There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) concentrations in the fumarole atmospheric plumes were systematically above background levels (~4 ng GEM m-3), ranging from ~4.5 to 121 ng GEM m-3. Variability in the measured mercury concentrations may result from changes in atmospheric conditions and/or unsteady gas release from the fumaroles. We estimate an average GEM/CO2 mass ratio in the fumarolic gases of Nea Kameni of approximately 10-9, which falls in the range of values obtained at other low-T (100°C) volcanic/hydrothermal systems (~10-8); our measured GEM/H2S mass ratio (10-5) also lies within the accepted representative range (10-4 to 10-6) of non-explosive volcanic degassing. Our estimated mercury flux from Nea Kameni's fumarolic field (2.56 × 10-7 t yr-1), while making up a marginal contribution to the global volcanic non-eruptive GEM emissions from closed-conduit degassing volcanoes, represents the first available assessment of mercury emissions at Santorini volcano, and will contribute to the evaluation of future episodes of unrest at this renowned volcanic complex.

Bagnato, E., Tamburello, G., Aiuppa, A., Sprovieri, M., Vougioukalakis, G.E., Parks, M. (2013). Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece). GEOCHEMICAL JOURNAL, 47, 437-450.

Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)

TAMBURELLO, Giancarlo;AIUPPA, Alessandro;
2013-01-01

Abstract

There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) concentrations in the fumarole atmospheric plumes were systematically above background levels (~4 ng GEM m-3), ranging from ~4.5 to 121 ng GEM m-3. Variability in the measured mercury concentrations may result from changes in atmospheric conditions and/or unsteady gas release from the fumaroles. We estimate an average GEM/CO2 mass ratio in the fumarolic gases of Nea Kameni of approximately 10-9, which falls in the range of values obtained at other low-T (100°C) volcanic/hydrothermal systems (~10-8); our measured GEM/H2S mass ratio (10-5) also lies within the accepted representative range (10-4 to 10-6) of non-explosive volcanic degassing. Our estimated mercury flux from Nea Kameni's fumarolic field (2.56 × 10-7 t yr-1), while making up a marginal contribution to the global volcanic non-eruptive GEM emissions from closed-conduit degassing volcanoes, represents the first available assessment of mercury emissions at Santorini volcano, and will contribute to the evaluation of future episodes of unrest at this renowned volcanic complex.
2013
Settore GEO/08 - Geochimica E Vulcanologia
Bagnato, E., Tamburello, G., Aiuppa, A., Sprovieri, M., Vougioukalakis, G.E., Parks, M. (2013). Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece). GEOCHEMICAL JOURNAL, 47, 437-450.
File in questo prodotto:
File Dimensione Formato  
Bagnato et al., 2013.pdf

accesso aperto

Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/99169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact