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Abstract. We consider a double phase (unbalanced growth) Dirichlet problem with
a Carathéodory reaction f(z, x) which is superlinear in x but without satisfying the
AR-condition. Using the symmetric mountain pass theorem, we produce a whole
sequence of distinct bounded solutions which diverge to infinity.

1. Introduction

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with a Lipschitz boundary ∂Ω. In this
paper we study the following double phase Dirichlet problem{

−∆a
pu(z)−∆qu(z) = f(z, u(z)) in Ω,

u
∣∣∣
∂Ω

= 0, 1 < q < p.
(1)

Given a ∈ L∞(Ω) with a(z) ≥ 0 for a.a. z ∈ Ω, by ∆a
p we denote the weighted

p-Laplace differential operator defined by

∆a
pu = div (a(z)|∇u|p−2∇u).

Equation (1) is driven by the sum of such a weighted p-Laplacian and of a q-Laplacian
(no weight). So, we are dealing with a double phase problem. The energy functional
for this differential operator is given by

J(u) =

∫
Ω

[
1

p
a(z)|∇u|p + 1

q
|∇u|q

]
dz.

The integrand of this integral functional is

η̂(z, y) =
1

p
a(z)|x|p + 1

q
|y|q for all z ∈ Ω, all y ∈ RN .

We do not assume that the weight function a(·) is bounded away from zero, that
is, we do not require that 0 < ess inf

Ω
a. So, the integrand η̂(z, ·) exhibits unbalanced

growth, namely we have

|y|q ≤ η̂(z, y) ≤ c0[1 + |y|p] for a.a. z ∈ Ω, all y ∈ RN , some c0 > 0.

Such integral functionals were first investigated by Marcellini [10, 11] and Zhikov
[20, 21], in the context of problems of calculus of variations and of nonlinear elasticity
theory.

These nonautonomous functionals are characterized by the fact that the energy
density changes its ellipticity at different points of Ω, depending on whether a(z) ≥ ε > 0
for any fixed ε > 0 or a(z) = 0. In physical terms, in the framework of nonlinear
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elasticity theory, the modulating coefficient dictates the geometry of composites made
of two different materials with distinct power hardening exponents p and q. Moreover,
from a mathematical viewpoint, these functionals are important in the study of the
so-called “Lavrentiev phenomenon” (see Zhikov [21]).

In recent years the interest for double phase problems was revived and there have
been efforts to develop a regularity theory for the solutions of such problems. These
developments can be traced in the works of Baroni-Colombo-Mingione [1], Hästö-Ok [5],
Marcellini [12, 13], Mingione-Rădulescu [14], Ragusa-Tachikawa [19] and the references
therein. So far only local regularity results for minimizers are obtained and a global
regularity theory (that is, regularity up to the boundary of Ω) analogous to the one
existing for (p, q)-equations (balanced growth double phase problems) remains elusive.
This removes from consideration many powerful tools and makes the study of unbalanced
growth double phase problems more difficult.

In problem (1), the reaction (right hand side) is a Carathéodory function f(z, x)
(that is, for all x ∈ R z → f(z, x) is measurable and for a.a. z ∈ Ω x → f(z, x) is
continuous), which is (p− 1)-superlinear as x → ±∞, but without satisfying the usual
for superlinear problems Ambrosetti-Rabinowitz condition (the AR-condition for short,
see Papageorgiou-Rădulescu-Repovš [16]. Imposing a symmetry condition on f(z, ·) (we
assume that f(z, ·) is odd) and using the Z2-version of the mountain pass theorem (see
Rabinowitz [18, Theorem 9.12, p. 55]), we show the existence of a whole sequence of
distinct solutions which diverge to infinity.

Superlinear double phase problems were studied recently by Gasiński-Papageorgiou
[2], Gasiński-Winkert [3], Kim-Kim-Oh-Zeng [7], Leonardi-Papageorgiou [8], Liu-Dai [9],
Papageorgiou-Vetro-Vetro [17]. However none of the aforementioned works addresses
the question of existence of an infinity of distinct nontrivial solutions.

2. Mathematical Background - Hypotheses

The unbalanced growth of the energy density for the differential operator leads to a
functional framework that requires the use of generalized Orlicz spaces. A comprehensive
presentation of the theory of these spaces can be found in the book of Harjulehto-Hästö
[4].

Recall that by C0,1(Ω) we denote the space of Lipschitz continuous functions from Ω
into R. Our hypotheses on the weight a(·) are the following:

H0: a ∈ C0,1(Ω) \ {0}, a(z) ≥ 0 for all z ∈ Ω, 1 < q < p, q < N and
p

q
< 1 +

1

N
.

Remark 1. The last inequality in H0 says that the two exponents p, q can not be far

apart. This condition implies that p < q∗ =
Nq

N − q
and this leads to useful embeddings of

some relevant function spaces. The condition appears in almost all double phase works.

By L0(Ω) we denote the space of all measurable functions u : Ω → R. We identify
two such functions which differ only on a Lebesgue-null subset of Ω. Let η(z, t) be the
continuous integrand defined by

η(z, t) = a(z)tp + tq for all z ∈ Ω, all t ≥ 0.

The generalized Orlicz space Lη(Ω) is defined by

Lη(Ω) = {u ∈ L0(Ω) : ρη(u) < ∞},
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where ρη(·) is the modular function defined by

ρη(u) =

∫
Ω

η(z, |u|)dz.

This is continuous, convex, hence weakly lower semicontinuous too. The space Lη(Ω)
is equipped with the so-called Luxemburg norm which is defined as follows

∥u∥η = inf
{
λ > 0 : ρη

(u
λ

)
≤ 1

}
.

With this norm, Lη(Ω) becomes a Banach space which is separable and reflexive (in
fact uniformly convex).

Using Lη(Ω) we can define the corresponding generalized Sobolev-Orlicz space by

W 1,η(Ω) = {u ∈ Lη(Ω) : |∇u| ∈ Lη(Ω)},
with ∇u being the weak gradient of u. We equip this space with the following norm

∥u∥1,η = ∥u∥η + ∥∇u∥η for all u ∈ W 1,η(Ω),

with ∥∇u∥η = ∥ |∇u| ∥η.
Consider the space C∞

c (Ω) of all C∞(Ω) functions which have compact support in Ω.
We define

W 1,η
0 (Ω) = C∞

c (Ω)
∥·∥1,η

.

Since a ∈ C0,1(Ω), the Poincaré inequality holds, namely there exists c = c(Ω) > 0
such that

∥u∥η ≤ c ∥∇u∥η for all u ∈ W 1,η
0 (Ω).

Therefore on W 1,η
0 (Ω) we can consider the following equivalent norm

∥u∥ = ∥∇u∥η for all u ∈ W 1,η
0 (Ω).

Both spacesW 1,η(Ω) andW 1,η
0 (Ω) are Banach spaces which are separable and reflexive

(in fact uniformly convex).
The norm ∥ · ∥ and the modular function ρη(·) are closely related.

Proposition 1. If u ∈ W 1,η
0 (Ω), u ̸= 0, then:

(a) ∥u∥ = λ ⇔ ρη

(
∇u

λ

)
= 1;

(b) ∥u∥ < 1 (resp. = 1, > 1) ⇔ ρη(∇u) < 1 (resp. = 1, > 1);
(c) ∥u∥ ≤ 1 ⇒ ∥u∥p ≤ ρη(∇u) ≤ ∥u∥q;
(d) ∥u∥ > 1 ⇒ ∥u∥q ≤ ρη(∇u) ≤ ∥u∥p;
(e) ∥un∥ → 0 (resp. → ∞) ⇔ ρη(∇un) → 0 (resp. → ∞).

The following embeddings are important in our study of (1).

Proposition 2. We have the following:

(a) Lη(Ω) ↪→ Lr(Ω) continuously for all r ∈ [1, q];
(b) Lp(Ω) ↪→ Lη(Ω) continuously;
(c) W 1,η

0 (Ω) ↪→ Lr(Ω) continuously if r ∈ [1, q∗] and compactly if r ∈ [1, q∗).

Consider the nonlinear operator V : W 1,η
0 (Ω) → W 1,η

0 (Ω)∗ defined by

⟨V (u), h⟩ =
∫
Ω

[a(z)|∇u|p−2 + |∇u|q−2](∇u,∇h)RNdz for all u, h ∈ W 1,η
0 (Ω).

This operator has the following properties (see Liu-Dai [9]).
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Proposition 3. The operator V (·) is bounded (that is, maps bounded sets to bounded
sets), continuous, strictly monotone (thus maximal monotone too) and of type (S)+ (that

is, if un
w−→ u in W 1,η

0 (Ω) and lim sup
n→∞

⟨V (un), un − u⟩ ≤ 0, then un → u in W 1,η
0 (Ω)).

By λ̂1(q) we denote the first eigenvalue of (−∆q,W
1,q
0 (Ω)). We know that λ̂1(q) > 0,

it is simple, isolated and has the following variational characterization

λ̂1(q) = inf

[∥∇u∥qq
∥u∥qq

: u ∈ W 1,q
0 (Ω), u ̸= 0

]
. (2)

The infimum in (2) is realized on the corresponding one-dimensional eigenspace, the
elements of which have constant sign.

The hypotheses on the reaction f(z, x) are the following:

H1: f : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω f(z, 0) = 0,
f(z, ·) is odd and

(i) |f(z, x)| ≤ a(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω) and
p < r < q∗ = Nq

N−q
;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then lim

x→±∞
F (z,x)
|x|p = +∞ uniformly for a.a. z ∈ Ω;

(iii) there exists τ ∈
(
(r − q)N

q
, q∗

)
such that

0 < c0 ≤ lim inf
x→±∞

f(z, x)x− pF (z, x)

|x|τ
uniformly for a.a. z ∈ Ω;

(iv) there exists ϑ ∈ L∞(Ω) such that

ϑ(z) ≤ λ̂1(q) for a.a. z ∈ Ω, ϑ ̸≡ λ̂1(q),

lim sup
x→0

f(z, x)

|x|q−2x
≤ ϑ(z) uniformly for a.a. z ∈ Ω.

Remark 2. Hypotheses H1(ii), (iii) imply that

lim
x→±∞

f(z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ Ω.

So, f(z, ·) is (p− 1)-superlinear as x → ±∞. However, we do not use the usual in such
cases Ambrosetti-Rabinowitz condition (the AR-condition for short). Instead we use the
weaker condition H1(iii) which allows also superlinear nonlinearities with slower growth
as x → ±∞ which fail to satisfy the AR-condition. For example consider the following
function

f(z, x) =

{
ϑ(z)|x|q−2x if |x| ≤ 1,

|x|p−2x ln |x|+ ϑ(z)|x|s−2x if 1 < |x|,

with ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂1(q) for a.a. z ∈ Ω, ϑ ̸≡ λ̂1(q), 1 < s ≤ p. This function
satisfies hypotheses H1, but f(z, ·) fails to satisfy the AR-condition.

3. Infinitely Many Solutions

In what follows

η(z, t) = a(z)tp + tq for all z ∈ Ω, all t ≥ 0
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and

ρa(∇u) =

∫
Ω

a(z)|∇u|pdz for all u ∈ W 1,η
0 (Ω).

Let φ : W 1,η
0 (Ω) → R be the energy functional for problem (1) defined by

φ(u) =
1

p
ρa(∇u) +

1

q
∥∇u∥qq −

∫
Ω

F (z, u)dz for all u ∈ W 1,η
0 (Ω).

We know that φ ∈ C1(W 1,η
0 (Ω)) and φ(·) is even. Next we consider the following

compactness condition which allows a suitable minimax characterization of critical
values of C1-functionals (see [16], p. 366).

Definition 1. We say that φ ∈ C1(W 1,η
0 (Ω)) satisfies the C-condition, if every sequence

{un}n∈N ⊆ W 1,η
0 (Ω) such that

(a) {φ(un)}n∈N ⊆ R is bounded;
(b) (1 + ∥un∥)φ′(un) → 0 in W 1,η

0 (Ω)∗ as n → ∞,

admits a strongly convergent subsequence.

Proposition 4. If hypotheses H0, H1 hold, then φ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n∈N ⊆ W 1,η
0 (Ω) such that

|φ(un)| ≤ c1 for some c1 > 0, all n ∈ N, (3)

(1 + ∥un∥)φ′(un) → 0 in W 1,η
0 (Ω)∗ as n → ∞. (4)

From (4) we have ∣∣∣∣⟨V (un), h⟩ −
∫
Ω

f(z, un)hdz

∣∣∣∣ ≤ εn∥h∥
1 + ∥un∥

(5)

for all h ∈ W 1,η
0 (Ω), with εn → 0+.

In (5) we use the test function h = un ∈ W 1,η
0 (Ω) and obtain

−ρa(∇un)− ∥∇un∥qq +
∫
Ω

f(z, un)undz ≤ εn for all n ∈ N. (6)

On the other hand from (3), we have

ρa(∇un) +
p

q
∥∇un∥qq −

∫
Ω

pF (z, un)dz ≤ pc1 for all n ∈ N. (7)

We add (6) and (7) and since q < p, we obtain∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ c2 for some c2 > 0, all n ∈ N. (8)

Hypotheses H1(i), (iii) imply that we can find c3, c4 > 0 such that

c3|x|τ − c4 ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, all x ∈ R. (9)

Using (9) in (8), we obtain that

{un}n∈N ⊆ Lτ (Ω) is bounded. (10)

From hypothesis H1(iii) we see that we can always assume that 1 < τ < r < q∗. So,
we can find t ∈ (0, 1) such that

1

r
=

1− t

τ
+

t

q∗
. (11)
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The interpolation inequality (see Hu-Papageorgiou [6], p. 82) implies that

∥un∥r ≤ ∥un∥1−t
τ ∥un∥tq∗ for all n ∈ N,

⇒ ∥un∥rr ≤ c5∥un∥tr for some c5 > 0, all n ∈ N (12)

(see (10) and Proposition 2).

From (5) using h = un ∈ W 1,η
0 (Ω), we have

ρa(∇un) + ∥∇un∥qq ≤ εn +

∫
Ω

f(z, un)undz for all n ∈ N.

We want to show that {un}n∈N ⊆ W 1,η
0 (Ω) is bounded. So, we may assume that

∥un∥ ≥ 1 for all n ∈ N. Then since ρa(∇un)+∥∇un∥qq = ρη(∇un) and using Proposition
1, we have

∥un∥q ≤
∫
Ω

f(z, un)undz

≤ c6 [1 + ∥un∥rr] for some c6 > 0, all n ∈ N
(see hypothesis H1(i))

≤ c7
[
1 + ∥un∥tr

]
for some c7 > 0, all n ∈ N (see (12)). (13)

From (11) we have

tr =
q∗(r − τ)

q∗ − τ
< q (see hypothesis H1(iii)).

So, from (13), we infer that

{un}n∈N ⊆ W 1,η
0 (Ω) is bounded.

On account of the reflexivity of W 1,η
0 (Ω), we may assume that

un
w−→ u in W 1,η

0 (Ω), un → u in Lr(Ω) (14)

(since r < q∗, see Proposition 2).

In (5) we choose h = (un − u) ∈ W 1,η
0 (Ω), pass to the limit as n → ∞ and use (14).

We obtain

lim
n→∞

⟨V (un), un − u⟩ = 0,

⇒ un → u in W 1,η
0 (Ω) (see Proposition 3),

⇒ φ(·) satisfies the C-condition.

□

Our aim is to apply the symmetric mountain pass theorem of Rabinowitz [18] (Theorem
9.12, p. 55); see also Corollary 5.6.21, p. 439, of [16]. To this end we will need the
following result.

Proposition 5. If hypotheses H0, H1 hold, then there exists ρ > 0 such that

0 < ĉ ≤ φ(u) for all u ∈ W 1,η
0 (Ω), ∥u∥ = ρ.

Proof. Hypotheses H1(i), (iv) imply that given ε > 0, we can find cε > 0 such that

F (z, x) ≤ 1

q
[ϑ(z) + ε]|x|q + cε|x|r for a.a. z ∈ Ω, all x ∈ R. (15)



DOUBLE PHASE PROBLEMS 7

Assume that ∥u∥ ≤ 1. Then using (15), we have

φ(u) ≥ 1

p
ρa(∇u) +

1

q

[
∥∇u∥qq −

∫
Ω

ϑ(z)|u|qdz − ε

λ̂1(q)
∥∇u∥qq

]
− cε∥u∥rr

≥ 1

p
ρa(∇u) +

1

q

[
c∗ − ε

λ̂1(q)

]
∥∇u∥qq − ĉε∥u∥r

for some c∗, ĉε > 0 (see [15], Lemma 4.11).

We choose ε ∈ (0, c∗λ̂1(q)) and obtain

φ(u) ≥ c8∥u∥p − ĉε∥u∥r for some c8 > 0 (16)

(recall ∥u∥ ≤ 1 and see Proposition 1).

Since p < r, from (16) we see that we can find ρ ∈ (0, 1) small such that

φ(u) ≥ ĉ > 0 for all u ∈ W 1,η
0 (Ω), ∥u∥ = ρ.

□

Let V be a finite dimensional subspace of W 1,η
0 (Ω).

Proposition 6. If hypotheses H0, H1 hold, then the set K = {u ∈ V : 0 ≤ φ(u)} is
bounded.

Proof. Let u ∈ K. We have

1

p
ρa(∇u) +

1

q
∥∇u∥qq ≥

∫
Ω

F (z, u)dz. (17)

On account of hypotheses H1(i), (ii), given M > 0, we can find cM > 0 such that

F (z, x) ≥ M

p
|x|p − cM for a.a. z ∈ Ω. (18)

Using (18) in (17), we obtain

M

p
∥u∥pp −

1

q

(
ρa(∇u) + ∥∇u∥qq

)
≤ cM |Ω|N

with | · |N denoting the Lebesgue measure on RN . Since V is finite dimensional, all
norms are equivalent. So, we have

Mc9∥u∥p −
1

q
ρη(∇u) ≤ cM |Ω|N for some c9 > 0.

Without any loss of generality we assume that ∥u∥ ≥ 1. Then, using Proposition 1,
we have [

Mc9 −
1

q

]
∥u∥p ≤ cM |Ω|N .

Since M > 0 is arbitrary, choosing M > 1
qc9

, we see that

∥u∥p ≤ c10 for some c10 > 0, all u ∈ K,

⇒ K ⊆ W 1,η
0 (Ω) is bounded.

□
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We look at Theorem 9.12, p. 55, of Rabinowitz [19] (the Z2-mountain pass theorem).
We see that with Proposition 5, we satisfy condition I ′1 of Theorem 9.12 of [19] and
with Proposition 6, we satisfy condition I ′2 of the same theorem. Therefore, we can
use the symmetric mountain pass theorem and have the following multiplicity theorem.
Note that by Theorem 3.1 of Gasiński-Winkert [3], the solutions are in L∞(Ω) and
φ(un) ≤

∫
Ω
[f(z, un)un − F (z, un)]dz.

Theorem 1. If hypotheses H0, H1 hold, then problem (1) has a sequence of distinct
nontrivial solutions {un}n∈N ⊆ W 1,η

0 (Ω) ∩ L∞(Ω) such that ∥un∥ → ∞.
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