Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO2 (SBA-15) and (ii) a commercial nano-size one (HiSilTM T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25mScm−1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSilTM-based membrane, the Li/LiFePO4 cells with PVdF-HFP/PYRA12O1TFSI–LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Fagnoni, M., Protti, S., et al. (2010). Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. JOURNAL OF POWER SOURCES, 195, 559-566 [10.1016/j.jpowsour.2009.08.015].

Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

SPINELLA, Alberto
2010-01-01

Abstract

Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO2 (SBA-15) and (ii) a commercial nano-size one (HiSilTM T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25mScm−1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSilTM-based membrane, the Li/LiFePO4 cells with PVdF-HFP/PYRA12O1TFSI–LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.
2010
Settore CHIM/02 - Chimica Fisica
Settore ING-IND/22 - Scienza E Tecnologia Dei Materiali
Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Fagnoni, M., Protti, S., et al. (2010). Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. JOURNAL OF POWER SOURCES, 195, 559-566 [10.1016/j.jpowsour.2009.08.015].
File in questo prodotto:
File Dimensione Formato  
mustarelli spinella membrane.pdf

accesso aperto

Dimensione 901.67 kB
Formato Adobe PDF
901.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/56473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 215
  • ???jsp.display-item.citation.isi??? 204
social impact