The role of the polymer interfacial area on free radical grafting of acrylic acid (AA) onto poly(vinylidenefluoride) (PVDF) was studied at 65°C using supercritical carbon dioxide (scCO2) as a solvent and swelling agent, benzoylperoxide (BPO) as chemical initiator and PVDF nanoparticles as polymer matrix. Under adopted conditions PVDF particles do not melt neither dissolve in the reaction medium and FTIR analyses performed on carefully washed nanoparticles confirmed the achievement of high grafting levels. The mass fraction of grafted AA increased with the grafting time and the BPO concentration while it decreased when the density of the fluid phase was enhanced. Collected results suggest that the grafting level obtained by free radical grafting of vinyl monomers onto solid polymer in scCO2 can be significantly enhanced by increasing the interfacial area of the matrix.

Lanzalaco, S., Scialdone, O., Galia, A. (2015). Effect of interfacial area on heterogeneous free radical grafting of vinyl monomers in supercritical carbon dioxide: Grafting of acrylic acid on poly(vinylidenefluoride) nanoparticles. JOURNAL OF APPLIED POLYMER SCIENCE, 132(9), n/a-n/a [10.1002/app.41541].

Effect of interfacial area on heterogeneous free radical grafting of vinyl monomers in supercritical carbon dioxide: Grafting of acrylic acid on poly(vinylidenefluoride) nanoparticles

LANZALACO, Sonia;SCIALDONE, Onofrio;GALIA, Alessandro
2015-01-01

Abstract

The role of the polymer interfacial area on free radical grafting of acrylic acid (AA) onto poly(vinylidenefluoride) (PVDF) was studied at 65°C using supercritical carbon dioxide (scCO2) as a solvent and swelling agent, benzoylperoxide (BPO) as chemical initiator and PVDF nanoparticles as polymer matrix. Under adopted conditions PVDF particles do not melt neither dissolve in the reaction medium and FTIR analyses performed on carefully washed nanoparticles confirmed the achievement of high grafting levels. The mass fraction of grafted AA increased with the grafting time and the BPO concentration while it decreased when the density of the fluid phase was enhanced. Collected results suggest that the grafting level obtained by free radical grafting of vinyl monomers onto solid polymer in scCO2 can be significantly enhanced by increasing the interfacial area of the matrix.
2015
Lanzalaco, S., Scialdone, O., Galia, A. (2015). Effect of interfacial area on heterogeneous free radical grafting of vinyl monomers in supercritical carbon dioxide: Grafting of acrylic acid on poly(vinylidenefluoride) nanoparticles. JOURNAL OF APPLIED POLYMER SCIENCE, 132(9), n/a-n/a [10.1002/app.41541].
File in questo prodotto:
File Dimensione Formato  
JApplPolSci_2015_GraftingAA_PVDFpowders.pdf

Solo gestori archvio

Dimensione 866.99 kB
Formato Adobe PDF
866.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/231952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact