In this paper a recently theoretically deduced flow resistance equation, based on a power-velocity profile, was tested using data collected for overland flow under simulated rainfall carried out in plots with vegetation. The available data were obtained exploring a wide range of rainfall intensities (from 60 to 181 mm h−1) and slopes (from 3.6 to 39.6%), and with four different types of vegetation. The database, including measurements of flow velocity, water depth, cross sectional flow area, wetted perimeter and bed slope, was divided in four datasets (one for each vegetation type), which allowed the calibration of the relationship between the velocity profile parameter Γ, the slope steepness, the flow Froude number, and the rainfall Reynolds number. The effect of rainfall intensity and different types of vegetation on flow resistance was investigated. The results showed that the theoretically deduced flow resistance equation allowed an accurate estimate of the Darcy-Weisbach friction factor for overland flow under simulated rainfall and in presence of vegetation. The developed analysis also suggested that flow resistance increases with rainfall intensity for laminar overland flow. The available data demonstrated that a quasi-independence between slope and mean velocity occurred. Finally, a single flow resistance equation resulted applicable to all investigated vegetation types and this equation was affected by flow regime represented by flow Reynolds number.

Nicosia A., Di Stefano C., Pampalone V., Palmeri V., Ferro V., Polyakov V., et al. (2020). Testing a theoretical resistance law for overland flow under simulated rainfall with different types of vegetation. CATENA, 189, 1-8 [10.1016/j.catena.2020.104482].

Testing a theoretical resistance law for overland flow under simulated rainfall with different types of vegetation

Nicosia A.
Membro del Collaboration Group
;
Di Stefano C.
Membro del Collaboration Group
;
Pampalone V.
Membro del Collaboration Group
;
Palmeri V.
Membro del Collaboration Group
;
Ferro V.
Membro del Collaboration Group
;
2020-01-01

Abstract

In this paper a recently theoretically deduced flow resistance equation, based on a power-velocity profile, was tested using data collected for overland flow under simulated rainfall carried out in plots with vegetation. The available data were obtained exploring a wide range of rainfall intensities (from 60 to 181 mm h−1) and slopes (from 3.6 to 39.6%), and with four different types of vegetation. The database, including measurements of flow velocity, water depth, cross sectional flow area, wetted perimeter and bed slope, was divided in four datasets (one for each vegetation type), which allowed the calibration of the relationship between the velocity profile parameter Γ, the slope steepness, the flow Froude number, and the rainfall Reynolds number. The effect of rainfall intensity and different types of vegetation on flow resistance was investigated. The results showed that the theoretically deduced flow resistance equation allowed an accurate estimate of the Darcy-Weisbach friction factor for overland flow under simulated rainfall and in presence of vegetation. The developed analysis also suggested that flow resistance increases with rainfall intensity for laminar overland flow. The available data demonstrated that a quasi-independence between slope and mean velocity occurred. Finally, a single flow resistance equation resulted applicable to all investigated vegetation types and this equation was affected by flow regime represented by flow Reynolds number.
2020
Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali
Nicosia A., Di Stefano C., Pampalone V., Palmeri V., Ferro V., Polyakov V., et al. (2020). Testing a theoretical resistance law for overland flow under simulated rainfall with different types of vegetation. CATENA, 189, 1-8 [10.1016/j.catena.2020.104482].
File in questo prodotto:
File Dimensione Formato  
f_vegetation.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/398169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact