Overfishing may seriously impact fish populations and ecosystems. Marine protected areas (MPAs) are key tools for biodiversity conservation and fisheries management, yet the fisheries benefits remain debateable. Many MPAs include a fully protected area (FPA), restricting all activities, within a partially protected area (PPA) where potentially sustainable activities are permitted. An effective tool for biodiversity conservation, FPAs, can sustain local fisheries via spillover, that is the outward export of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: the fraction of ecological spillover that directly benefits fishery yields and revenues through fishable biomass. Yet, how common is spillover remains controversial. We present a meta-analysis of a unique global database covering 23 FPAs worldwide, using published literature and purposely collected field data, to assess the capacity of FPAs to export biomass and whether this response was mediated by specific FPA features (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results show fish biomass and abundance outside FPAs was higher: (a) in locations close to FPA borders (<200 m) than further away (>200 m); (b) for species with a high commercial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly higher in FPAs that were larger and older and for more mobile species. Based on the broadest data set compiled to date on marine species ecological spillover beyond FPAs' borders, our work highlights elements that could guide strategies to enhance local fishery management using MPAs.

Di Lorenzo M., Guidetti P., Di Franco A., Calò A., Claudet J. (2020). Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. FISH AND FISHERIES, 21(5), 906-915 [10.1111/faf.12469].

Assessing spillover from marine protected areas and its drivers: A meta-analytical approach

Calò A.
Investigation
;
2020-01-01

Abstract

Overfishing may seriously impact fish populations and ecosystems. Marine protected areas (MPAs) are key tools for biodiversity conservation and fisheries management, yet the fisheries benefits remain debateable. Many MPAs include a fully protected area (FPA), restricting all activities, within a partially protected area (PPA) where potentially sustainable activities are permitted. An effective tool for biodiversity conservation, FPAs, can sustain local fisheries via spillover, that is the outward export of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: the fraction of ecological spillover that directly benefits fishery yields and revenues through fishable biomass. Yet, how common is spillover remains controversial. We present a meta-analysis of a unique global database covering 23 FPAs worldwide, using published literature and purposely collected field data, to assess the capacity of FPAs to export biomass and whether this response was mediated by specific FPA features (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results show fish biomass and abundance outside FPAs was higher: (a) in locations close to FPA borders (<200 m) than further away (>200 m); (b) for species with a high commercial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly higher in FPAs that were larger and older and for more mobile species. Based on the broadest data set compiled to date on marine species ecological spillover beyond FPAs' borders, our work highlights elements that could guide strategies to enhance local fishery management using MPAs.
2020
Di Lorenzo M., Guidetti P., Di Franco A., Calò A., Claudet J. (2020). Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. FISH AND FISHERIES, 21(5), 906-915 [10.1111/faf.12469].
File in questo prodotto:
File Dimensione Formato  
Di Lorenzo et al_FF.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 499.33 kB
Formato Adobe PDF
499.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/432336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 81
social impact