This paper addresses the design of a bi-directional DC/DC power converter to interface a supercapacitor bank and a motor-generator unit. The design is based on an interleaved six legs topology in which the current is shared among six inductors to minimize their weight and cost, allowing, besides, a low switching frequency to lessen switching losses. The converter is conceived to be employed in an electric Kinetic Energy Recovery System for Internal Combustion Engine Vehicles. The system makes use of a supercapacitor as a storage system, and a motorgenerator unit connected to the drive shaft for vehicle acceleration and braking. The system uses available commercial devices, thus obtaining a cheap and high-efficiency conversion chain. It is shown how the design criteria differ from traditional interleaved converters. The same topology allows minimizing the input and output ripple and improving the reliability in case of fault as well. Losses are reduced both by sharing the currents and by a suitable control strategy, which allows more converters to be connected in parallel to increase the delivered power. Results, given in simulation, assess the stability and dynamic performance of the conversion circuit, showing a low current and voltage ripple in all operating conditions. © 2020, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.

Vitale, G., Pipitone, E. (2020). A six legs buck-boost interleaved converter for KERS application. RENEWABLE ENERGY & POWER QUALITY JOURNAL, 18, 461-468 [10.24084/repqj18.382].

A six legs buck-boost interleaved converter for KERS application

Pipitone, E.
2020-01-01

Abstract

This paper addresses the design of a bi-directional DC/DC power converter to interface a supercapacitor bank and a motor-generator unit. The design is based on an interleaved six legs topology in which the current is shared among six inductors to minimize their weight and cost, allowing, besides, a low switching frequency to lessen switching losses. The converter is conceived to be employed in an electric Kinetic Energy Recovery System for Internal Combustion Engine Vehicles. The system makes use of a supercapacitor as a storage system, and a motorgenerator unit connected to the drive shaft for vehicle acceleration and braking. The system uses available commercial devices, thus obtaining a cheap and high-efficiency conversion chain. It is shown how the design criteria differ from traditional interleaved converters. The same topology allows minimizing the input and output ripple and improving the reliability in case of fault as well. Losses are reduced both by sharing the currents and by a suitable control strategy, which allows more converters to be connected in parallel to increase the delivered power. Results, given in simulation, assess the stability and dynamic performance of the conversion circuit, showing a low current and voltage ripple in all operating conditions. © 2020, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ). All rights reserved.
2020
Settore ING-IND/09 - Sistemi Per L'Energia E L'Ambiente
Settore ING-IND/31 - Elettrotecnica
Vitale, G., Pipitone, E. (2020). A six legs buck-boost interleaved converter for KERS application. RENEWABLE ENERGY & POWER QUALITY JOURNAL, 18, 461-468 [10.24084/repqj18.382].
File in questo prodotto:
File Dimensione Formato  
382-20-vitale.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/435898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact