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The properties of nanostructured cobalt in the fields of magnetic, catalytic and

biomaterials depend critically on Co close packing. This paper reports a

structural analysis of nanosized cobalt based on the whole X-ray diffraction

(XRD) pattern simulation allowed by the Debye equation. The underlying

structural model involves statistical sequences of cobalt layers and produces

simulated XRD powder patterns bearing the concurrent signatures of hexagonal

and cubic close packing (h.c.p. and f.c.c.). Shape, size distribution and distance

distribution between pairs of atoms are also modelled. The simulation algorithm

allows straightforward fitting to experimental data and hence the quantitative

assessment of the model parameters. Analysis of two samples having,

respectively, h.c.p. and f.c.c. appearance is reported. Extended X-ray absorption

fine-structure (EXAFS) and X-ray absorption near-edge structure (XANES)

spectra are simulated on the basis of the model, giving a tool for the

interpretation of structural data complementary to XRD. The outlined

structural analysis provides a rigorous structural basis for correlations with

magnetic and catalytic properties and an experimental reference for ab initio

modelling of these properties.

1. Introduction
The boundary between hexagonal close-packed (h.c.p.) and

face-centred cubic (f.c.c.) polytypes for most nanostructured

metals displaying a close-packing (CP) arrangement is a no

man’s land where, depending on particle size, preparation

route or processing protocol, h.c.p. and cubic close-packed

(c.c.p.) sequences of basal atomic layers (labelled A, B, C,

according to the usual CP arrangement notation) can be

present at the same time. In this respect, the case of cobalt

deserves much interest, concerning the outcome of different

synthetic protocols (Puntes et al., 2001; McHenry et al., 1994;

Leslie-Pelecky et al., 1998) and the modification of the CP

arrangement accomplished by various techniques such as ball

milling (Sort et al., 2004), thermal treatment (Speight et al.,

2009) or irradiation with heavy atoms (Sprouster et al., 2009).

The polytypism of cobalt has also been the subject of theo-

retical analysis, arguing that the f.c.c. and h.c.p. structures are

originated from a parent polytypic structure where ordered

domains grow at the expense of alternating disordered regions

(Tolédano et al., 2001).

A detailed structural analysis of nanosized cobalt is parti-

cularly relevant, taking into account that a great many appli-

cations in the fields of magnetic (Chakroune et al., 2003;

Margeat et al., 2005; Lu et al., 2007; Qiao et al., 2007; Zhao et

al., 2010), catalytic (de la Peña O’Shea et al., 2009; Li et al.,

2011; Gnanamani et al., 2013) and biomaterials (Jun et al.,

2008; Xu et al., 2008; Pankhurst et al., 2009) depend critically

on Co close packing. In particular, it is well established that

the h.c.p. arrangement gives rise to higher magnetic anisotropy

in magnetic recording cobalt materials (Sort et al., 2003;

Sokalski et al., 2011; Schio et al., 2013); h.c.p. cobalt shows

better performance also as a component in Fischer–Tropsch

catalysts, in a few cases stimulating interesting structural

studies based on X-ray diffraction (XRD) pattern simulation

(Ducreux et al., 2009) and ab initio computational modelling

(Liu et al., 2013). Reference to a detailed structural analysis
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can also be important in view of the complementarity of XRD

with local probes like X-ray absorption spectroscopy

(Sprouster et al., 2009; Sciortino et al., 2011) and 59Co solid

state NMR (Speight et al., 2009), and for ab initio modelling of

magnetic properties of cobalt and cobalt nanoalloys (Ferrando

et al., 2008; Barcaro et al., 2011; Hakamada et al., 2012).

In most of the cited literature the reported XRD patterns of

nanosized cobalt present the concurrent signatures of h.c.p.

and c.c.p. sequences, which are routinely attributed to the

presence, in different ratios, of both the h.c.p. and f.c.c. poly-

types. In some cases the importance of a deeper insight into

the structure of nanosized Co was recognized, leading to the

simulation of XRD patterns on the basis of a suitable struc-

tural model (Ducreux et al., 2009; Sokalski et al., 2011). In

particular, Sokalski et al. (2011) assumed that the position of a

Co basal layer is statistically determined by the three

preceding layers and developed, according to Jagodzinski’s

formalism (Jagodzinski, 1949), a model with Reichweite s = 3.

In this paper we report a structural model of nanosized

cobalt allowing for (i) a size distribution of spherical crystal-

lites, (ii) CP sequences where four-layer blocks influence in a

probabilistic way the occurrence of the next layer and (iii) a

distribution of distances between pairs of atomic centres. The

XRD simulation is carried out in the framework of the Debye

equation (Debye, 1915), which in the past was adopted only

sporadically (Cervellino et al., 2003; Niederdraenk et al., 2007;

Longo & Martorana, 2008; Ducreux et al., 2009; Rempel &

Magerl, 2010), probably because of the cumbersome

requirement of computing resources. In this respect, the

Debye equation approach is particularly demanding when

dealing with structural disorder, which in some cases has been

tackled by averaging over all possible disordered structures

(Niederdraenk et al., 2007; Ducreux et al., 2009; Rempel &

Magerl, 2010). An alternative to this latter procedure is

represented by the ‘parent stack’ approach (Longo &

Martorana, 2008), which allows a viable use of standard fitting

algorithms and thereby a straightforward estimate of the

model parameters. As shown in this paper, the optimized

parameters can be used to simulate extended X-ray absorp-

tion fine-structure (EXAFS) and X-ray absorption near-edge

structure (XANES) spectra and perform a comparison with

experimental data.

2. Experimental

2.1. Synthetic procedures

The syntheses were carried out by thermal decomposition

of Co2(CO)8 (�95%, Fluka), according to a procedure leading

to the formation of free cobalt particles coated by capping

molecules. The synthesis route involved three steps: (i) 1.4 �
10�3 mol (0.5 g) of Co2(CO)8 and the capping agent octade-

cylamine (ODA) were put into 25 ml of organic solvent at

boiling temperature under continuous argon flow; (ii) the

solution was kept for 3 h under reflux; (iii) the samples were

dried under vacuum, so obtaining the powder samples. Two

setups were exploited, giving rise to different Co powder

samples: Co/ODA = 500:1 [molar ratio (Co atoms)/(ODA

molecules)] in heptane (boiling point 371 K), for sample H;

Co/ODA = 200:1 in mesytilene (boiling point 438 K), for

sample C.

2.2. High-resolution X-ray diffraction

High-resolution X-ray diffraction patterns were recorded at

the ID31 beamline of the European Synchrotron Radiation

Facility (ESRF) in transmission geometry at a constant scan-

ning speed with incident wavelength � = 0.40000 Å.

2.3. X-ray absorption

X-ray absorption spectroscopy was performed in transmis-

sion geometry at beamline BM26A of the ESRF using an

Si(111) double-crystal monochromator. A cobalt foil was

placed downstream of the sample for energy calibration. The

spectra were acquired at 80 K using a liquid nitrogen cryostat.

3. Structural model and XRD simulation

The model powder pattern is calculated by taking the average

of a statistical ensemble of faulted crystallites that is generated

from a fictitious structure called the ‘parent stack’ (Longo &

Martorana, 2008). The latter is constituted by atoms placed in

r��� ¼ �aþ �bþ �c; ð1Þ
where �, �, � are integers and a, b, c are hexagonal crystal-

lographic axes (|a| = |b| 6¼ |c|, � = � = 90�, � = 120�).

The shape function of the parent stack is defined as

’ðrÞ ¼ 1 inside the parent stack;
0 outside:

�
ð2Þ

The interatomic vectors of the parent stack are given by

tklm ¼ kaþ lbþmc; ð3Þ
where k, l, m are integers; the distance multiplicity 	(tklm) is

given by the number of times a given interatomic vector

occurs:

	ðtklmÞ ¼ ða � b ^ cÞ�1
R
V1

dr’ðrÞ ’ðrþ tklmÞ: ð4Þ

Then, equation (4) represents the volume common to the

shape function and its ghost translated by tklm, divided by the

volume per atom.

Each element of the statistical ensemble representing the

myriad of crystallites with different stacking sequences of

basal layers is obtained from the parent stack by the slip

vectors

rA ¼ � 1
3 a� 1

3 b; rB ¼ 1
3 a; rC ¼ 1

3 b; ð5Þ
where the subscripts A, B, C denote the three allowed compact

packing positions. The vectors (5) bring about the shift of the

whole layer of atoms at height � [equation (1)] and are the

shortest vectors whose sequence along c complies with the CP

requirement; periodic sequences produce regular close-

packed structures (say, rArBrArB . . . for h.c.p. and rArBrC
rArBrC . . . for f.c.c.); also, random sequences are possible, with
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the constraint that consecutive equal shifts (say, rArA) are

forbidden.

The faulted sequences can be completely uncorrelated, or a

range of correlation s can hold, defining how many foregoing

layers determine the statistical occurrence of the next one. The

latter case is treated with Kakinoki’s matrix formalism

(Kakinoki, 1967), allowing for probabilistic events consisting

of s-layer building blocks. According to the CP constraint,

there are 
 = 3(2s�1) distinct blocks: once a given s range has

been assumed, the probability that the ith block (i = 1 . . . 
)

continues with a layer in the A, B or C position is defined and

thereby the frequency of occurrence of the ith block can be

calculated. To illustrate, in the case s = 3, there are 12 different

s-layer blocks:

BCA � 1ðcÞ CAB � 5ðcÞ ABC � 9ðcÞ
ACA � 2ðhÞ BAB � 6ðhÞ CBC � 10ðhÞ
ABA � 3ðhÞ BCB � 7ðhÞ CAC � 11ðhÞ
CBA � 4ðcÞ ACB � 8ðcÞ BAC � 12ðcÞ

ð6Þ

These are labelled as h (hexagonal) or c (cubic), according to

the type of close packing. The elements pij of the 
 � 
 matrix

P give the probability of i–j block concatenation: for example,

the first block BCA has a probability p15 of being concatenated

to the fifth block CAB. Only blocks ending and starting with

the same underscored sequence are concatenated (so, BCA

and ABC are not, and the corresponding probability p19 is

null). This is equivalent to the statement that p15 represents

the probability that the BCA block continues with B,

according to the sequence BCA_B or, making reference to

close-packing labels, to a c_c sequence. Taking into account

symmetry-equivalent sequences, the P matrix has a block

structure,

P ¼
P0 P1 P2

P2 P0 P1

P1 P2 P0

0
@

1
A; ð7Þ

where the elements of P0 are all zero and

P1 ¼
� 0 0 0

� 0 0 0

0 1 � � 0 0

0 1 � � 0 0

0
BB@

1
CCA; P2 ¼

0 0 1 � � 0

0 0 1 � � 0

0 0 0 �
0 0 0 �

0
BB@

1
CCA:

ð8Þ
Then, � defines a c_c probability, � is relative to h_c, (1 � �)

accounts for c_h and (1 � �) for h_h. The mth power of P,

(P)m, represents the probabilities relative to the mth neigh-

bours and (P)0 = 1 (the identity 
 � 
 matrix) completes the

definition of the powers of P.

The frequency of occurrence of the ith block is given by

fi ¼
P
j

fj pji: ð9Þ

Solving the linear and homogeneous system (9) yields the

values of fi (i = 1, 2, . . . , 12), which assume only two distinct

values, one for the h blocks and one for the c blocks of

equation (6). The overall frequency values relative to,

respectively, the h and c blocks are then

fh ¼ 1 � �

1 � �� �
; fc ¼

�

1 � �� �
: ð10Þ

The interatomic vector between atoms belonging to the last

layers of the ith and jth blocks, m layers apart from each other,

is given by

tijklm ¼ tklm þ ðrj � riÞ; ð11Þ
where tklm is defined by equation (3) and rj, ri are two of the

shift vectors defined in equation (5).

According to the Debye (1915) equation, the diffraction

intensity for ordered crystallites is given by

IðqÞ ¼
X
t

	ðtÞ sin 2�qjtj
2�qjtj ; ð12Þ

where q is the length of the scattering vector (q = 2sin�/�, �
being half the scattering angle). The sum is extended to all the

distinct interatomic vectors, and 	(t), defined in equation (4),

accounts for the number of times a given distance vector t is

present in the structure. The corresponding equation relative

to a faulted structure involves the average over all the prob-

abilistic configurations:

Iklm ¼
X
i;j

fi p
m
ij

sin 2�q tijklm
�� ��

2�q tijklm
�� �� ; ð13Þ

where pmij represents the (ij)th element of the (P)m matrix.

Taking into account that the actual particles are generated by

rigid translation of whole layers of the parent stack, the overall

intensity is then obtained by summing over all the tklm
distances of the parent stack, weighted by the distance

multiplicity given by equation (4).

In nanostructured materials, microstrains produce a finite-

width distribution of distances, involving a broadening of the

powder diffraction peaks that increases as a function of q

(Longo & Martorana, 2008). The model assumes a spherically

symmetric Gaussian distribution whose width is a linear

function of the distance between pairs of scatterers:

�tklm
¼ 
�3

tklm
2�ð Þ�3=2 exp � t� tklmð Þ2=2
2

tklm

� �
; ð14Þ

where


2
tklm

¼ ðjtklmj=jt0jÞ
2
t0
; ð15Þ

|t0| is a reference unit length and 
t0
is the corresponding width

of the distance distribution. As a consequence of the assumed

distance distribution, each term of the Debye equation is

multiplied by the Fourier transform of equation (14):

’tklm
ðqÞ ¼ expð�2�2q2
2

tklm
Þ: ð16Þ

Finally, a lognormal size distribution was assumed (Popa &

Balzar, 2002). For spherical crystallites, the distribution of

radii is then

�ðRÞ ¼ 1

R½2� lnð1 þ cÞ	1=2
exp

(
� ln½ðR=RavÞð1 þ cÞ1=2	2

2 lnð1 þ cÞ

)
:

ð17Þ
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In equation (17) Rav is the average radius and c = (
R/Rav)2,

where 
R is the distribution standard deviation.

4. Results and discussion

4.1. XRD analysis

Fig. 1 reports a grid of simulated patterns corresponding to

the different (�, �) values relative to the model s = 3. From

inspection, it is evident that the model is able to reproduce the

simultaneous presence of the features that are usually attrib-

uted to separate h.c.p. and f.c.c. phases in the XRD patterns

reported in the literature.

The properties of nanosized Co depend crucially not only

on the compact packing sequences but also on the shape of

crystallites (Diehl et al., 2001; Xu et al., 2007; Liu et al., 2008;

Srivastava et al., 2010). To show how the pattern can be

modified as a function of shape, Fig. 2 reports the simulated

patterns corresponding to the (�, �) pairs of the third row of

Fig. 1, relative to rods, spheres and discs with the same volume;

it is evident that the crystallite shape strongly affects the

features of the diffraction pattern, as previously demonstrated

for ordered cobalt nanoparticles (Puntes et al., 2002).

In our approach the XRD Debye simulation can be easily

linked to an optimization algorithm (we used the CERN

package MINUIT; http://seal.web.cern.ch/seal/work-packages/

mathlibs/minuit/home.html), to get the best fitting of a model

of structural disorder to experimental data. Here we report

the structural analysis of the two synthesized H and C cobalt

samples. The model for these samples allows for a correlation

range s = 4, henceforth depending on the four probability

parameters, �, �, �, �, described in Table 1. The case s = 3,

previously described, is recovered for � = � and � = �, that is,

when the cc_c, and hc_c sequences (and, respectively, hh_c

and ch_c) are independent of the first basal layer (A, in the

examples reported in Table 1).

Figs. 3 and 4 show the fittings relative to the XRD data of

samples H and C, respectively. From inspection, it is clear that

in the H sample the signatures of h.c.p. packing are more

evident, while in the C sample the c.c.p. sequences prevail. The

fitting runs showed the necessity of an oxide component,

whose presence and relative amount is confirmed by X-ray

absorption spectra. The oxide component was simulated with

Tchebischeff polynomials and pseudo-Voigt peak functions

(turquoise line), giving intensity oscillations corresponding to

amorphous or very small particles of CoO and Co3O4 (de la

Peña O’Shea et al., 2009; Speight et al., 2009), probably

constituting a thin shell enclosing the metal core (Lisiecki &

Pileni, 2011).

Table 2 reports the fitting results for H and C. As can be

observed, although at first sight one could get the impression

of a large majority of cc blocks for sample C and of hh blocks

for sample H, the fcc frequency is nearly equal to the sum fhh +

f hc + fch; similarly, fhh is even less than the sum of fcc + fhc + fch

for sample H.
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Figure 1
Simulated powder patterns of Co, model s = 3. Starting from (�, �) = (0.2,
0.8) in the left lower corner, � increases rightwards and � decreases
upwards with a step of 0.2. In the top right corner, the signatures of both
close-packing arrangements are particularly evident. The pattern in the
top left corner has the most h.c.p. character, while the maximum f.c.c.
character is exhibited at the bottom right. To help discriminate the h.c.p.
from the c.c.p. signatures, the top left pattern is plotted in blue over the
latter in the 2� range 10–14.5�, � = 0.4 Å. All the other plots are in the 8–
24� 2� interval.

Figure 2
Powder patterns of rods (blue), spheres (black) and discs (red). The
columns, from left to right, are relative to the (�, �) pairs (0.2, 0.4), (0.4,
0.4), (0.6, 0.4) and (0.8, 0.4), respectively. Rod diameter d = 50 Å and
height h = 125 Å, aspect ratio h/d = 2.5. Spheres and discs have the same
volume as rods; the discs’ aspect ratio is h/d = 1/2.5. 2� range (8–24�), � =
0.4 Å.

Table 1
Parameters ruling the statistical sequences for the model s = 4.

For each parameter the respective CP sequence and an illustrative sample case
is given.

CP probability CP sequence Example

� cc_c ABCA_B
� hc_c ABAC_B
� hh_c ABAB_C
� ch_c ABCB_A

electronic reprint



Fig. 5 reports the refined size distribution functions for the

H and C samples; the larger average radius of the H sample

and the shape of the respective radii distributions, showing a

lesser fraction of very small crystallites, endorse the widely

accepted conclusion that c.c.p. is favoured by a smaller particle

size, even if for the investigated samples the preparation

temperature and the interaction with the oxide phase could

also have a role.

In principle, it is feasible to evaluate models with s > 4,

probably improving the fitting at the cost of correlations

between an increasing number of probability parameters.

Fitting runs with s = 3 gave a significantly worse agreement

[with reference to the normalized �2, defined as R = �2/(n �
p), where n is the number of points and p the number of

parameters, we have Rs=3 = 6.78, Rs=4 = 4.73 for the H sample;

Rs=3 = 15.36, Rs=4 = 11.65 for the C sample]. Transmission

electron microscopy data did not evidence definitely aniso-

metric particles, so that only fittings with spheres are reported.

It is worth noting that the model does not take into account

the possibility, indeed quite reasonable, of a dependence of

the disorder parameters on particle size, so that the optimized

values of �, �, � and � should be considered as averages taken

over the statistical ensemble of lognormal-distributed crys-

tallites; moreover, it is possible that very small clusters adopt

noncrystalline structures (Cervellino et al., 2003). Also, these

limitations can be easily overcome, but, as previously

observed, this involves going beyond the actual amount of

information inherent in the experimental data.

4.2. Simulations of X-ray absorption data

The atomic coordinates for the theoretical EXAFS and

XANES simulations were generated as follows: close-packed

layers of Co atoms were stacked according to the four

different four-layer blocks (cc, ch, hc and hh) weighted by the

respective frequencies and concatenated with c or h according
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Table 2
Fitting results for samples H and C.

Goodness of fit: RH = 0.064, RC = 0.057.

a (Å) c (Å) Rav (Å)† 
 (Å)† 
2
t0

(Å2)‡ fcc§ �} fhc§ �} fhh§ �} fch§ �}

H 2.5081 (3) 2.0407 (2) 30.4 (6) 18.4 (8) 0.0011 (2) 0.22 (1) 0.72 (1) 0.18 (1) 0.32 (1) 0.42 (2) 0.34 (1) 0.18 (1) 0.23 (2)
C 2.5080 (2) 2.0433 (2) 25.0 (4) 28.3 (5) 0.0015 (2) 0.51 (1) 0.81 (2) 0.17 (2) 0.57 (1) 0.15 (2) 0.58 (1) 0.17 (2) 0.48 (2)

† Average radius and standard deviation of the particle size distribution, equation (17). ‡ Defined in equation (15). § Four-layer block frequencies. } CP sequence
probabilities.

Figure 3
H sample. (a) Fitting of the model s = 4 in the 8.5–38� 2� range (� = 0.4 Å
monochromatic X-ray radiation). (b) Enlargement relative to the 2�
region most sensitive to the close-packing arrangement. Open circles:
h.c.p. signatures; stars: c.c.p. signatures. The model contribution is
rescaled by 0.5.

Figure 4
C sample. (a) Fitting of the model s = 4 in the 8.5–38� 2� range (� = 0.4 Å
monochromatic X-ray radiation). (b) Enlargement relative to the 2�
region most sensitive to the close-packing arrangement. Open circles:
h.c.p. signatures; stars: c.c.p. signatures. The model contribution is
rescaled by 0.5.
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to the sequence probabilities reported in Table 2. So, eight

different five-layer slabs are built. For instance, the statistical

weight of the hc_c slab is given by fhc�, that of hc_h is fhc(1 �
�) and so on. Then, the sum over the eight different slabs

equals one. The absorber atom was placed at the centre of

each slab, and the spectra corresponding to each slab were

calculated with Feff (Ankudinov et al., 1998). For XANES, the

spectra were calculated with a full multiple scattering (FMS)

radius of 6 Å around each atom and the Hedin–Lundqvist

exchange potential with 1 eV experimental broadening. For

EXAFS, the calculation allowed for static and vibrational

disorder by using a correlated Debye model plus a constant

Debye–Waller factor of 0.003 Å2. The simulations corre-

sponding to samples H and C were obtained by a weighted

average of the EXAFS signals of the component sequences,

using the parameters refined through the XRD fitting

(Table 2), an FMS radius of 6 Å and a 1 eV Hedin–Lundqvist

exchange potential.

Fig. 6(a) reports the XANES spectra simulated from the

five-layer slabs described above, while in Fig. 6(b) the

experimental spectra of the H and C samples are drawn.

It is worth noting that the fine details of the simulated

spectra can be recognized in the experimental XANES data

reported in the literature (Sprouster et al., 2009); the

comparison with the experimental C sample shows a clear

f.c.c.-like habitus, probably modified by the minor oxide

component also recognized in the corresponding XRD data.

On the other hand, the H sample data are strongly affected by

the oxide component, whose presence is characterized by a

prominent white line. The EXAFS Fourier transform (FT)

magnitudes are reported in Fig. 7(b), while Fig. 7(a) shows the

averages of the five-layer slabs obtained using the four-layer

frequencies and continuation probabilities reported in Table 2.

The H sample data show the presence of the Co–O shell on

the low-R side of the main Co–Co first-neighbour metal shell.

The other features of the EXAFS FT of both samples do not

show clear evidence of further shells from the oxide phase,

confirming its amorphous structure. It is worth noting that the

difference between the calculated H and C patterns can be

recognized in the comparison between the experimental data,

in particular as concerns the third and fourth shells in the 3.5–

5 Å R interval.

5. Conclusions

This paper analyses two snapshots of nanosized cobalt in the

boundary region where c.c.p. and h.c.p. sequences coexist. A

structural model characterized by a statistical correlation

range of four atomic layers accounts for the main features of

the respective XRD patterns. It is likely that most of the

literature diffraction data relative to nanosized cobalt showing

the concurrent presence of h.c.p. and c.c.p. signatures can be

fitted in the framework of this model. The assumption that a

range of correlation is effective introduces in a completely

random close packing a degree of local order, so endorsing the

theoretical analysis that the f.c.c. and h.c.p. phases of cobalt

evolve, with different growth mechanisms, from a disordered
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Figure 7
(a) FT magnitude of EXAFS spectra simulated with the parameters
reported in Table 2 for the H and C samples. (b) Experimental data.

Figure 5
Lognormal size distribution for H and C samples. The respective average
radius and standard deviation are reported in Table 2.

Figure 6
(a) Simulated XANES spectra of the five-layer sequences specified in the
legend; the spectra are multiplied by 0.5 and shifted. (b) Experimental
data of the C and H samples.
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parent polytype constituted by the alternation of ordered

blocks and disordered stacking regions (Tolédano et al., 2001).

The fitting to XRD data provides an estimate of the relative

abundance of building blocks, which can be correlated with

experimental results from local structural probes like NMR

and EXAFS, and with ab initio computational analyses of

magnetic and catalytic properties.

The technical assistance of the staff of beamlines BM26 and

ID31 of ESRF is gratefully acknowledged.
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