as customary in
many optimization procedures for passive vibration control systems [15, 19].
Next, considering that the damping effect of the liquid is typically small [33], in
this phase the presence of the damping term is neglected [19]. Notably, in the
following it will be shown how ζl can be estimated as a function of the optimal
design parameters obtained hereinafter.

Overall, on this base, only the design parameters ζ2, νl and ν2 are required
and introducing the aforementioned assumptions into Eq. 9, after some algebra,
the system displacement variance is derived in an analytical form as

σ2
Xs

=
πG0

4zXs
ω3
s

(12)

in which zXs
= NZ

DZ
with

NZ = ζ2µtν2νl
2
[

α2µl + (β + µt)
(

−1 + νl
2
)]2

(13)
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DZ =νl
2
[

α2µl + β(−1 + νl
2) + µt(−1 + νl

2)
]2

+ ν2
2µtνl

2
[

−3α4µl
2 + α4µl

2µt
2+

+ 4α4ζ2
2µl

2µt(3− β + µt)− 2α2µl

(

−1− 2β2ζ2
2µt + β(−2 + 4ζ2

2µt + µt
2)+

+µt(−3 + µt
2 + 2ζ2

2(3 + 2µt(3 + µt)))
)

+ 2α2µl

(

−1 + β(−2 + µt
2) + µt(−3+

+µt
2 + 4ζ2

2(1 + µt)(2 + µt))
)

νl
2 + (1 + µt)(β

2(−1 + µt) + µt(1 + µt)(−2 + µt+

+4ζ2
2(1 + µt)) + 2β

(

−1 + µt(−1 + µt + 2ζ2
2(1 + µt)))

)

(−1 + νl
2)2

]

+

+ ν2
4
[

α6µl
3µt

2 − 2α4µl
2µt

2(β + µt) + α2µlµt
2(β + µt)

2 − 2α2µlµt
2(1 + µt) (2+

+β(3 + µt) + µt(4 + µt)) νl
2 + α4µl

2µt
2 (6 + µt(6 + µt)) νl

2 + α2µlµt
2(1 + µt) (5+

+7µt + 2µt
2 + 2β(2 + µt)

)

νl
4 + (1 + β + µt)

2(µt + µt
2)2νl

2(−1 + νl
2)2

]

(14)

Taking into account Eq. 12, one may directly look for the minimum of the
smooth function

φ (ζ2, νl, ν2) =
1

zXs

(15)

which is independent of G0 and of the natural frequency of the main system
ωs. In this regard, a sample of the function zXs

(ζ2, νl, ν2) is shown in Fig. 2 for
νl = 0.4.

Figure 2: Contour plot of zXs
(ζ2, νl, ν2) (for α=0.9, δ = 0.01, β = 0.3, νl = 0.4, µl = 0.04).

In general, an analytical expression for the minimum of φ (ζ2, νl, ν2) could
be obtained, solving the nonlinear system of algebraic equations

∂φ (ζ2, νl, ν2)

∂ζ2
= 0 (16a)

∂φ (ζ2, νl, ν2)

∂ν2
= 0 (16b)

∂φ (ζ2, νl, ν2)

∂νl
= 0 (16c)
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However, this procedure is often unfeasible, thus the minimum of φ (ζ2, νl, ν2)
in Eq. 15 can be more easily found through numerical minimization procedure,
such as those already implemented in many software packages (see for instance
FindMinimum in Mathematica or fminsearch in MATLAB environment). In
this way, Eq. 15 provides the optimal design parameter values ζ2, νl and ν2.

3.2. Analytical expression of the optimal design parameters

Aiming at further reducing the computational complexity in a desgin phase
of the TLCDI, an analytical expression of the optimal design parameters can be
achieved considering some additional assumptions. As it can be seen in Eqs. 13-
14, the function σ2

Xs
in Eq. 12 depends on the mass ratios µl and µt. Since

generally µl < 5% and µt < 1%, solutions of Eq. 16 can be approximated by
assuming that the third and higher powers of µl, µt and their products can be
neglected [3, 34]. In particular, under these assumptions, Eqs. 16a- 16b can be
directly solved, and the expressions of ν̃2,opt(νl) and ζ̃2,opt(νl) can be expressed
as functions of νl as

ν̃2,opt(νl) =
√

A/B (17)

ζ̃2,opt(νl) =
√

C/D (18)

with

A =νl
2
[

−(β2(−1 + µt
2)(−1 + νl

2)2) + 2β(−1 + νl
2)(2α2µl + (1 + 2µt)(−1 + νl

2))+

+(α2µl + µt(−1 + νl
2))(3α2µl + (2 + 3µt)(−1 + νl

2))
]

(19)

B =− 2µt

[

(1 + β)(1 + β + 2(2 + β)µt)νl
2
(

−1 + νl
2
)2

+ α2µl

(

β2 − 2(2 + 3β)νl
2 + (5 + 4β)νl

4
)

]

(20)

C =−
[

β2(4 + 3β) + β(8 + β(21 + 8β))µt + (4 + 3β(11 + 2β(6 + β)))µt
2
]

νl
2
(

−1 + νl
2
)3

+

+ α4µ2
l

[

−12β2 + (4 + β)(1 + 8β)νl
2 − (8 + 25β)νl

4
]

− α2µl

(

−1 + νl
2
) [

4β2(β + 3µt)+

−(8µt + β(8 + 66µt + β(21 + 40µt)))νl
2 + (12µt + β(12 + 58µt + β(13 + 32µt)))νl

4
]

(21)

D =− 8µtνl
2
(

−1 + νl
2
)

[

α2β3µl + β2(1 + 2µt)
(

−1 + νl
2
)2

+ (2 + 9µt)
(

−1 + νl
2
)2

+

+α2µl

(

−9 + 11νl
2
)

+ β
(

(3 + 10µt)
(

−1 + νl
2
)2

+ α2µl

(

−10 + 7νl
2
)

)]

(22)

In Figs. 3a- 3b the approximated solutions of the optimal parameters ν̃2,opt(νl)

and ζ̃2,opt(νl) in Eqs. 17- 18, are compared with those obtained numerically
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solving Eqs. 16a- 16b, respectively for several values of µl. As it emerges from
Fig. 3, it can be argued that the approximated solutions of the optimal param-
eters ν̃2,opt(νl) and ζ̃2,opt(νl) in Eqs. 17- 18 closely agree with the numerical
solution of Eqs. 16.

(a)

(b)

Figure 3: Approximated solutions versus numerical solutions of Eq. 16c for different values of
µl (for α=0.9, δ = 0.01, β = 0.3): (a) ν̃2,opt(νl); (b) ζ̃2,opt(νl).

Moreover, Fig. 3 shows that the optimal parameters ν̃2,opt(νl) and ζ̃2,opt(νl)
decrease for increasing values of µl with an almost steady trend for 0.2 < νl <
0.8, suggesting that ν̃2,opt(νl) and ζ̃2,opt(νl) are almost independent of values of
νl in the range of practical interest.

Finally, optimal values of νl,opt which minimize the smoth function φ (ζ2, νl, ν2)
can be found by solving Eq. 16c. In this regard, in Fig. 4, the trend of
∂φ (ζ2, νl, ν2)/∂νl is depicted. As it can be seen, this derivative is zero for the
optimal value of νl,opt = 0.4331. Nonetheless, since a wide range of values of νl
(0.2¡νl¡0.6) lead to values of ∂φ (ζ2, νl, ν2)/∂νl close to zero, it can be concluded
that small variations of νl in this range may just slightly affect the achievement
of the minimum.
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Figure 4: ∂φ (ζ2, νl, ν2)/∂νl (for α = 0.9, µl = 0.04, β = 0.3, ζs = 0.01).

Clearly, the expressions of ν̃2,opt(νl) and ζ̃2,opt(νl) in Eqs. 17- 18 can be
substituted in Eq. 16c to obtain a closed form solution of νl,opt. Since this
approach leads to a rather unwieldy expression of νl,opt, this formula is not
reported here for the sake of brevity.

However, in order to provide optimal values of νl,opt, which can be directly
used in a desgin phase, this procedure can be also used to create immediately
useful design charts for several values of µl, β α, and δ. Specifically, the charts
depicted in Fig. .14 show optimal values in terms of νl,opt for different values
of β and µl. For instance, suppose that a length ratio α = 0.8 is chosen, the
inertance ratio β is equal to 0.3, the mass ratios given by structural constraints
are µl= 3% and δ = 1%, thus identifying the point A in Fig. 5b. This design
chart directly provides the optimal parameters νl,opt= 0.4345. Additional desgin
charts are provided in Appendix B for other values of β and δ.

Clearly, once the value of νl,opt is determined, Eq. 17 and Eq. 18 can be used
for a straightforward determination of the optimal TLCDI design parameters
ν̃2,opt(νl) and ζ̃2,opt(νl). Finally, as far as the determination of the optimal head

loss coefficient is concerned, an estimate of ξ̃opt can be found as described in
Appendix C and in [26].

An overview of the methodology proposed in this study for the estimation
of the optimal TLCDI paramters and structural response statistics is illustrated
in the flow chart in Fig. 6.

4. Investigation on the optimal design parameters

The main advantage of the proposed approach lies in the straightforward
evaluation of the optimal design paramenters. In order to show the accuracy
of this proposed simplified approach, a comparison with the optimal values
obtained through a numerical iterative procedure is here performed. To this
aim, a reference set of system parameters has been selected, and in turn each
one has been varied in a wide range of values. Specifically, the reference set of
parameters used is: ωs = 4π/3, α = 0.9, µl = 0.04, δ = 0.01, β = 0.3, ζs = 0.01
and G0 = 0.002 [16, 17]. In this respect, a genetic algorithm (GA procedure) [35]
has been used to find those values of νl,opt, ν2,opt, ζ2,opt and ξopt that minimize
the displacement variance of the complete nonlinear system in Eq. 2 adopting
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(a)

(b)

Figure 5: Optimal design charts in terms of νl,opt for several values of µl: (a) β = 0.2 and
α = 0.8; (b) β = 0.3 and α = 0.8.

the SLT. In order to implement this numerical minimization algorithm, some
constraints for the sought TLCDI tuning variables have been applied in terms
of lower bound and upper bound vectors, LB = [ν2,min; ζ2,min; νl,min; ξmin] and
UB= [ν2,max; ζ2,max; νl,max; ξmax]. Specifically, LB = [0.01;0.01;0.1495;1] and
UB = [3;1;0.4728;300] have been imposed, respectively, where νl,min and νl,max

have been set by assuming reasonable values of the total liquid length L (a
range between Lmin=5m and Lmax=50m). Boundary values of the head loss
coefficient have been set on the basis of the prediction formula experimetally
constructed by [23] to design conventional TLCDs with different area ratios of
orifices and considering an upper limit of ζl=1 [26].

Note that, in this way, for each iteration of the GA optimization algorithm,
an optimum value of ξopt is found and the iterative SLT must be applied to
evaluate the equivalent linear damping ratio ζl. Therefore, in this case, a rather
elaborate numerical procedure must be implemented.

The optimal design parameters ν̃l,opt, ν̃2,opt, ζ̃2,opt and ξ̃opt determined through

12



Figure 6: Flow chart of the proposed approximate approach.

the proposed direct approach have been used to compute the displacement vari-
ance σ2

Xs
of the system as in Eq. 6. With reference to the previously defined

structural system, the optimal parameters obtained by the proposed approach
are listed in Table 1. Results have then been compared with the values obtained
by the aforementioned complete numerical GA procedure.

Table 1: Optimal TLCDI design parameters obtained by the proposed approach. Chosen
reference set of parameters: α = 0.9, µl = 0.04, β = 0.3, δ = 0.01, G0 = 0.002.

ν̃l,opt ν̃2,opt ζ̃2,opt ξ̃opt

0.6 0.4439 2.0416 0.6794 240.42
α 0.7 0.4408 2.0327 0.672 219.85

0.8 0.4372 2.0222 0.6633 205.96
0.9 0.4331 2.0101 0.6533 196.57

0.02 0.4364 2.6086 0.8255 176.24
µl 0.03 0.4347 2.2532 0.7226 187.08

0.04 0.4331 2.0101 0.6533 196.57
0.05 0.4315 1.8302 0.6029 204.99

0.01 0.4331 2.0101 0.6533 196.57
δ 0.02 0.4363 1.8432 0.6137 192.43

0.03 0.4393 1.7134 0.5842 188.59
0.04 0.4422 1.6086 0.5613 185.02

0.25 0.3997 1.8985 0.558 245.93
β 0.30 0.4331 2.0101 0.6533 196.57

0.35 0.4642 2.1043 0.7463 160.19
0.40 0.4728 2.1849 0.8398 151.44
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Fig. 7 shows the results in terms of the normalized displacement variance
of the SDOF-TLCDI equipped structure εXs

= σ2
Xs

/σ2
X0

, where σ2
X0

is the
displacement variance of the system without TLCDI. Note that this parameter
may represent also a performance control index for the SDOF-TLCDI controlled
structure, since lower values of εXs

indicate higher control efficacy of the TLCDI.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Main system normalized displacement variance: comparison between the numerical
GA procedure (dot dashed red line) and the proposed formulation (balck dots) for different
parameters.

Specifically, in Fig. 7 the effects of the variation of the structural damping
ratio ζs, the input intensity G0, the length ratio α, the inertance ratio β and the
mass ratios µl and δ on the proposed formulation are shown. The performed
parametric analyses show that the response variances computed by the proposed
approximated formulation clearly follow those obtained through the GA proce-
dure in the parameters range of practical interest, with differences lower than
10 %, thus assessing the validity of the proposed direct approach.
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Clearly, the above described procedure has been derived considering a white
noise base excitation. Therefore, further analysis are performed to show the
reliability of the proposed approach in case of more generic broad-band earth-
quake excitation. To this aim, the widely used Clough-Penzien power spectrum
can be adopted as a more realistic model of earthquake ground accelerations.
This process is characterized by the following one-sided PSD [36, 37]

GẌg
(ω) = G0

ωg
4 + 4ζg

2ωg
2ω2

(ωg
2 − ω2)2 + 4ζg

2ωg
2ω2

ω4

(ωf
2 − ω2)2 + 4ζf

2ωf
2ω2

(23)

where G0 is the constant white noise PSD, whose value is related to the bedrock
peak ground acceleration, while (ωg, ζg, ωf , ζf ) are filter parameters whose val-
ues depend on the different soil conditions [38]. Next, taking into account Eq. 6,
the corresponding displacement variance σ2

Xs
can be given as

σ2
Xs

=

∞
∫

0

|HXs
(ω)|

2
GẌg

(ω) dω (24)

where HXs
(ω) is given in Eq. A.2 in Appendix A.

In this manner, again a numerical optimization employing the GA procedure
on Eq. 24 can be used to find the optimal values of the design parameters (ν2,opt,
ζ2,opt) also for this model. Once these optimized parameters are found, the
corresponding performance control index εXs

can be evaluated.

Figure 8: Comparison of the performance control index εXs
in case of non-white excitation

for different values of:the structural damping ratios ζs. Analytical based solution (black dots)
vis-à-vis numerical complete solution (red dashed-dot line).

In this regard, values of εXs
computed via the numerical-based procedure

vis-à-vis pertinent values obtained using optimal parameters provided by the
proposed analytical approach are shown in Fig. 8 for a wide range of the struc-
tural damping ratios ζs.

As it can be seen in this figure, even assuming a non-white earthquake ex-
citation the performance control index εXs

obtained using the optimal values
found by following the proposed approach (black dots) closely agrees with the
one obtained with the numerical solution (red dashed-dot line), also for different
soil conditions (firm and soft soil).
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Therefore, since so small discrepancies are obtained between the two pro-
cedures in terms of control performance parameter εXs

, and considering the
significant reduction in computational effort achieved, the proposed direct ap-
proach can effectively be regarded as a powerful and reliable tool to be employed
for the evaluation of the optimal design parameters.

5. Analysis of the control performance

To show the reliability of the proposed approach considering also the non-
stationary nature of real earthquake ground motions, in this section the control
performance of the SDOF system equipped with a TLCDI device is examined by
using time-history analyses with selected recorded accelerograms. Specifically,
the Imperial Valley (USA, 09/15/1979) (Fig. 9a) and Kobe (Japan, 17/01/1995)
(Fig. 9b) recorded earthquakes, taken among the 44 recorded ground motions of
the FEMAP695 far-field (FEMAP695) set [39], have been used as base accelera-
tions. Note that these earthquakes records present quite different characteristics.
Specifically, the latter has high impulsive content in the first instants of motion,
which is known to be detrimental for the efficiency of the control system.

(a) (b)

Figure 9: Earthquake records: (a) Imperial Valley (USA, 09/15/1979); (b) Kobe (Japan,
17/01/1995).

To properly account for the nonlinear features of the system with TLCDI
device, direct numerical solution of the pertinent equation of motions of the
complete systems (Eqs. 1) has been performed using a 4th order Runge-Kutta
algorithm. The seismic response of the uncontrolled system has been compared
with the same systems equipped with the proposed TLCDI and traditional
TLCD.

The liquid inside the TLCDI and TLCD container is assumed to be water
(ρ = 997kg/m3), assuming a value of the mass ratio µl of 4% for both devices
and the length ratio α is set to 0.9 [20]. The TLCDI inertance ratio β is assumed
to be equal to 0.3 and the value of the mass ratio of the water tank δ is fixed
to 1% [20].

Two benchmark structures, denoted as ”Structure 1” and ”Structure 2”,
have been considered for the numerical analyses. Structure 1 is characterized
by a natural frequency ωs1 = 4π/3 and damping ratio ζs = 0.01, while Structure
2 by a frequency ωs2 = 2ωs1 and the same damping ratio. The TLCDI optimal
parameters have been obtained by the proposed simplified approach, while the
TLCD optimal parameters by applying the optimization procedure discussed in
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[25]. The optimal parameters obtained by means of the the proposed procedure
are: ν̃l,opt = 0.4331, ν̃2,opt = 2.0101, ζ̃2,opt = 0.6533 and ξ̃opt = 196.57 for

Structure 1, and ν̃l,opt = 0.2364, ν̃2,opt = 1.9964, ζ̃2,opt = 0.6902 and ξ̃opt =
266.768 for Structure 2, respectively.

Figs. 10a- 10b show the displacement responses of both structures, with the
proposed TLCDI, the traditional TLCD and without any devices, and subjected
to the Imperial Valley earthquake record. As it can be seen, the TLCDI device
is particularly effective in reducing the displacement, with a clear reduction of
the peak displacement. Moreover, as it can be seen, the difference in frequency
between the two structures does not affect the control performance. The time
histories of the absolute acceleration responses of the two structural typologies
are also presented in Figs. 11a- 11b, respectively. Once again, the best mitiga-
tion effect is achieved by the system controlled with the TLCDI. Similar results
can be observed for the Kobe earthquake (Fig. 12- 13). Note that, also for
this particular case of impulsive ground motion, the use of the TLCDI improves
appreciably the performance control of the system.

The peak responses based on the time histories of the responses of the struc-
tures shown in Figs. 10- 13, are listed in Table 2 for the Structure 1 and in Table 3
for the Structure 2. As it can be read from Table 3, the best performance of the
TLCDI-controlled systems is observed for Structure 2 subjected to the Imperial
Valley record, with a reduction of 64% for the structural displacement response
and 69% on the peak acceleration. Furthermore, in the worst-case scenario, the
peak of displacement of Structure 2 (i.e. 0.1183 m) for the Kobe earthquake
can be reduced of 52% when the TLCDI is applied against the reduction of 13%
when the TLCD is used. Based on the overall consideration of these results,
TLCDI is more effective in reducing the peak responses than the TLCD.

On this base, it can be argued that, although being developed assuming
a white noise base excitation, the proposed analytical solution yields optimal
design parameters that lead to satisfactory control performances also for real
earthquake records.

(a) (b)

Figure 10: Response in terms of structural displacements to the Imperial Valley earthquake:
(a) Structure 1; (b) Structure 2; SDOF system with TLCDI - red dashed line; SDOF system
with TLCD - blue dot-dashed line; uncontrolled SDOF system – black line.
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(a) (b)

Figure 11: Response in terms of absolute accelerations to the Imperial Valley earthquake: (a)
Structure 1; (b) Structure 2; SDOF system with TLCDI - red dashed line; SDOF system with
TLCD - blue dot-dashed line; uncontrolled SDOF system – black line.

(a) (b)

Figure 12: Response in terms of structural displacements to the Kobe earthquake: (a) Struc-
ture 1; (b) Structure 2; SDOF system with TLCDI - red dashed line; SDOF system with
TLCD - blue dot-dashed line; uncontrolled SDOF system – black line.

(a) (b)

Figure 13: Response in terms of absolute accelerations to the Kobe earthquake: (a) Structure
1; (b) Structure 2; SDOF system with TLCDI - red dashed line; SDOF system with TLCD -
blue dot-dashed line; uncontrolled SDOF system – black line.
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Table 2: Maximum values of the responses of the SDOF system (Structure 1) and of the
SDOF system coupled with TLCDI.

Excitation: Imperial Valley record

Case Max structural displacement Max structural acceleration
max|xs(t)| [m] max|a(t)|[m/s2]

SDOF 0.4316 9.7643

SDOF+TLCD 0.3715 6.2035

SDOF+TLCDI 0.1622 2.9517

Excitation: Kobe record

SDOF 0.1986 4.5919

SDOF+TLCD 0.1613 2.7066

SDOF+TLCDI 0.0744 1.5197

Table 3: Maximum values of the responses of the SDOF system (Structure 2) and of the
SDOF system coupled with TLCDI.

Excitation: Imperial Valley record

Case Max structural displacement Max structural acceleration
max|xs(t)| [m] max|a(t)|[m/s2]

SDOF 0.1820 14.7016

SDOF+TLCD 0.1103 7.5731

SDOF+TLCDI 0.0662 4.8814

Excitation: Kobe record

SDOF 0.1183 9.4129

SDOF+TLCD 0.1027 6.9973

SDOF+TLCDI 0.0562 4.3876

6. Concluding remarks

In this paper, the optimization and pertinent control performances of the
TLCDI passive control device, recently introduced in the literature, have been
investigated for reducing the structural response of a SDOF structure under seis-
mic base excitations. The additional inerter mechanism in the TLCDI greatly
enhances the efficiency of the classical TLCD, making the TLCDI an appealing
lightweight control device with outperforming control performances compared
to conventional TLCDs.

An optimal design of the TLCDI through closed form solutions and useful
design charts has been proposed by considering a Gaussian white noise model
of the base excitation and minimizing the structural displacement variance of
the system, resorting to the tool of the Statistical Linearization Technique.

In order to prove the reliability of the proposed approach, comparison with
a rather elaborate numerical optimization procedure has been performed for
both white noise and broad-band earthquake excitation to take into account
additional features of the seismic excitation.

Results show a satisfactory agreement in terms of control performances be-
tween the proposed analytical approach and the numerical one. Note that the
use of analytical expressions and ready-to-use design charts provided by the
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proposed straightforward procedure leads to a significant reduction in compu-
tational effort.

Moreover, to show the influence of the non-stationary nature of real earth-
quakes, the seismic response of two types of SDOF systems, characterized by
different frequencies and equipped with a TLCDI device, has been examined
under different recorded ground motion accelerations. Comparisons with the
uncontrolled systems and the systems equipped with the classical TLCD have
been carried out. Both TLCD and TLCDI device can efficiently control the
earthquake-induced displacement and absolute acceleration responses of the pri-
mary SDOF structure. However, results indicate that the TLCDI presents sig-
nificantly enhanced control performances with respect to the TLCD in all the
cases. Specifically, time history analyses show that the TLCDI device, designed
by employing the proposed approach, can lead to a 64% reduction on the peak
displacement and 69% on the peak acceleration, with respect to the case of the
structure without TLCDI.

Overall, results of the performed analyses have clearly assessed the reliability
of the proposed optimization procedure even for non-stationary broad-band base
excitations, proving that the TLCDI can be regarded as a lightweight-based
control means to achieve an improved control performance.
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Appendix A

In this appendix the displacement transfer functions of the equivalent linear
system in Eq. 3 are presented. In this respect, making the Fourier transform of
Eq. 3, yields

Xs(ω)
[

−(1 + µt + δ)ω2 + 2iωωsζs + ωs
2
]

− (µt + δ)ω2Y (ω)− αµlU(ω) =

= −(1 + µt)Ẍg(ω)

Y (ω)
[

−(µt + δ)ω2 + 2iωω2ζ2µt + µtω2
2
]

− ω2 (µt + δ)Xs(ω)− αµlω
2U(ω) =

= −µtẌg(ω)

U(ω)
[

−ω2 + 2iωωlζl + ωl
2
]

− ω2αXs(ω)− ω2αY (ω) = −αẌg(ω)

(A.1)

Therefore, the main structure displacement transfer function (HXs
(ω) =

=Xs (ω)/Ẍg (ω)) can be written as

HXs
(ω) =

b(ω)c(ω)(1+µt)+[b(ω)α2µl+c(ω)µt(µt+δ)]ω2+α2µl(−1+µt+δ)ω4

−a(ω)b(ω)c(ω)+[(a(ω)+b(ω))2α2µl+c(ω)(µt+δ)2]ω4+2α2µl(µt+δ)ω6
(A.2)

while the container displacement and liquid column transfer functions (HY (ω) =
=Y (ω) /Ẍg (ω) and HU (ω) = U (ω) /Ẍg (ω)) respectively are

HY (ω) = HXs
(ω)

a(ω)c(ω)µt+[a(ω)α2µl+c(ω)(1+µt)(µt+δ)]ω2+α2µl(1+µt+δ)ω4

b(ω)c(ω)(1+µt)+[b(ω)α2µl+c(ω)µt(µt+δ)2]ω2+2α2µl(−1+µt+δ)ω4

HU (ω) = α
c(ω)

[

−1 + ω2HXs
(ω) + ω2HY (ω)

]

(A.3)

with

a (ω) = −(1 + µt + δ)ω2 + 2iωωsζs + ωs
2 (A.4a)

b (ω) = −(µt + δ)ω2 + 2iωω2ζ2µt + µtω2
2 (A.4b)

c (ω) = −ω2 + 2iω ζlωl + ωl
2 (A.4c)

These parameters can be directly used to evaluate the statistics of the equiv-
alent linear system in Eq. 3, necessary for the iterative SLT. It is worth not-
ing that once the closed-form expression for these transfer functions have been
computed, the response statistics in terms of container displacement and liquid
displacement can be immediately determined numerically solving the following
equations:

σ2
Y =

∞
∫

0

|HY (ω)|
2
G0 dω, (A.5a)

σ2
U =

∞
∫

0

|HU (ω)|
2
G0 dω (A.5b)
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Appendix B

In order to propose an effective and direct tool for pre-designing TLCDI
devices, additional charts are provided in this Appendix. In paricular, some
design charts, reporting optimal values directly in terms of ν̃l,opt, are depicted
in Fig. .14, based on Eq. 17 and Eq. 18. The design charts, have been evaluated
for α=0.6 and α=0.9 for different values of mass ratio µl and inertance ratio β.

(a) (b)

(c) (d)

(e) (f)

Figure .14: Optimal design charts in terms of νl,opt for several values of µl: (a) β = 0.3 and
α = 0.6; (b) β = 0.3 and α = 0.9; (c) β = 0.2 and α = 0.6; (d) β = 0.2 and α = 0.9;(e)
β = 0.1 and α = 0.6; (f) β = 0.1 and α = 0.9.
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Appendix C

As far as the estimation of the head loss coefficient is concerned, according to
the anlysis developed in [26] for TLCD-controlled SDOF structures, an indica-
tive value can be obtained by firstly considering the main system displacement
and the fluid velocity variances of the SDOF structure with classical TLCD,
which can be expressed as:

σ̃2
Xs

=
πG0

4z̃Xs
ω3
s

, (A.6a)

σ̃2
U̇
=

πG0

4z̃U̇ωl

(A.6b)

where z̃Xs
and z̃U̇ depend on both νl and ζl and have the following expres-

sions

z̃Xs
=

NZXs

DZXs

, (A.7a)

z̃U̇ =
NZXs

DZ
U̇

(A.7b)

The numerator NZXs
and denominator DZXs

of z̃Xs
and DZ

U̇
of z̃U̇ are given

by:

NZXs
= ζsζl + ζ22

(

4ζ2s + α2µl

)

νl + 2ζsζl
[

2ζ2s + α2µl + (2ζ2l − 1)(1 + µl)
]

νl
2+

+ζ2s
[

α2µl + 4ζ2l (1 + µl)
]

νl
3 + ζsζl(1 + µl)

2
νl

4

DZXs
= ζl

(

1 + µl − α2µl

)2
+ ζs

[

α4µ2
l + 4ζ2l (1 + µl)

2
]

νl + ζl(1 + µl)
2
[4ζ2s+

+3α2µl +
(

4ζ2l − 2
)

(1 + µl)]νl]
2 + ζs(1 + µl)

2 [
α2µl + 4ζ2l (1 + µl)

]

νl
3 + ζl(1 + µl)

4
νl

4

DZ
U̇
= α2

[

ζs + ζl
(

1 + µl + 4ζ2s
)

νl + 4ζ3sν
2
l

]

(A.8)

By minimizing Eq. A.6a considering the input structural parameters and the
optimal value νl,opt obtained by means of the proposed procedure, the optimal
value of the equivalent damping ratio ζl can be obtained. Next, by setting this
value in Eq. A.6b, the fluid velocity variance can be computed so that the value
of ξ̃opt can be evaluated from Eq. 5 as

ξ̃opt = 2Lζlνlωs

√

π
2σ̃

U̇
(A.9)

It is worth noting that, if a classical procedure is used to define the equivalent
damping ratio ζl, a time-consuming iterative scheme has to be set up. Con-
versely, following the herein proposed approach, the evaluation of the optimal
values can be obtained by means of a numerical minimization of a smooth func-
tion (Eq. A.6a), without any iteration, thus resulting in a significant reduction
in computational effort.
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