While several studies point at off-shore aquaculture as a possible source of impacts on the local marine environment, very few have analysed its effects at large scales such as at the bay, gulf or basin levels. Similar analyses are hampered by the multiple sources of disturbance that may concomitantly affect a given area. The present paper addresses these issues taking the Gulf of Castellammare (Southern Tyrrhenian Sea) as an example. Nitrogen (N) and phosphorous (P) loads were calculated for the period 1970e2007, and compared to chlorophyll-a concentration as measured inside and outside the Gulf over the same period. Results indicate that N and P catchment loading has constantly decreased because of improved environmental management. Nevertheless, nutrient concentration in the Gulf has steadily increased since the establishment of aquaculture facilities in 1999. Chlorophyll-a concentration followed this trend, showing a marked increase from 2001 onwards. In the same period, chlorophyll-a concentrations measured inside and outside the Gulf have significantly diverged. As all the other possible causes can be ruled out, aquaculture remains the sole explanation for the observed situation. This paper demonstrates for the first time ever that off-shore aquaculture may affect the marine ecosystem well beyond the local scale and provides an additional element of concern to be kept into consideration when allocating oceans’ space for new fish-farming activities.

Sarà, G., Lo Martire, M., Sanfilippo, M., Pulicanò, G., Cortese, G., Mazzola, A., et al. (2011). Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass. MARINE ENVIRONMENTAL RESEARCH, 71, 317-324 [10.1016/j.marenvres.2011.02.007].

Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass

SARA', Gianluca;MAZZOLA, Antonio;
2011-01-01

Abstract

While several studies point at off-shore aquaculture as a possible source of impacts on the local marine environment, very few have analysed its effects at large scales such as at the bay, gulf or basin levels. Similar analyses are hampered by the multiple sources of disturbance that may concomitantly affect a given area. The present paper addresses these issues taking the Gulf of Castellammare (Southern Tyrrhenian Sea) as an example. Nitrogen (N) and phosphorous (P) loads were calculated for the period 1970e2007, and compared to chlorophyll-a concentration as measured inside and outside the Gulf over the same period. Results indicate that N and P catchment loading has constantly decreased because of improved environmental management. Nevertheless, nutrient concentration in the Gulf has steadily increased since the establishment of aquaculture facilities in 1999. Chlorophyll-a concentration followed this trend, showing a marked increase from 2001 onwards. In the same period, chlorophyll-a concentrations measured inside and outside the Gulf have significantly diverged. As all the other possible causes can be ruled out, aquaculture remains the sole explanation for the observed situation. This paper demonstrates for the first time ever that off-shore aquaculture may affect the marine ecosystem well beyond the local scale and provides an additional element of concern to be kept into consideration when allocating oceans’ space for new fish-farming activities.
2011
Settore BIO/07 - Ecologia
Sarà, G., Lo Martire, M., Sanfilippo, M., Pulicanò, G., Cortese, G., Mazzola, A., et al. (2011). Impacts of marine aquaculture at large spatial scales: evidences from N and P catchment loading and phytoplankton biomass. MARINE ENVIRONMENTAL RESEARCH, 71, 317-324 [10.1016/j.marenvres.2011.02.007].
File in questo prodotto:
File Dimensione Formato  
Sarà et al 2011 MERE.pdf

Solo gestori archvio

Dimensione 404.02 kB
Formato Adobe PDF
404.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/74612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 62
social impact