We report the synthesis and catalytic properties of single-walled carbon nanotube-polyamidoamine dendrimers hybrids (SWCNT-PAMAM), prepared via a convergent strategy. The direct reaction of cystamine-based PAMAM dendrimers (generations 2.5 and 3.0) with pristine SWCNTs in refluxing toluene, followed by immobilization and reduction of [PdCl4]2-, led to the formation of highly dispersed small palladium nanoparticles homogeneously confined throughout the nanotube length. One of these functional materials proved to be an efficient catalyst in Suzuki and Heck reactions, able to promote the above processes down to 0.002 mol % showing a turnover number (TON) of 48 000 and a turnover frequency (TOF) of 566 000 h-1. In addition, the hybrid material could be recovered and recycled for up to 6 times. No leaching of the metal has been detected during the Suzuki coupling. Additional experiments carried out on the spent catalyst permitted to suggest that a "release and catch" mechanism is operative in both reactions, although during Heck reaction small catalytically active soluble Pd species are also present.

Giacalone, F., Campisciano, V., Calabrese, C., La Parola, V., Syrgiannis, Z., Prato, M., et al. (2016). Single-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS NANO, 10(4), 4627-4636 [10.1021/acsnano.6b00936].

Single-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis

GIACALONE, Francesco;CAMPISCIANO, Vincenzo;Calabrese, Carla;LA PAROLA, Valeria;GRUTTADAURIA, Michelangelo
2016-01-01

Abstract

We report the synthesis and catalytic properties of single-walled carbon nanotube-polyamidoamine dendrimers hybrids (SWCNT-PAMAM), prepared via a convergent strategy. The direct reaction of cystamine-based PAMAM dendrimers (generations 2.5 and 3.0) with pristine SWCNTs in refluxing toluene, followed by immobilization and reduction of [PdCl4]2-, led to the formation of highly dispersed small palladium nanoparticles homogeneously confined throughout the nanotube length. One of these functional materials proved to be an efficient catalyst in Suzuki and Heck reactions, able to promote the above processes down to 0.002 mol % showing a turnover number (TON) of 48 000 and a turnover frequency (TOF) of 566 000 h-1. In addition, the hybrid material could be recovered and recycled for up to 6 times. No leaching of the metal has been detected during the Suzuki coupling. Additional experiments carried out on the spent catalyst permitted to suggest that a "release and catch" mechanism is operative in both reactions, although during Heck reaction small catalytically active soluble Pd species are also present.
2016
Settore CHIM/06 - Chimica Organica
Giacalone, F., Campisciano, V., Calabrese, C., La Parola, V., Syrgiannis, Z., Prato, M., et al. (2016). Single-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS NANO, 10(4), 4627-4636 [10.1021/acsnano.6b00936].
File in questo prodotto:
File Dimensione Formato  
62. ACS Nano 2016, 10, 4627–4636.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 8.76 MB
Formato Adobe PDF
8.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/178252
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 101
social impact