Metallothioneins (MTs) constitute a heterogeneous superfamily of cysteine rich proteins, which coordinate divalent (Zn2+, Cd2+) or monovalent (Cu+) metal ions. Several functions have been proposed for these peptides, ranging from toxic metal protection to physiological metal homeostasis, free radical scavenging, oxidative stress protection, antiapoptotic defense, control of the redox status of the cell and also a role during development. Regarding the MT system in vertebrates’ nearest kin, little information is available at present. Recently MTs were also characterized in cephalochordates. Hence in order to shed some light on MT origin and functional differentiation through evolution, we studied MT genes in sea urchin P. lividus. Here we report the characterization of five different sea urchin MT genes (PlMT4 through PlMT8) and their regulation pattern during development. By Southern blot hybridization using MT4 through MT8 cDNA fragments as probes (Ragusa et al, 2013), we determined the number of MT genes in the genome, showing the presence of at least two different PlMT8 genes. Using primers based on P. lividus (v2.0) genome sequences, we amplified by PCR, cloned and sequenced the MT genes. PlMT gene structures are different from both vertebrates and cephalochordates. The genes are composed of 4 exons separated by 3 introns, the last intron is into the 3'UTR. In PlMT7 gene there are two predicted polyadenylation signals and in fact two species of mRNA transcripts exist. By RT-qPCR we showed that MT4 to MT6 are not expressed during development, while MT7 mRNA level rises throughout embryonic development and MT8 rises until gastrula stage and decreases thereafter. Analyzing MT promoters in silico, a considerable number of transcription factor binding elements can be identified, comprising putative metal response elements (MRE), antioxidant response elements (ARE), but their copy number and positions are different between constitutive (MT7-8) and induced (MT4/6) genes.

Ragusa, M.A., Pezzino, V., Costa, S., Gianguzza, F. (2014). Metallothionein genes in the sea urchin Paracentrotus lividus. In Cell Stress: Survival and Apoptosis.

Metallothionein genes in the sea urchin Paracentrotus lividus

RAGUSA, Maria Antonietta;COSTA, Salvatore;GIANGUZZA, Fabrizio
2014-01-01

Abstract

Metallothioneins (MTs) constitute a heterogeneous superfamily of cysteine rich proteins, which coordinate divalent (Zn2+, Cd2+) or monovalent (Cu+) metal ions. Several functions have been proposed for these peptides, ranging from toxic metal protection to physiological metal homeostasis, free radical scavenging, oxidative stress protection, antiapoptotic defense, control of the redox status of the cell and also a role during development. Regarding the MT system in vertebrates’ nearest kin, little information is available at present. Recently MTs were also characterized in cephalochordates. Hence in order to shed some light on MT origin and functional differentiation through evolution, we studied MT genes in sea urchin P. lividus. Here we report the characterization of five different sea urchin MT genes (PlMT4 through PlMT8) and their regulation pattern during development. By Southern blot hybridization using MT4 through MT8 cDNA fragments as probes (Ragusa et al, 2013), we determined the number of MT genes in the genome, showing the presence of at least two different PlMT8 genes. Using primers based on P. lividus (v2.0) genome sequences, we amplified by PCR, cloned and sequenced the MT genes. PlMT gene structures are different from both vertebrates and cephalochordates. The genes are composed of 4 exons separated by 3 introns, the last intron is into the 3'UTR. In PlMT7 gene there are two predicted polyadenylation signals and in fact two species of mRNA transcripts exist. By RT-qPCR we showed that MT4 to MT6 are not expressed during development, while MT7 mRNA level rises throughout embryonic development and MT8 rises until gastrula stage and decreases thereafter. Analyzing MT promoters in silico, a considerable number of transcription factor binding elements can be identified, comprising putative metal response elements (MRE), antioxidant response elements (ARE), but their copy number and positions are different between constitutive (MT7-8) and induced (MT4/6) genes.
Settore BIO/11 - Biologia Molecolare
mag-2014
Cell Stress: Survival and Apoptosis
Bertinoro (Forlì-Cesena)
30-31 May 2014
2014
00
Ragusa, M.A., Pezzino, V., Costa, S., Gianguzza, F. (2014). Metallothionein genes in the sea urchin Paracentrotus lividus. In Cell Stress: Survival and Apoptosis.
Proceedings (atti dei congressi)
Ragusa, MA; Pezzino, V; Costa, S; Gianguzza, F
File in questo prodotto:
File Dimensione Formato  
Abstract ABCD stress 2014. Metallothionein genes in the sea urchin Paracentrotus lividus.docx

accesso aperto

Descrizione: Abstract congresso
Dimensione 12.06 kB
Formato Microsoft Word XML
12.06 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/97272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact