We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox, Ingersoll, and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.

BONANNO G, VALENTI D, SPAGNOLO B (2007). Mean Escape Time in a System with Stochastic Volatility. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 75, 1-8 [10.1103/PhysRevE.75.016106].

Mean Escape Time in a System with Stochastic Volatility

BONANNO, Giovanni;VALENTI, Davide;SPAGNOLO, Bernardo
2007-01-01

Abstract

We study the mean escape time in a market model with stochastic volatility. The process followed by the volatility is the Cox, Ingersoll, and Ross process which is widely used to model stock price fluctuations. The market model can be considered as a generalization of the Heston model, where the geometric Brownian motion is replaced by a random walk in the presence of a cubic nonlinearity. We investigate the statistical properties of the escape time of the returns, from a given interval, as a function of the three parameters of the model. We find that the noise can have a stabilizing effect on the system, as long as the global noise is not too high with respect to the effective potential barrier experienced by a fictitious Brownian particle. We compare the probability density function of the return escape times of the model with those obtained from real market data. We find that they fit very well.
2007
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
BONANNO G, VALENTI D, SPAGNOLO B (2007). Mean Escape Time in a System with Stochastic Volatility. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 75, 1-8 [10.1103/PhysRevE.75.016106].
File in questo prodotto:
File Dimensione Formato  
PRE_75_016106_2007.pdf

accesso aperto

Descrizione: Articolo completo
Dimensione 228.9 kB
Formato Adobe PDF
228.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/27597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 88
social impact