In this paper, a chromatograph which exploits the benefits of FID technology optimized for the high resolution detection of heavier hydrocarbon gas components is described. The components analyzed span from n-hexane to toluene. Flame Ionization Detector (FID) technology is not new to gas detection on the field, however it had never been applied to the detection of gases heavier than n-pentane. The instrumentation has been installed and run on a number of wells in different fields and countries, and it has operated as a complement of an advanced surface logging system for a period of two years. Unlike other technologies presently utilized for this scope, this system reduces dedicated equipment and personnel to a minimum. The results presented show the clear identification of formation fluid contacts with higher accuracy than standard light gas detectors, the recognition of contaminants within the drilling fluid, and the practicality of operating an advanced gas detection system with minimal operational and logistic footprint. Some of the indications obtained challenge common beliefs about gas detection: consistent extraction of heavy hydrocarbon gases from the drilling fluid is possible at relatively low temperatures, provided that the entire gas extraction system is rigorously controlled in terms of gas sample pressure, flow, and temperature. Furthermore, gas data analysis can yield indications on the fluid composition even when the gases analyzed are in extremely low quantity. The system utilizes known technologies, developed and optimized to obtain new results. The system supports formation evaluation when LWD or wireline can be inconclusive, in the presence of a low porosity pay or fresh water. It can also guide and optimize the MDT testing program. Furthermore, the system takes into account the constraints of drilling operations, and strikes a balance between data accuracy and practicality of the application.

r.schifano, g. (2012). Advanced Formation Fluid Evaluation While Drilling with a New Heavy Gas Detector. In Search and Discovery Article #40860 (2012) Posted January 9, 2012. AAPG.

Advanced Formation Fluid Evaluation While Drilling with a New Heavy Gas Detector

r. schifano;
2012-01-01

Abstract

In this paper, a chromatograph which exploits the benefits of FID technology optimized for the high resolution detection of heavier hydrocarbon gas components is described. The components analyzed span from n-hexane to toluene. Flame Ionization Detector (FID) technology is not new to gas detection on the field, however it had never been applied to the detection of gases heavier than n-pentane. The instrumentation has been installed and run on a number of wells in different fields and countries, and it has operated as a complement of an advanced surface logging system for a period of two years. Unlike other technologies presently utilized for this scope, this system reduces dedicated equipment and personnel to a minimum. The results presented show the clear identification of formation fluid contacts with higher accuracy than standard light gas detectors, the recognition of contaminants within the drilling fluid, and the practicality of operating an advanced gas detection system with minimal operational and logistic footprint. Some of the indications obtained challenge common beliefs about gas detection: consistent extraction of heavy hydrocarbon gases from the drilling fluid is possible at relatively low temperatures, provided that the entire gas extraction system is rigorously controlled in terms of gas sample pressure, flow, and temperature. Furthermore, gas data analysis can yield indications on the fluid composition even when the gases analyzed are in extremely low quantity. The system utilizes known technologies, developed and optimized to obtain new results. The system supports formation evaluation when LWD or wireline can be inconclusive, in the presence of a low porosity pay or fresh water. It can also guide and optimize the MDT testing program. Furthermore, the system takes into account the constraints of drilling operations, and strikes a balance between data accuracy and practicality of the application.
Settore ING-IND/30 - Idrocarburi E Fluidi Del Sottosuolo
23-ott-2011
AAPG International Conference and Exhibition, Milan, Italy, October 23-26, 2011
Milano, Italia
23 - 26 ottobre 2011
2012
22
Adapted from poster presentation at AAPG International Conference and Exhibition, Milan, Italy, October 23-26, 2011, reperibile in Search and Discovery Article #40860 (2012) Posted January 9, 2012
r.schifano, g. (2012). Advanced Formation Fluid Evaluation While Drilling with a New Heavy Gas Detector. In Search and Discovery Article #40860 (2012) Posted January 9, 2012. AAPG.
Proceedings (atti dei congressi)
r.schifano, g.ferroni, f.rivolta
File in questo prodotto:
File Dimensione Formato  
Advanced Formation Fluid Evaluation While Drilling with a New Heavy Gas Detector.pdf

accesso aperto

Descrizione: Presentazione al convegno AAPG
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/357640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact