Background: Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke. Objectives: Since primary bronchial epithelial cells (PBECs) from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death. Methods: PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE); cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF). Results: Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH), but not ascorbic acid (AA), protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective. Conclusion: Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

Bucchieri, F., Marino Gammazza, A., Pitruzzella, A., Fucarino, A., Farina, F., Howarth, P., et al. (2015). Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors. PLOS ONE, 10(3) [10.1371/journal.pone.0120510].

Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors

BUCCHIERI, Fabio;MARINO GAMMAZZA, Antonella;PITRUZZELLA, Alessandro;FUCARINO, Alberto Giuseppe;FARINA, Felicia;ZUMMO, Giovanni;
2015-01-01

Abstract

Background: Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke. Objectives: Since primary bronchial epithelial cells (PBECs) from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death. Methods: PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE); cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF). Results: Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH), but not ascorbic acid (AA), protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective. Conclusion: Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.
2015
Bucchieri, F., Marino Gammazza, A., Pitruzzella, A., Fucarino, A., Farina, F., Howarth, P., et al. (2015). Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors. PLOS ONE, 10(3) [10.1371/journal.pone.0120510].
File in questo prodotto:
File Dimensione Formato  
pone.0120510(1).pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 673.82 kB
Formato Adobe PDF
673.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/148525
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact