Ultrasound undergoes refraction and reflection at interfaces between media of different acoustic refractive indices. The most common ultrasonic method (pulse-echo) monitors the reflected energy to infer the presence of flaws, whereas the lower amplitude of refracted signals is ignored. When the reflector is orientated normally with respect to the ultrasonic beam, the received echo signal shows the maximum amplitude. The pulse-echo method also relies on monitoring the amplitude of the backwall echo to identify or confirm the presence of defects. This works well for parts with constant thickness and with planar backwalls. Unfortunately, parts with complex backwalls are common to many industrial sectors. For example, applications such as aerospace structures often require parts with complex shapes. Assessing such parts reliably is not trivial and can cause severe downtime in the aerospace manufacturing processes or during in-service inspections. This work aims to improve the ultrasonic inspectability of parts with complex backwalls, through sending ultrasonic beams from the frontwall side. Ultrasonic phased array probes and state-of-the-art instrumentation allow ultrasonic energy to be sent into a part at wide ranges of focusing depths and steering angles. This allows for tracking of the backwall profile, thus hitting it normally and maximising the amplitude of the reflected echo at any point. However, this work has shown that a cross-sectional scan resulting from multiple ultrasonic beams, which are sent at variable incidence angles, can present significant geometrical distortion and cannot be of much use for accurate defect visualisation and sizing. This paper introduces a generalised algorithm developed to remove geometric distortions and the effect that variable refraction coefficients have on the transmitted and received amplitudes. The algorithm was validated through CIVA simulations for two example parts with complex backwalls, considering isotropic materials.

Davi S., Mineo C., MacLeod C., Pierce S.G., Gachagan A., Paton S., et al. (2020). Correction of B-scan distortion for optimum ultrasonic imaging of backwalls with complex geometries. INSIGHT, 62(4), 184-191 [10.1784/insi.2020.62.4.184].

Correction of B-scan distortion for optimum ultrasonic imaging of backwalls with complex geometries

Mineo C.;
2020-01-01

Abstract

Ultrasound undergoes refraction and reflection at interfaces between media of different acoustic refractive indices. The most common ultrasonic method (pulse-echo) monitors the reflected energy to infer the presence of flaws, whereas the lower amplitude of refracted signals is ignored. When the reflector is orientated normally with respect to the ultrasonic beam, the received echo signal shows the maximum amplitude. The pulse-echo method also relies on monitoring the amplitude of the backwall echo to identify or confirm the presence of defects. This works well for parts with constant thickness and with planar backwalls. Unfortunately, parts with complex backwalls are common to many industrial sectors. For example, applications such as aerospace structures often require parts with complex shapes. Assessing such parts reliably is not trivial and can cause severe downtime in the aerospace manufacturing processes or during in-service inspections. This work aims to improve the ultrasonic inspectability of parts with complex backwalls, through sending ultrasonic beams from the frontwall side. Ultrasonic phased array probes and state-of-the-art instrumentation allow ultrasonic energy to be sent into a part at wide ranges of focusing depths and steering angles. This allows for tracking of the backwall profile, thus hitting it normally and maximising the amplitude of the reflected echo at any point. However, this work has shown that a cross-sectional scan resulting from multiple ultrasonic beams, which are sent at variable incidence angles, can present significant geometrical distortion and cannot be of much use for accurate defect visualisation and sizing. This paper introduces a generalised algorithm developed to remove geometric distortions and the effect that variable refraction coefficients have on the transmitted and received amplitudes. The algorithm was validated through CIVA simulations for two example parts with complex backwalls, considering isotropic materials.
2020
Davi S., Mineo C., MacLeod C., Pierce S.G., Gachagan A., Paton S., et al. (2020). Correction of B-scan distortion for optimum ultrasonic imaging of backwalls with complex geometries. INSIGHT, 62(4), 184-191 [10.1784/insi.2020.62.4.184].
File in questo prodotto:
File Dimensione Formato  
Davi_etal_Insight_2020_Correction_of_B_scan_distortion_for_optimum_ultrasonic_imaging.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/425653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact