Lithops plants consist of a pair of opposite succulent leaves inserted on a short stem. The apical meristem produces a new pair of leaves within the old one every growing season, recycling water from the old leaves. Since there are no data on water relations between the two pairs of leaves, we measured leaf water potential at different stages of development with a pressure chamber. Osmotic potential of cell sap was measured with a cryoscopic osmometer and turgor pressure was calculated indirectly. Leaf water potentials were never very low even though plants were not irrigated. In old leaves water potential ranged between -0.5 and -0.28 MPa. In young leaves water potential increased with size from -1.05 to -0.5 MPa and was always lower than in the corresponding old leaves. The water potential gradient between old and new leaves was steeper in the early stages of development (0.6 MPa) and gradually decreased (0.15 MPa) when young leaves had almost completed their expansion. Our data show that in Lithops water movement from old to young leaves occurs according to a water potential gradient. The maintenance of this gradient may be ascribed to differences in turgor pressure, due to the more elastic and plastic walls of cells of young leaves. The possibility to perform a complete life cycle without external water supply is an extreme adaptation to the arid environment where Lithops grows.

SAJEVA M, ODDO E (2007). Water Potential Gradients between Old and Developing Leaves in Lithops (Aizoaceae). FUNCTIONAL PLANT SCIENCE & BIOTECHNOLOGY, 1, 366-368.

Water Potential Gradients between Old and Developing Leaves in Lithops (Aizoaceae).

SAJEVA, Maurizio;ODDO, Elisabetta
2007-01-01

Abstract

Lithops plants consist of a pair of opposite succulent leaves inserted on a short stem. The apical meristem produces a new pair of leaves within the old one every growing season, recycling water from the old leaves. Since there are no data on water relations between the two pairs of leaves, we measured leaf water potential at different stages of development with a pressure chamber. Osmotic potential of cell sap was measured with a cryoscopic osmometer and turgor pressure was calculated indirectly. Leaf water potentials were never very low even though plants were not irrigated. In old leaves water potential ranged between -0.5 and -0.28 MPa. In young leaves water potential increased with size from -1.05 to -0.5 MPa and was always lower than in the corresponding old leaves. The water potential gradient between old and new leaves was steeper in the early stages of development (0.6 MPa) and gradually decreased (0.15 MPa) when young leaves had almost completed their expansion. Our data show that in Lithops water movement from old to young leaves occurs according to a water potential gradient. The maintenance of this gradient may be ascribed to differences in turgor pressure, due to the more elastic and plastic walls of cells of young leaves. The possibility to perform a complete life cycle without external water supply is an extreme adaptation to the arid environment where Lithops grows.
2007
SAJEVA M, ODDO E (2007). Water Potential Gradients between Old and Developing Leaves in Lithops (Aizoaceae). FUNCTIONAL PLANT SCIENCE & BIOTECHNOLOGY, 1, 366-368.
File in questo prodotto:
File Dimensione Formato  
LithopsFPSB_1(2)366-368.pdf

accesso aperto

Dimensione 904.57 kB
Formato Adobe PDF
904.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/10651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact