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We calculate the Casimir-Lifshitz pressure in a system consisting of two different one-dimensional dielectric
lamellar gratings having two different temperatures and immersed in an environment having a third temperature.
The calculation of the pressure is based on the knowledge of the scattering operators, deduced using the Fourier
modal method. The behavior of the pressure is characterized in detail as a function of the three temperatures
of the system as well as the geometrical parameters of the two gratings. We show that the interplay between
nonequilibrium effects and geometrical periodicity offers a rich scenario for the manipulation of the force. In
particular, we find regimes where the force can be strongly reduced for large ranges of temperatures. Moreover,
a repulsive pressure can be obtained, whose features can be tuned by controlling the degrees of freedom of the
system. Remarkably, the transition distance between attraction and repulsion can be decreased with respect to
the case of two slabs, implying an experimental interest for the observation of repulsion.
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I. INTRODUCTION

Casimir-Lifshitz force in an interaction originating from the
fluctuations of the electromagnetic field and existing between
any couple of polarizable bodies. It was first theoretically
derived by Casimir in 1948 [1,2] in the idealized configuration
of two perfectly conducting parallel plates at zero temperature.
Later, Lifshitz and collaborators generalized the calculation
to the case of bodies having arbitrary optical properties and
of finite temperature [3]. The Casimir-Lifshitz interaction,
experimentally verified for several different geometries [4],
results from two contributions, one originating from vacuum
fluctuations and present also at zero temperature, the other one
from purely thermal fluctuations. The latter becomes relevant
when the distance separating the bodies is larger than the
thermal wavelength λT = �c/kBT , of the order of 8 μm at
ambient temperature. This explains why it has been only very
recently experimentally observed at thermal equilibrium [5].

Nevertheless, the situation completely changes out of
thermal equilibrium. It was first theoretically predicted in
2005 that the atom-surface interaction (usually referred to
as Casimir-Polder force) is qualitatively and quantitatively
modified with respect to thermal equilibrium [6,7]. New
power-law behaviors appear, the force can turn into repulsive
(being only attractive at thermal equilibrium), and it is strongly
tunable by modifying the temperatures involved in the system.
This prediction was verified in 2007, providing the first
experimental observation of thermal effects [8]. These results
paved the way to a renewed interest in Casimir-Lifshitz effects
out of thermal equilibrium. In fact, this effect was studied
for two slabs [9,10] and in the presence of atoms [11–16],
and more recently several different approaches have been
developed to deal with the problem of the force out of thermal
equilibrium and heat transfer between two [17–24] or more
[25–27] arbitrary bodies. The physics of the electromagnetic
field out of thermal equilibrium has also stimulated the study of
other effects, such as the manipulation of atomic populations
[28,29] and entanglement [30,31].

In parallel with the interest in the absence of thermal
equilibrium, Casimir-Lifshitz interactions have been studied
in several different geometries, with particular interest in the
sphere-plane configuration, the most studied experimentally.
More recently, nanostructured surfaces have been theoretically
considered in the contexts of both force [32–35] and heat trans-
fer [36,37]. Experimentally, the force has been measured be-
tween a sphere and a dielectric [38,39] or metallic [40] grating.

The problem we address here is the calculation of the
Casimir-Lifshitz force out of thermal equilibrium in the pres-
ence of dielectric gratings, in order to study the combination
of nonequilibrium and geometrical effects. In particular we
consider a system made of two different gratings having
different temperatures, immersed in an environmental bath
at a third temperature. Our calculations can be relevant both
to imagine new experiments measuring the Casimir-Lifshitz
force out of thermal equilibrium and in the more general
context of the manipulation of the force in micro- and
nanoelectromechanical systems [41,42].

The paper is structured as follows. In Sec. II we introduce
our physical system and provide the notation and main
definitions. In Sec. III we solve the problem of the scattering
upon a single one-dimensional (1D) lamellar dielectric grating
using the Fourier modal method (FMM). In Sec. IV, we apply
these results in order to calculate the force out of thermal
equilibrium between two different gratings. We explore the
behavior of the force as a function of the three temperatures
and of the geometrical parameters of the gratings, with specific
attention to the appearance and features of repulsion. We
finally give in Sec. V some conclusive remarks.

II. PHYSICAL SYSTEM AND FORCE OUT
OF THERMAL EQUILIBRIUM

We start by describing the system studied in this paper.
We address the Casimir-Lifshitz force between two dielectric
gratings immersed in vacuum (ε = 1) in the geometrical
configuration shown in Fig. 1. We label the two gratings with
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FIG. 1. (Color online) Geometry of the system. Two gratings,
labeled with 1 and 2, at a distance d , always assumed to be positive.
The gratings, in general made of different materials, are infinite in the
xy plane, and periodic in the x direction with the same period D. They
have corrugation depths hi (i = 1,2), thicknesses δi , and lengths of the
upper part of the grating li . This defines the filling factors fi = li/D.
The two gratings have different constant temperatures T1 and T2, and
are immersed in an environment having a third temperature Te.

an index i taking values 1 and 2. The gratings are infinite
in x and y directions, with periodicity along the x axis. Their
distance d is defined in Fig. 1 and can only take positive values
(i.e., a plane z = z̄ must exist separating the two bodies). The
gratings share the same period D and have corrugation depth
hi , permittivities εi(ω) in the homogeneous zone, permittivities
εi(x,ω) along the grating zone having thickness δi , and filling
factors fi = li/D (li is defined as in Fig. 1).

Our physical system is considered in a configuration out
of thermal equilibrium (OTE). This means that each body is
supposed to be in local thermal equilibrium with a constant
temperature Ti . We also assume that the two gratings are
immersed in a radiation bath coming from bounding walls
far from the system and having temperature Te, in general
different from the temperatures of the two gratings (see also
[19]). The whole system is considered in a stationary regime
so that the three temperatures involved are constant in time.

In [18,19,27], this assumption has been used to characterize
the properties of the source fields (the ones emitted by the two
bodies and coming from the surrounding walls) in terms of
field correlation functions. This procedure is based on a mode
decomposition of the fields, each mode (ω,k,p,φ) being
identified by the direction of propagation φ = +,− along the
z axis, the polarization index p [assuming the values p = 1,2
which respectively correspond to transverse electric (TE) and
transverse magnetic (TM) modes], the frequency ω and the
transverse wave vector k = (kx,ky). In this description, the
z component of the wave vector kz is a dependent variable
defined as

kz =
√

ω2

c2
− k2. (1)

Based on this mode decomposition, the trace of a given
operator O is defined as

TrO =
∑

p

∫
d2k

(2π )2

∫ +∞

0

dω

2π
〈p,k|O|p,k〉. (2)

The correlation functions of the field have been expressed as
a function of the reflection and transmission operators R and
T associated with each body (see Sec. III for more details).
Using these correlation functions, the OTE Casimir-Lifshitz
force acting on body 1 can be cast in the following form
[19,27] (the distance dependence is implicit):

F1z = F
(eq)
1z (T1) + �(T1,T2,Te), (3)

where F
(eq)
1z (T1) is the force acting on body 1 at thermal equilib-

rium at its temperature T1. This equilibrium contribution reads

F
(eq)
1z = −2 Re Tr[kzω

−1N (ω,T )

× (U (12)R(1)+R(2)− + U (21)R(2)−R(1)+)], (4)

while the nonequilibrium term is

�(T1,T2,Te) = −� Tr
[(

ne1
{
U (21)T (2)−P (pw)

−1 T (2)−†U (21)†

× [
f2(R(1)+) − T (1)−†P (pw)

2 T (1)−]
+ (

U (12)T (1)+P (pw)
−1 T (1)+†U (12)† − P (pw)

−1

)
× f2(R(2)−) + (

R(2)−P (pw)
−1 R(2)−†

−R(12)−P (pw)
−1 R(12)−†)P (pw)

2

} + n21U
(21)

× [
f−1(R(2)−) − T (2)−P (pw)

−1 T (2)−†]U (21)†

× [
f2(R(1)+) − T (1)−†P (pw)

2 T (1)−])]
. (5)

In the equations above we have introduced the thermal
population,

N (ω,T ) = �ω

2
coth

(
�ω

2kBT

)
= �ω

[
1

2
+ n(ω,T )

]
, (6)

with

n(ω,T ) = 1

e
�ω
kBT − 1

, (7)

and the population differences nij = n(ω,Ti) − n(ω,Tj ).
Moreover we have defined the auxiliary functions,

fα(R) =

⎧⎪⎪⎨⎪⎪⎩
P (pw)

−1 − RP (pw)
−1 R† + RP (ew)

−1 − P (ew)
−1 R†

α = −1,

P (pw)
2 + R†P (pw)

2 R + R†P (ew)
2 + P (ew)

2 R
α = 2,

(8)

and the operators,

U (12) =
+∞∑
n=0

(R(1)+R(2)−)n = (1 − R(1)+R(2)−)−1, (9)

U (21) =
+∞∑
n=0

(R(2)−R(1)+)n = (1 − R(2)−R(1)+)−1, (10)

R(12)− = R(1)− + T (1)−U (21)R(2)−T (1)+. (11)
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Finally, in (5) we have introduced the projection operators,

〈p,k|P (pw/ew)
n |p′,k′〉 = kn

z 〈p,k|
(pw/ew)|p′,k′〉, (12)

where δφφ′ is the Kronecker delta and being 
(pw) [
(ew)]
the projector on the propagative (k < ω/c) [evanescent
(k > ω/c)] sector.

III. FMM THEORY AND GRATING
SCATTERING MATRIXES

In order to calculate the force, we now need to compute
the reflection and transmission operators associated with a
lamellar 1D grating. This will be achieved in the framework of
the Fourier modal method [43]. In the following, we implement
this method for a grating of finite size along the z axis (see
Fig. 2) in order to take into account finite-size effects on
the Casimir-Lifshitz force. Moreover, we solve the scattering
problem directly in TE and TM components, in order to be
coherent with the formalism presented in Sec. II.

Let us consider a system composed of a grating like the
one in Fig. 2. The space is divided in four zones: zone 1
(z < 0), zone 2 (0 < z < h), zone 3 (h < z < h + δ), and zone
4 (z > h + δ). While zones 1, 3, and 4 are homogeneous with
dielectric permittivities εi(ω) (i = 1,3,4), zone 2 represents
the grating, with a dielectric function ε2(x,ω), periodic in
x with period D. In each zone, every physical quantity is
independent of y.

We first decompose the electric field in any zone with
respect to frequency (only positive frequencies will be used):

E(i)(R,t) = 2 Re

[∫ +∞

0

dω

2π
e−iωtE(i)(R,ω)

]
. (13)

In virtue of the translational invariance of our system along the
y axis and of the periodicity along the x axis, we will employ
a Fourier decomposition of any x-dependent quantity. As a
consequence, the wave vector component kx will be replaced
by a new mode variable,

kx,n = kx + 2π

D
n, (14)

with kx taking values in the first Brillouin zone [−π/D,π/D]
and n assuming all integer values.

FIG. 2. (Color online) Geometry of the FMM calculation. We
consider one grating with interface z = 0, corrugation depth h, and
underlying thickness δ. This defines four zones (see text) with four
(in general different) dielectric permittivities. The period is D and
the filling factor is defined as f = l/D.

A. Homogeneous media

In any homogeneous zone, we can use a standard Rayleigh
expansion for the component of the field at frequency ω,

E(i)(R,ω) =
∑
p,φ

∫ π
D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π
,

× eiK(i)φ
n ·R ε̂(i)φ

p (kn,ω)E(i)φ
p (kn,ω), (15)

where the wave vectors are defined as (n ∈ Z),

K(i)φ
n = (

kn,φk(i)
z,n

)
, kn = (kx,n,ky), (16)

and k(i)
z,n is the z component of the wave vector inside each

medium,

k(i)
z,n =

√
εi(ω)

ω2

c2
− k2

n. (17)

The unit polarization vectors appearing in Eq. (15) are defined
as

ε̂
(i)φ
TE (kn,ω) = 1

kn

(−ky x̂ + kx,nŷ), (18)

ε̂
(i)φ
TM (kn,ω) = c

ω
√

εi(ω)

(−knẑ + φk(i)
z,nk̂n

)
. (19)

For convenience, we assign from now on the following labels
to the field amplitudes in the three homogeneous zones (the
dependence on p, kn, and ω is implicit):

E(1)+ = I, E(1)− = R,

E(3)+ = C, E(3)− = C ′, (20)

E(4)+ = T , E(4)− = I ′,

where I , R, and T represent the incoming, reflected, and
transmitted field amplitudes, respectively. The amplitude I ′
is associated with a possible incoming field coming from the
other side of the body. Its presence guarantees both the full
symmetry of the calculation and the possibility to derive at
the same time the reflection and transmission operators R±
and T ±.

The magnetic field in any zone can be easily deduced from
Maxwell’s equations and it reads,

B(i)(R,ω) =
√

εi(ω)

c

∑
p,φ

∫ π
D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π
,

× eiK(i)φ
n ·R (−1)p ε̂

(i)φ
S(p)(kn,ω)E(i)φ

p (kn,ω), (21)

where the function S is defined as S(1) = 2 and S(2) = 1.

B. Periodic region

We now move to the periodic region (zone 2) where we
write an arbitrary frequency component of the field as

E(2)(R,ω) =
∫ π

D

− π
D

dkx

2π

∑
n∈Z

∫ +∞

−∞

dky

2π
eikn·rE(2)(z,kn,ω),

(22)

where R = (r,z).
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We are now ready to write Maxwell’s equations (for our
system we have ∂t = −iω):⎧⎨⎩∂yEz − ∂zEy = iωμ0Hx = ik0H̃x

∂zEx − ∂xEz = iωμ0Hy = ik0H̃y

∂xEy − ∂yEx = iωμ0Hz = ik0H̃z,
(23)⎧⎨⎩∂yH̃z − ∂zH̃y = −iεk0Ex

∂zH̃x − ∂xH̃z = −iεk0Ey

∂xH̃y − ∂yH̃x = −iεk0Ez,

where we used ω = ck0, ωμ0 = k0Z0, ωε0 = k0/Z0, Z0 =√
μ0/ε0 and defined H̃i = Z0Hi . From (23) we can easily

obtain

∂z

(
Ex

Ey

)
=

⎛⎜⎝ − i

k0
∂x

1

ε(x)
∂y ik0 + i

k0
∂x

1

ε(x)
∂x

−ik0 − i

k0
∂y

1

ε(x)
∂y

i

k0
∂y

1

ε(x)
∂x

⎞⎟⎠
×

(
H̃x

H̃y

)
, (24)

∂z

(
H̃x

H̃y

)
=

⎛⎜⎝
i

k0
∂x∂y −ik0ε(x) − i

k0
∂x∂x

ik0ε(x) + i

k0
∂y∂y − i

k0
∂y∂x

⎞⎟⎠
×

(
Ex

Ey

)
. (25)

We now employ a Fourier factorization for the fields E and H̃ .
Correspondingly, the operator ∂y is replaced by iβ, β being a
scalar, whereas the operator ∂x is replaced by iα, where α =
diag(kx,n)n. These replacements allow us to rewrite Maxwell’s
equations of our system in a more compact form:

∂zE =

⎛⎜⎝
iβ

k0
α[[ε]]−1 ik01 − iα

k0
[[ε]]−1α

−ik01 + iβ2

k0
[[ε]]−1 − iβ

k0
[[ε]]−1α

⎞⎟⎠H̃ = FH̃,

(26)

∂zH̃ =

⎛⎜⎜⎝ − iβ

k0
α −ik0[[ε]] + iα2

k0

ik0

[[
1

ε

]]−1

− iβ2

k0

iβ

k0
α

⎞⎟⎟⎠E = GE,

(27)

where for an arbitrary field U we have introduced the
decomposition,

U = ({Ux(z,kn,ω)}n,{Uy(z,kn,ω)}
n
)T , (28)

gathering x and y components and denoting with {. . . }n a
set of scattering orders. We have also introduced the Toeplitz
matrix [[a]], defined by the relation [[a]]ij = ai−j , an being the
nth Fourier component of a. We remark that going from Eqs.
(24) and (25) to Eqs. (26) and (27) we have used the modified
factorization rule introduced in [44].

Of course, in order to exploit numerically the FMM, a
truncation has to be made, limiting the number of diffraction
orders taken into account. For a given truncation M , this
corresponds to keeping 2M + 1 scattering orders,

{An}n = (A−M, . . . ,AM ), (29)

and the size of the corresponding column vector U is thus
2(2M + 1). Based on this truncation, we obtain

∂2
z E = FGE = PD2P−1E, (30)

where P and D2 are, respectively, the eigenvectors and eigen-
values 2(2M + 1) × 2(2M + 1) matrixes of the matrix FG,

P =
(
P(11) P(12)

P(21) P(22)

)
, D =

(
D(11) 0
0 D(22)

)
. (31)

Then, from Eqs. (26) and (30), we obtain that fields are
E(z) = P(eDzA + e−DzB)

(32)
H̃(z) = P′(eDzA − e−DzB),

A and B being arbitrary constant vectors, and where
P′ = F−1PD.

C. Boundary conditions

Based on the knowledge of the electric and magnetic fields
in the four regions, we can now impose the continuity of the x

and y components of both fields at the three interfaces z = 0,
z = h, and z = h + δ. In the following boundary conditions
the values of kx , ky , and ω are given. Exploiting this fact we use
the generic simplified expression Ap,n to refer to the amplitude
Ap(kn,ω). Before proceeding in the calculation, we introduce
an additional phase factor in the expression of the fields in
zones 3 and 4. In particular, in zone 3 we replace exp[ik(i)φ

z z]
with exp[ik(i)φ

z (z − h)], while in zone 4 we replace exp[ik(i)φ
z z]

with exp[ik(i)φ
z (z − h − δ)]. These factors make the calculation

easier and can be simply recovered at the end. At the first
interface z = 0 we have for the x and y components of the
electric field (repeated indices are implicitly summed over):

(− ky

kn
(I1,n + R1,n) + c√

ε1ω
k(1)
z,n

kx,n

kn
(I2,n − R2,n)

kx,n

kn
(I1,n + R1,n) + c√

ε1ω
k(1)
z,n

ky

kn
(I2,n − R2,n)

)
=

(
P(11)

nm (Ax,m + Bx,m) + P(12)
nm (Ay,m + By,m)

P(21)
nm (Ax,m + Bx,m) + P(22)

nm (Ay,m + By,m)

)
, (33)

while for the magnetic field we get

(− c
ω
k(1)
z,n

kx,n

kn
(I1,n − R1,n) − √

ε1
ky

kn
(I2,n + R2,n)

− c
ω
k(1)
z,n

ky

kn
(I1,n − R1,n) + √

ε1
kx,n

kn
(I2,n + R2,n)

)
=

(
P′(11)

nm (Ax,m − Bx,m) + P′(12)
nm (Ay,m − By,m)

P′(21)
nm (Ax,m − Bx,m) + P′(22)

nm (Ay,m − By,m)

)
. (34)
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The boundary conditions at z = h give us the following equations for the electric field(− ky

kn
(C1,n + C ′

1,n) + c√
ε3ω

k(3)
z,n

kx,n

kn
(C2,n − C ′

2,n)
kx,n

kn
(C1,n + C ′

1,n) + c√
ε3ω

k(3)
z,n

ky

kn
(C2,n − C ′

2,n)

)
=

(
P(11)

nm

(
eD

(11)
mm hAx,m + e−D(11)

mm hBx,m

) + P(12)
nm

(
eD

(22)
mm h Ay,m + e−D(22)

m hBy,m

)
P(21)

nm

(
eD

(11)
mm h Ax,m + e−D(11)

mm hBx,m

) + P(22)
nm

(
eD

(22)
mm hAy,m + e−D(22)

mm hBy,m

)
)

,

(35)

and the following ones for the magnetic field:(− c
ω
k(3)
z,n

kx,n

kn
(C1,n − C ′

1,n) − √
ε3

ky

kn
(C2,n + C ′

2,n)

− c
ω
k(3)
z,n

ky

kn
(C1,n − C ′

1,n) + √
ε3

kx,n

kn
(C2,n + C ′

2,n)

)

=
(
P′(11)

nm

(
eD

(11)
mm h Ax,m − e−D(11)

mm h Bx,m

) + P′(12)
nm

(
eD

(22)
mm h Ay,m − e−D(22)

mm h By,m

)
P′(21)

nm

(
eD

(11)
mm h Ax,m − e−D(11)

mm h Bx,m

) + P′(22)
nm

(
eD

(22)
mm h Ay,m − e−D(22)

mm h By,m

)
)

. (36)

Finally, the boundary conditions at z = h + δ read⎛⎝− ky

kn

(
eik

(3)
z,nδ C1,n + e−ik

(3)
z,nδ C ′

1,n

) + c√
ε3ω

k(3)
z,n

kx,n

kn

(
eik

(3)
z,nδ C2,n − e−ik

(3)
z,nδ C ′

2,n

)
kx,n

kn

(
eik

(3)
z,nδ C1,n + e−ik

(3)
z,nδ C ′

1,n

) + c√
ε3ω

k(3)
z,n

ky

kn

(
eik

(3)
z,nδ C2,n − e−ik

(3)
z,nδ C ′

2,n

)
⎞⎠=

(− ky

kn
(T1,n + I ′

1,n) + c√
ε4ω

k(4)
z,n

kx,n

kn
(T2,n − I ′

2,n)
kx,n

kn
(T1,n + I ′

1,n) + c√
ε4ω

k(4)
z,n

ky

kn
(T2,n − I ′

2,n)

)
,

(37)

and the ones for the magnetic field are given by(− c
ω
k(3)
z,n

kx,n

kn

(
eik

(3)
z,nδ C1,n − e−ik

(3)
z,nδ C ′

1,n

) − √
ε3

ky

kn

(
eik

(3)
z,nδ C2,n + e−ik

(3)
z,nδ C ′

2,n

)
− c

ω
k(3)
z,n

ky

kn

(
eik

(3)
z,nδ C1,n − e−ik

(3)
z,nδ C ′

1,n

) + √
ε3

kx,n

kn

(
eik

(3)
z,nδ C2,n + e−ik

(3)
z,nδ C ′

2,n

))

=
(− c

ω
k(4)
z,n

kx,n

kn
(T1,n − I ′

1,n) − √
ε4

ky

kn
(T2,n + I ′

2,n)

− c
ω
k(4)
z,n

ky

kn
(T1,n − I ′

1,n) + √
ε4

kx,n

kn
(T2,n + I ′

2,n)

)
. (38)

D. Scattering matrixes

In the following, we are going to cast Eqs. (33)–(38) under
the form,

(
R
A

)
= S1

(
I
B

)
,

(
B
C

)
= S2

(
A
C′

)
,

(
C′
T

)
= S3

(
C
I ′

)
.

(39)

The column vectors A and B appearing in this equation gather
two vectors defined as in Eq. (28). On the contrary, all the six
other column vectors gather the two polarizations of the field
under the form,

V = ({V1(z,kn,ω)}n,{V2(z,kn,ω)}n)T . (40)

The system of Eq. (39) has to be solved for the unknowns
R, T , A, B, C, and C′. The expression of R and T as a
function of I and I ′ will provide us the desired reflection and
transmission operators. The fact that for A and B we solve in
Cartesian components and not in polarization is not an issue
since these appear as mute variables not participating with the
scattering operators.

The explicit expression of the S matrixes appearing in
(39) can be obtained by means of algebraic manipulation of
Eqs. (33)–(38). The final result is

S1 =
(
K′

1 −P
L′

1 −P′

)−1(
K1 P
L1 −P′

)
, (41)

S2 =
(
ff(2)

h 0
0 1

)(−P −K3

P′ −L3

)−1(
P −K′

3
P′ −L′

3

)(
ff(2)

h 0
0 1

)
,

(42)

S3 =
(
ff(3)

δ 0
0 1

)(
K′

3 K4

L′
3 L4

)−1(
K3 K′

4
L3 L′

4

)(
ff(3)

δ 0
0 1

)
.

(43)

In these expressions we have defined

K′
i =

(−Ay −Bx,i

Ax −By,i

)
, L′

i = √
εi

(
Bx,i −Ay

By,i Ax

)
,

(44)

Ki =
(

Ay −Bx,i

−Ax −By,i

)
, Li = √

εi

(
Bx,i Ay

By,i −Ax

)
,
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where

Ax = diag

(
kx,n

kn

)
n

, Ay = diag

(
ky

kn

)
n

,

Bx,i = c√
εiω

diag

(
kx,n

kn

k(i)
z,n

)
n

,

By,i = c√
εiω

diag

(
ky

kn

k(i)
z,n

)
n

. (45)

The symbol diag(an)n denotes a (2M + 1) × (2M + 1) diag-
onal matrix having diagonal elements a−M , a−M+1, . . . ,aM .
We have also defined the square matrixes of dimension
2(2M + 1),

ff(2)
h ≡ eDh =

(
eD

(11)
h 0

0 eD
(22)

h

)
, (46)

ff(3)
δ ≡

(
diag(eik

(3)
z,nδ)n 0

0 diag(eik
(3)
z,nδ)n

)
. (47)

Using (39) we obtain the final result,(
R
T

)
= S

(
I
I ′

)
, (48)

where

S = S1 � S2 � S3, (49)

having introduced the associative operation A = B � C,
which for three square matrixes A, B, and C of dimension
4(2M + 1) is defined as

A11 = B11 + B12(1 − C11B22)−1C11B21, (50)

A12 = B12(1 − C11B22)−1C12, (51)

A21 = C21(1 − B22C11)−1B21, (52)

A22 = C22 + C21(1 − B22C11)−1B22C12, (53)

where each matrix has been decomposed in four square blocks
of dimension 2(2M + 1).

Equation (48) allows one to identify the four blocks of S
as the reflection and transmission operators associated with
the two sides of the grating. For example, the block S11 is the
coefficient linking the reflected amplitudes R to the incident
ones I: it then coincides with the reflection operator R− for a
wave impinging on the grating of Fig. 2 from z < 0. By analog
reasoning, we write the full S matrix as

S =
(
R− T −
T + R+

)
. (54)

E. Two lamellar gratings

We now need to calculate the reflection and transmission
operators associated with the two gratings represented in
Fig. 1. As far as grating 1 is concerned, the problem we
need to solve is exactly the one presented in this section,
with the appropriate values of the geometrical parameters.
Concerning grating 2, we need to take into account the fact that
its interface is the plane z = d and not z = 0. The modification

of the scattering operators with respect to translations has been
discussed in [19]. Based on these results, and using the mode
expansion used in this work, the R−

2 operator of grating 2 can
be expressed as a function of the R̃−

2 derived from FMM as

〈p,k,n,ω|R−
2 |p′,k′,n′,ω′〉

= exp[i(kz,n + k′
z,n′ )d]〈p,k,n,ω|R̃−

2 |p′,k′,n′,ω′〉. (55)

As we will show in the next section, this operator is the only
one associated with grating 2 appearing in the expression of
the force for our configuration.

IV. NUMERICAL RESULTS

In this section we will present a numerical application
concerning the force between two different gratings. Being
that both gratings are infinite in the xy plane, we actually
calculate the pressure acting on any of them, as discussed in
the case of two slabs in [19]. In the first configuration we have
chosen both gratings to have period D = 1 μm, corrugation
depth h = 1 μm, and filling factor f = 0.5. As shown in
Fig. 1, the transition points of the two gratings are aligned,
i.e., there is no shift along the x axis. Grating 1 is made
of fused silica (SiO2) and has thickness δ1 = 10 μm, while
grating 2 is made of silicon and has infinite thickness. In order
to take into account this point we have imposed ε3 = ε4 in
the FMM relative to grating 2 (see Sec. III) and removed in
Eq. (5) all the terms proportional to the transmission operators
of body 2. Physically, this can be explained by observing that
because of the infinite thickness all the radiation coming from
the upper side of body 2 is absorbed and does not reach the
cavity between the gratings. Both silicon and fused silica have
been described by means of optical data taken from [45].

A. The issue of convergence

As anticipated in Sec. III, the numerical use of FMM
demands one to choose a truncation order, a problem that
will be addressed in this section. We noted before that by
choosing a truncation order M in the FMM we obtain as a result
reflection operators which are square matrixes of dimension
2(2M + 1), that is, two polarizations times 2M + 1 diffraction
orders. Their typical structure is, thus,

TE TM
TE
TM

(
A1,1[n,n′] A1,2[n,n′]
A2,1[n,n′] A2,2[n,n′]

)
, (56)

where each block Ai,j [n,n′] is a (2M + 1) × (2M + 1) matrix,
the indices n and n′ running from −M to M .

It is worth stressing that, for a given M , only the elements
closer to the center of each block of the matrix (i.e., close to n =
0 for each couple of polarizations) are at convergence. Thus,
for a given m, we can increase the value of M starting from
M = m in order to extract a 2(2m + 1) × 2(2m + 1) (m < M)
scattering operator whose elements are at convergence with a
given accuracy (in our case of the order of 1% ). The operators
obtained following this procedure can be used to compute the
force using Eqs. (4) and (5). Since these equations imply a
trace containing also a sum over the diffraction orders n, the
series has to be replaced with a finite sum from −m̄ to m̄. The
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FIG. 3. (Color online) Pressure acting on grating 1 (made of
fused silica, having h1 = 1 μm, δ1 = 10 μm, D = 1 μm, and f1 =
0.5) in front of grating 2 (made of silicon, having h2 = 1 μm, infinite
thickness, D = 1 μm, and f2 = 0.5) as a function of distance d . The
four curves correspond to different choices of the three temperatures
(T1,T2,Te) (see legend).

value of m̄ has to be found by imposing the convergence of
the series at a chosen accuracy. Also in this case, we required
an accuracy smaller than 1%.

The calculation of the pressure at a given distance requires
the evaluation of the traces (4) and (5) at several different
values of the wave vector k and the frequency ω, in order to
reach the convergence on the integral on the three variables.
We have observed that a single calculation of the trace requires
values of m̄ of the order of 2 (with peaks going up to 7) and
corresponding values of M of the order of 5 (with peaks around
20). A single value of the pressure required a computation time
of the order of 16 h on three 3-GHz CPUs.

B. Casimir-Lifshitz force OTE between two different gratings

In the configuration described above, we have calculated
the pressure acting on grating 1. To point out the features of
our OTE configuration we present in Fig. 3 the pressure as
a function of distance for different sets of the temperatures
(T1,T2,Te).

We clearly see that the modification of the three tempera-
tures strongly affects the value of the force. In particular, three
of the four curves show a transition from an attractive to a
repulsive behavior, not realizable at thermal equilibrium for
this configuration. This qualitative difference is a well-known
consequence of the absence of thermal equilibrium and it
has already been predicted in the case of two parallel slabs
[10,19]. We stress that the transition point between attraction
and repulsion is a function of the temperatures. For the values
chosen, it roughly varies from 3 to 5 μm.

To underline even more the richness of our OTE
configuration, we focus on the temperatures (T1,T2,Te) =
(200,400,10) K and compare the pressure to its equivalent
at thermal equilibrium at the temperature of body 1, i.e.,
T1 = 200 K. This comparison is presented in Fig. 4. In the
same figure we also plot the pressure, both at and out of thermal

FIG. 4. (Color online) Nonequilibrium (OTE) pressure
[(T1,T2,Te) = (200,400,10) K, solid lines] compared to equilibrium
pressure (T = 200 K, dashed lines) for two gratings (black squares),
and two slab-slab configurations corresponding to filled gratings
(f = 1, green circles) and empty ones (f = 0, red triangles).

equilibrium, for filling factors f1 = f2 = 1 (corresponding to
filled gratings, that is, a 11-μm-thick SiO2 slab at distance d

from an infinite Si slab) and for f1 = f2 = 0 (corresponding
to empty gratings, that is a 10-μm-thick SiO2 slab at distance
d + 2 μm from an infinite Si slab).

Apart from the transition to a repulsive behavior, this figure
shows that the pressure in the presence of a grating always
lies between the two results corresponding to filled and empty
ones. Finally, a comparison between Figs. 3 and 4 shows that
the asymptotic value of the pressure can be tuned by varying the
temperatures to values comparable (apart from their sign) to
the pressure at thermal equilibrium at much smaller distances,
of the order of 3 μm.

To conclude this section, we compare the grating-grating
pressure obtained using FMM to the result coming from

FIG. 5. (Color online) Ratio between the exact pressure and the
PFA counterpart [see Eq. (57)], for the same distances and choices of
temperatures of Fig. 3.
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FIG. 6. (Color online) Variation of the pressure between two
gratings at d = 4 μm [temperatures (T1,T2,Te) = (200,400,10) K]
as a function of the geometrical parameters. The reference point
(black circle) corresponds to the set of parameters f1 = f2 = 0.5,
h1 = h2 = 1 μm, δ1 = 10 μm, infinite δ2, D = 1 μm. The three
curves show the variation of pressure when changing one parameter
at a time (red diamonds for the filling factor, green triangles for the
period, blue squares for the corrugation depth). On the y axis, the
pressures are normalized with respect to the reference one, while on
the x axis each varying parameter is normalized with respect to its
reference value (f0 = 0.5, D0 = 1 μm, h0 = 1 μm). Note that the
plot on the right side continues the one on the left with a modified x

scale.

the proximity force approximation (PFA), typically used to
deal with complex geometries such as sphere-plane and
nanostructured surfaces. In the case of two aligned gratings
with equal filling factors f1 = f2 = f it reduces to the
following weighted sum of the pressures of simple slab-slab
configurations [36,39]:

P1,PFA(d) = f P
(ss)
1 (δ1,δ2,d) + (1 − f )

×P
(ss)
1 (δ1 − h1,δ2 − h2,d + h1 + h2), (57)

where P
(ss)
1 (δ1,δ2,d) is the pressure acting on a δ1-thick slab at

a distance d from a δ2-thick slab.
In Fig. 5 we plot the ratio between the exact pressure and

the PFA results for the four temperature configurations used in
Fig. 3. We observe that PFA provides in our range of distances
a description of the pressure with a relative error typically well
below 20%. The fact the PFA predicts a change of sign not
exactly at the position predicted by the exact calculation results
in the existence of a vertical asymptote of the ratio P/PPFA,
clearly shown in the blue and orange curves in Fig. 5.

C. Dependence on geometrical parameters

It is now interesting to understand how a modification
of the geometrical parameters of the gratings is able to
tune the value of the pressure. To this aim we have chosen
as a reference the pressure at a distance d = 4 μm for
(T1,T2,Te) = (200,400,10) K, for which the pressure is around
P0 = −10−6 N m−2 (see Fig. 3). Starting from this result, we
have modified one by one the values of the filling factor f ,

FIG. 7. (Color online) Pressure on grating 1 as a function of dis-
tance [temperatures (T1,T2,Te) = (200,400,10) K] for three different
values of filling factor, all the other geometrical parameters being the
reference ones.

period D, corrugation depth h, and calculated the ratio between
the modified pressure and the reference P0.

The results are shown in Fig. 6, where the pressure ratio
is plotted as a function of the ratio between the modified
parameter and the reference ones (f0 = 0.5, D0 = 1 μm, and
h0 = 1 μm). First, we observe that geometrical modifications
can tune the pressure by a factor going from 0.5 to 1.6.
In particular, this region can be fully explored by varying
the filling factor between the two admitted extreme values
f = 0 and f = 1, i.e., between the two limiting slab-slab

FIG. 8. (Color online) Spectral density of the OTE contribution
to the force [defined in Eq. (58)] at d = 4 μm [temperatures
(T1,T2,Te) = (200,400,10) K]. The solid black line corresponds to
filled gratings (f = 1), the dot-dot-dashed red line to empty ones
(f = 0), the dotted blue line to our reference gratings, having
f = 0.5. In the other curves we vary the geometrical parameters
one by one with respect to our reference case: dot-dashed violet line
for f = 0.75, short-dashed green line for D = 4 μm, long-dashed
brown line for h = 2 μm.

022120-8



CASIMIR-LIFSHITZ FORCE OUT OF THERMAL . . . PHYSICAL REVIEW A 90, 022120 (2014)

FIG. 9. (Color online) Pressure acting on grating 1 for d = 4 μm
and T1 = T2 = Tb as a function of Tb and Te. The solid line
corresponds to zero pressure, while the dashed lines to the other
contour lines shown in legend.

configurations. Concerning the depth h, it also allows a wide
variation of the pressure. We remark that for h going to zero
we recover the result corresponding to f = 1, that is, a filled
grating. On the contrary, for increasing values of h, we see
that we approach to a pressure approximately equal to half the
value of the pressure for f = 1. This can be interpreted by
noticing that roughly speaking at some point the corrugation
is so deep that only the upper part (half of the total surface,
being f = 0.5) contributes to the pressure. Differently, the
dependence of the pressure on the period D is less pronounced,
and absent within our accuracy in the case of a lateral shift
between the gratings, not reported in the figure.

As we have shown, the filling factor is a promising tool
to tailor the behavior of the pressure. This is further pointed
out in Fig. 7, where the distance-dependent pressure is plotted
for three different values of f . Whereas the asymptotic value
of the pressure is practically the same, we note that for small
distances the three curves differ visibly. More interestingly,
the attractive-repulsive transition can be tuned approximately
from 2.5 to 3.5 μm by changing f from 0.15 to 0.85.

D. Spectral properties of the pressure

Let us focus now on the spectral properties of the pressure,
by analyzing the quantity �(ω), defined as the spectral
component at frequency ω of the nonequilibrium contribution
to the force (5), that is,

�(T1,T2,Te) =
∫ +∞

0
dω �(ω). (58)

Also in this case, we consider our reference point d =
4 μm and (T1,T2,Te) = (200,400,10) and compare its spectral
distribution with the two slab-slab cases (f = 0 and f = 1)
as well as with some variations of one of the three parameters
discussed above.

The result is shown in Fig. 8. We see that no striking
spectral difference is present between the configurations
compared. Roughly speaking, no new modes (such as the spoof
plasmons observed in metal gratings [46,47]) are observed
in the spectral region of interest, that is, up to ω of the
order of 3 × 1014 rad s−1. The spectral properties for any
considered value of the geometrical parameters show small
differences with respect to the ones of the two slab-slab
configurations.

E. Modulation of the attractive-repulsive transition

As we have seen in Sec. IV C, the filling factor is a
promising tool to shift the distance at which the transition
between attraction and repulsion takes place. Nevertheless,
from an experimental point of view it is more interesting
to understand how this transition can be affected by tuning
parameters which can be varied during an experiment, such
as the three temperatures. This is a topic of this section,
where we first consider the case in which the two gratings
have a common temperature T1 = T2 = Tb, in general different
from the environmental one Te. For this configuration, we
plot in Fig. 9 the pressure acting on grating 1 in the
reference configuration discussed above as a function of Tb

and Te.
The plot is clearly divided in two regions, corresponding

to positive and negative values of the pressure, separated by
a solid zero-pressure line. Following this line, we see that
repulsion can be obtained only for body temperatures larger
than approximately 312 K, and that for larger values of Tb

FIG. 10. (Color online) Pressure acting on grating 1 for d = 4 μm as a function of T2 and Te for three different values of T1. Same
convention of Fig. 9 for contour lines.
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FIG. 11. (Color online) Distance d0 of attractive-repulsive tran-
sition of the pressure as a function of Te for three different values of
T1 = T2 = Tb.

a larger region of Te realizes repulsion. Moreover, we stress
the remarkable feature that for values of Tb close to 312 K
the pressure is approximately zero and almost independent
on the environmental temperature for Te up to approximately
150 K.

In the same spirit of our last analysis we now fix only T1

at three different values (200, 300, and 400 K) and let T2 and
Te vary. The pressure as a function of the two temperatures is
shown in Fig. 10. We see a behavior similar to the one observed
in Fig. 9, that is, the existence of a minimum temperature T̄2

below which repulsion is impossible, as well as a region where
the pressure is close to zero almost independently of Te. As
manifest from Fig. 10, the limit temperature T̄2 is a decreasing
function of T1.

Finally, we discuss how the distance d0 at which the
attractive-repulsive transition takes place can be tuned by
changing the three temperatures. This is shown in Fig. 11,
where we fix T1 = T2 = Tb ∈ {200,300,400} K and plot d0 as
a function of Te. As a general remark, when Te is smaller
than Tb the distance d0 tends to a constant value, which
decreases from 5.5 to 3 μm for Tb going from 200 to

400 K. Furthermore, when Te tends to Tb, i.e., the system ap-
proaches thermal equilibrium, d0 tends to a vertical asymptote,
in accordance with the fact that the pressure is always attractive
at thermal equilibrium.

V. CONCLUSIONS

We calculated the Casimir-Lifsthiz pressure out of ther-
mal equilibrium acting on a 1D dielectric lamellar grat-
ing in front of another (in general different) dielectric
grating. To this aim, we implemented the Fourier modal
method in order to derive the scattering operators associ-
ated with each individual grating. Using the general for-
malism for Casimir-Lifshitz force based on scattering ma-
trixes, we calculated the pressure acting on a finite fused
silica grating in the presence of an infinite silicon grat-
ing, and also compared our results to the proximity force
approximation.

We showed that the combination of geometrical structuring
of the surface and absence of thermal equilibrium offers an
extremely rich domain of variation both with respect to thermal
equilibrium and with respect to planar slabs out of thermal
equilibrium. As in the case of two slabs, nonequilibrium is able
to produce a repulsive pressure, whose intensity can be tuned
by varying the temperatures as well as the several geometrical
parameters associated with each grating. We also pointed out
the presence of regimes in which the pressure is close to zero
and almost independent of the environmental temperature.
Remarkably, the variations of all the parameters strongly affect
the distance at which the transition between attractive and
repulsive pressure occurs, allowing one to obtain transition
distances as low as 2.5 μm. This feature is indeed promising for
the experimental observation of a repulsive force. Moreover,
our results can be relevant in the context of force manipulations
on micromechanical systems [42]. Finally, an extension of this
study to three-body configurations is also promising toward the
manipulation of heat transfer [27,48].
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