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Theorems for Banach Space Operators2

Pietro Aiena, Jesús R. Guillén and Pedro Peña3

Abstract. Weyl type theorems have been proved for a considerably large4

number of classes of operators. In this paper, by introducing the class of5

quasi totally hereditarily normaloid operators, we obtain a theoretical6

and general framework from which Weyl type theorems may be promptly7

established for many of these classes of operators. This framework also8

entails Weyl type theorems for perturbations f(T + K), where K is9

algebraic and commutes with T , and f is an analytic function, defined10

on an open neighborhood of the spectrum of T + K, such that f is non11

constant on each of the components of its domain.12

Mathematics Subject Classification (2010). Primary 47A10, 47A11;13

Secondary 47A53, 47A55.14

Keywords. Totally hereditarily normaloid operators, polaroid operators,15

Weyl type theorems.16

1. Introduction17

Weyl type theorems have been studied in the last two decades by several18

authors and most of them have essentially proved that such theorems hold19

for special classes of operators. Many times the arguments used, to prove20

Weyl type theorems for each one of these classes of operators, are rather21

similar. In this paper we show that it is possible to bring back up these theo-22

rems from some general common ideas. Actually, we determine a very useful23

and unique theoretical framework, from which we can deduce that Weyl type24

theorems hold for all these classes of operators. This framework is created by25

introducing the class of quasi totally hereditarily normaloid operators and by26

proving that these operators are hereditarily polaroid. Many classes of oper-27

ators T on Hilbert spaces are quasi totally hereditarily normaloid, and this28

fact, together with SVEP, permits to us to extend all Weyl type theorems29

to the perturbations f(T + K), where K is! algebraic and commutes with30

This research was supported by CDCHTA of Universidad de los Andes, Project I-1295-12-
05-A.
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T , f is an analytic function, defined on an open neighborhood of the spec-31

trum of T + K, such that f is nonconstant on each of the components of its32

domain. Consequently, our results subsume and extend many results existing33

in literature.34

2. Totally Hereditarily Normaloid Operators35

A bounded linear operator T ∈ L(X), defined on a complex infinite dimen-36

sional Banach space X, is said to be normaloid if ‖T‖ = r(T ), r(T ) the spec-37

tral radius of T . An operator T ∈ L(X) is said to be hereditarily normaloid,38

T ∈ HN , if the restriction T |M of T , to any closed T -invariant subspace M ,39

is normaloid. Finally, T ∈ L(X) is said to be totally hereditarily normaloid,40

T ∈ T HN , if T ∈ HN and every invertible restriction T |M has a normaloid41

inverse. Totally hereditarily operators were introduced in [22], and have since42

investigated in [18], and [19], for establishing Weyl type theorems.43

Remark 2.1. It is rather simple to see that if T ∈ L(X) is T HN and M is a44

T -invariant closed subspace of X then the restriction T |M is also T HN .45

In the sequel we list examples of T HN -operators:46

(i) Paranormal operators on Banach spaces are T HN -operators, where47

T ∈ L(X) is said to be paranormal if48

‖Tx‖ ≤ ‖T 2x‖‖x‖ for all x ∈ X,49

see [22] or [2] for details. Also p-quasi-hyponormal operators are T HN -50

operators, where an operator T ∈ L(H), H a separable infinite dimensional51

Hilbert space, is said to be p-quasi-hyponormal, for some 0 < p ≤ 1, if52

T ∗(|T |2p − |T ∗|2pT ≥ 0,53

where |T | := (T ∗T )1/2. Indeed, every p-quasi-hyponormal is paranormal, see54

[23]. Another subclass of paranormal operators on Hilbert spaces is given by55

the the A class of operators introduced by Furuta et al. [26], where T ∈ L(H)56

is said to be a class A operator if |T |2 ≤ |T 2|.57

(ii) An operator T ∈ L(H), H a Hilbert space, is called quasi58

*-paranormal if59

‖T ∗Tx‖2 ≤ ‖T 3x‖‖Tx‖ for all unit vectors x ∈ H60

Every quasi *-paranormal operator is totally hereditarily normaloid, see [35].61

The class of quasi *-paranormal contains the class of all *-paranormal oper-62

ators, i.e. the class of T ∈ L(H) for which63

‖T ∗x‖2 ≤ ‖T 2x‖ for all unit vectors x ∈ H,64

see [34] for details. Every quasi hyponormal operator is quasi *-paranormal,65

see [34].66

(iii) A bounded operator T ∈ L(H), H a separable Hilbert space, is said67

to be k-quasi-*-class A operator if68

T ∗k|T 2|T k ≥ T ∗k|T ∗2‖T ∗
69
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A Unifying Approach to Weyl Type Theorems

Every k-quasi-*-class A operator is totally hereditarily normaloid, see [32].70

For k = 1 we obtain the class of all quasi-*-class A operators, which is71

included in the class of all quasi *-paranormal operators.72

It is evident that73

T ∈ L(X) quasi-nilpotent normaloid ⇒ T = 0,74

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an open75

neighborhood of σ(T ), such that f is non constant on each of the components76

of its domain. Define, by the classical functional calculus, f(T ) for every77

f ∈ Hnc(σ(T )).78

Let C be any class of operators. We say that T is an analytically79

C-operator if there exists some analytic function f ∈ Hnc(σ(T )) such that80

f(T ) ∈ C.81

Lemma 2.2. The property of being analytically C is translation invariant.82

Proof. We have to show that83

T analytically C and λ0 ∈ C ⇒ λ0I − T analytically C.84

Suppose that f(T ) ∈ C for some f ∈ Hnc(σ(T )). Let λ0 ∈ C arbitrary and85

set g(µ) := f(λ0 − µ). Then g is analytic and86

g(λ0I − T ) = f(λ0I − (λ0I − T )) = f(T ),87

thus λ0I − T is analytically C. �88

Recall that an invertible operator T ∈ L(X) is said to be doubly power-89

bounded if sup{‖Tn‖ : n ∈ Z} < ∞.90

Theorem 2.3. Suppose that T ∈ L(X) is quasi-nilpotent. If T is an analyti-91

cally T HN operator, then T is nilpotent.92

Proof. Let T ∈ L(X) and suppose that f(T ) is a T HN -operator for some93

f ∈ Hnc(σ(T )). From the spectral mapping theorem we have94

σ(f(T )) = f(σ(T )) = {f(0)}.95

We claim that f(T ) = f(0)I. To see this, let us consider the two possibilities:96

f(0) = 0 or f(0) �= 0.97

If f(0) = 0 then f(T ) is quasi-nilpotent and f(T ) is normaloid, and98

hence f(T ) = 0. The equality f(T ) = f(0)I then trivially holds.99

Suppose the other case f(0) �= 0, and set f1(T ) := 1
f(0)f(T ). Clearly,100

σ(f1(T )) = {1} and ‖f1(T )‖ = 1. Further, f1(T ) is invertible and is T HN .101

This easily implies that its inverse f1(T )−1 has norm 1. The operator f1(T )102

is then doubly power-bounded and, by a classical theorem due to Gelfand103

(see [30, Teorem 1.5.14] for an elegant proof), it then follows that f1(T ) = I,104

and consequently f(T ) = f(0)I, as claimed.105

Now, let g(λ) := f(0) − f(λ). Clearly, g(0) = 0, and g may have only a106

finite number of zeros in σ(T ). Let {0, λ1, . . . , λn} be the set of all zeros of107

g, where λi �= λj , for all i �= j, and λi has multiplicity ni ∈ N. We have108

g(λ) = µλm
n

∏

i=1

(λiI − T )nih(λ),109

Journal: 20 Article No.: 2097 TYPESET DISK LE CP Disp.:2013/9/20 Pages: 14

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

P. Aiena et al.

where h(λ) has no zeros in σ(T ). From the equality g(T ) = f(0)I − f(T ) = 0110

it then follows that111

0 = g(T ) = µ Tm
n

∏

i=1

(λiI − T )nih(T ) with λi �= 0,112

where all the operators λiI − T and h(T ) are invertible. This, obviously,113

implies that Tm = 0, i.e. T is nilpotent. �114

Two classical quantities associated with a linear operator T are the115

ascent p := p(T ), defined as the smallest non-negative integer p (if it does116

exist) such that ker T p = ker T p+1, and the descent q := q(T ), defined as117

the smallest non-negative integer q (if it does exists) such that T q(X) =118

T q+1(X). It is well-known that if p(λI − T ) and q(λI − T ) are both finite119

then p(λI − T ) = q(λI − T ) and λ is a pole of the the function resolvent120

λ → (λI − T )−1, in particular λ is an isolated point of the spectrum σ(T ),121

see Proposition 38.3 and Proposition 50.2 of Heuser [28].122

A bounded operator T ∈ L(X) defined on a Banach space is said to be123

polaroid if every isolated point of the spectrum σ(T ) is a pole of the resolvent.124

Polaroid operators have been studied in recent papers in relation with Weyl125

type theorems, see [3,6,20,21]. Note that by Theorem 2.2 of [6], T ∈ L(X) is126

polaroid if and only if there exists p := p(λI − T ) ∈ N such that127

H0(λI − T ) = ker (λI − T )p for all λ ∈ iso σ(T ), (1)128

where iso σ(T ) denotes the set of all isolated points of σ(T ).129

The following result has been proved in [2, Theorem 2.4].130

Theorem 2.4. For an operator T ∈ L(X) the following statements are equiv-131

alent:132

(i) T is polaroid;133

(ii) there exists f ∈ Hnc(σ(T )) such that f(T ) is polaroid.134

(iii) f(T ) is polaroid for every f ∈ Hnc(σ(T ));135

Two important subspaces in local spectral theory and Fredholm theory136

are defined in the sequel. The quasi-nilpotent part of an operator T ∈ L(X)137

is the set138

H0(T ) :=
{

x ∈ X : lim
n→∞

‖Tnx‖
1
n = 0

}

.139

Clearly, ker Tn ⊆ H0(T ) for every n ∈ N. If T ∈ L(X), the analytic core K(T )140

is the set of all x ∈ X such that there exists a constant c > 0 and a sequence141

of elements xn ∈ X such that x0 = x, Txn = xn−1, and ‖xn‖ ≤ cn‖x‖ for142

all n ∈ N.143

An operator T ∈ L(X) is said to have the single valued extension prop-144

erty at λ0 ∈ C (abbreviated SVEP at λ0), if for every open neighborhood145

U of λ0, the only analytic function f : U → X which satisfies the equation146

(λI − T )f(λ) = 0 for all λ ∈ U is the function f ≡ 0. The operator T is said147

to have SVEP if it has SVEP at every λ ∈ C. It follows from the identity148

theorem for analytic functions that T has SVEP at every point of the bound-149

ary of the spectrum. In particular, T and its dual T ∗ have SVEP at every150
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A Unifying Approach to Weyl Type Theorems

isolated point of σ(T ). We also have (see [1, Theorem 3.8])151

p(λI − T ) < ∞ ⇒ T has SVEP at λ, (2)152

and dually153

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ. (3)154

Moreover,155

H0(λI − T ) closed ⇒ T has SVEP at λ. (4)156

It is known that all the operators listed in the examples (i)–(iv) have157

SVEP.158

3. Quasi-T HN Operators159

In this section we extend the results of the previous section to a class of160

operators which properly contain the class T HN .161

Definition 3.1. An operator T ∈ L(X), X a Banach space, is said to be162

k-quasi totally hereditarily normaloid, k a nonnegative integer, if the restric-163

tion T |T k(X) is T HN .164

Evidently, every T HN -operator is quasi-T HN , and if T k(X) is dense165

in X then a quasi-T HN operator T is T HN . In the sequel by Y we denote166

the closure of Y ⊆ X.167

Lemma 3.2. If T ∈ L(X) is quasi-T HN and M is a closed T -invariant168

subspace of X, then T |M is quasi-T HN .169

Proof. Let k a nonnegative integer such that Tk := T |T k(X) is T HN . Let170

TM denote the restriction T |M . Clearly, TM
k(M) ⊆ T k(X), so TM

k(M)171

is Tk-invariant subspace of T k(X). By Remark 2.1 it then follows that172

TM |TM
k(M) = Tk|TM

k(M) is T HN . �173

We recall now some elementary algebraic facts. Suppose that T ∈ L(X)174

and X = M ⊕ N , with M and N closed subspace of X, M invariant under175

T . With respect to this decomposition of X it is known that T may be176

represented by a upper triangular operator matrix

(

A B
0 C

)

, where A ∈177

L(M), C ∈ L(N) and B ∈ L(N,M). It is easily seen that for every x =178
(

x
0

)

∈ M we have Tx = Ax, so A = T |M . Let us consider now the case of179

operators T acting on a Hilbert space H, and suppose that T k(H) is not dense180

in H. In this case we can consider the nontrivial orthogonal decomposition181

H = T k(H) ⊕ T k(H)
⊥

, (5)182

where T k(H)
⊥

= ker(T ∗)k, T ∗ the adjoint of T . Note that the subspace183

T k(H) is T -invariant, since184

T (T k(H)) ⊆ T (T k(H)) = T k+1(H) ⊆ T k(H).185
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Thus we can represent, with respect the decomposition (5), T as an upper186

triangular operator matrix187

(

T1 T2

0 T3

)

, (6)188

where T1 = T |T k(H). Moreover, T3 is nilpotent. Indeed, if x ∈ T k(X)
⊥

,189

an easy computation yields T kx = T

(

0
x

)

= T3
kx. Hence T3

kx = 0, since190

T kx ∈ T k(H) ∪ T k(H)
⊥

= {0}. Therefore we have:191

Theorem 3.3. Suppose that T ∈ L(H) and T k(H) non dense in H. Then,192

according the decomposition (5), T =

(

T1 T2

0 T3

)

is quasi-T HN if and only193

if T1 is T HN . Furthermore,194

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.195

Proof. The first assertion is clear, since T1 = T |T k(H). The second asser-196

tion follows from the following general result: if T :=

(

A C
0 B

)

is an upper197

triangular operator matrix acting on some direct sum of Banach spaces and198

σ(A) ∩ σ(B) has no interior points, then σ(T ) = σ(A) ∪ σ(B); see [31]. �199

Upper triangular operator matrices have been studied by many authors,200

see for instance [13,17,27,41]. In the sequel we give some examples of oper-201

ators which are quasi totally hereditarily normaloid.202

(iv) The class of quasi-paranormal operators may be extended as follows:203

T ∈ L(H) is said to be (n, k)-quasiparanormal if204

‖T k+1x‖ ≤ ‖T 1+n(T kx)‖
1

1+n ‖T kx‖
n

1+n for all x ∈ H.205

The class of (1, k)-quasiparanormal operators has been studied in [33].206

The (1, 1)-quasiparanormal operators has been studied in [39]. If T k(H) is207

not dense then, in the triangulation T =

(

T1 T2

0 T3

)

, T1 = T |T k(H) is208

n-quasiparanormal, and hence T HN , see [40].209

(v) An extension of class A operators is given by the class of all210

k-quasiclass A operators, where T ∈ L(H), H a separable infinite dimen-211

sional Hilbert space, is said to be a k-quasiclass A operator if212

T ∗k(|T |2 − |T |2)T k ≥ 0.213

Every k-quasiclass A operator is quasi-T HN . Indeed, if T has dense range214

then T is a class A operator and hence paranormal. If T does not have dense215

range then T with respect the decomposition H = T k(H) ⊕ ker T ∗k may be216

represented as a matrix T =

(

T1 T2

0 T3

)

, where T1 := T |T k(H) is a class A217

operator, and hence T HN , see [37].218

As it has been observed in [24, Example 0.2], a quasi-class A opera-219

tor (i.e. k = 1), need not to be normaloid. This shows that, in general, a220
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A Unifying Approach to Weyl Type Theorems

quasi-T HN operator is not normaloid, so the class of quasi-T HN operators221

properly contains the class of T HN operators.222

(vi) An operator T ∈ L(H), H a separable infinite dimensional Hilbert223

space, is said to be k-quasi *-paranormal, k ∈ N, if224

‖T ∗T kx‖2 ≤ ‖T k+2x‖‖T kx‖ for all unit vectors x ∈ H.225

This class of operators contains the class of all quasi- ∗-paranormal operators226

(which corresponds to the value k = 1). Every k-quasi *-paranormal operator227

is quasi-T HN . Indeed, if T k has dense range then T is ∗-paranormal and228

hence T HN . If T k does not have dense range then T may be decomposed,229

according the decomposition H = T k(H) ⊕ ker T ∗k, as T =

(

T1 T2

0 T3

)

,230

where T1 = T |T k(H) is ∗-paranormal, hence T HN , see [34, Lemma 2.1].231

(vii) An extension of p-quasi-hyponormal operators is defined as follows:232

an operator T ∈ L(H) is said to be (p, k)-quasihyponormal for some 0 < p ≤ 1233

and k ∈ N, if234

T ∗k|T ∗|2pT k ≤ T ∗k|T |2pT k.235

Every (p, k)-quasihyponormal operator T with respect to the decomposition236

H = T k(H) ⊕ ker T ∗k, may be represented as a matrix T =

(

T1 T2

0 0

)

,237

where T1 := T |T k(H) is k-hyponormal (hence paranormal) and consequently238

T HN , see [29].239

The next result generalizes the result of Lemma 2.3.240

Theorem 3.4. Suppose that T ∈ L(H), H a Hilbert space, is analytically241

quasi-T HN and quasi-nilpotent. Then T is nilpotent.242

Proof. Suppose first that T is quasi-nilpotent and k-quasi T HN . If T k(H)243

is dense then T is T HN , so T is nilpotent by Theorem 2.3. Suppose that244

T k(H) is not dense and write T =

(

T1 T2

0 T3

)

, where T1 is T HN , T3
k = 0,245

and σ(T ) = σ(T1) ∪ {0}. Since σ(T ) = {0} and σ(T1) is not empty, we then246

have σ(T1) = {0}, thus T1 is a quasi-nilpotent T HN operator and hence247

T1 = 0. Therefore T =

(

0 T2

0 T3

)

. An easy computation yields that248

T k+1 =

(

0 T2

0 T3

)k+1

=

(

0 T2T
k
3

0 T k+1
3

)k+1

= 0,249

so that T is nilpotent.250

Finally, suppose that T is quasi-nilpotent and analytically k-quasi251

T HN . Let h ∈ Hnc(σ(T )) be such that h(T ) is quasi-T HN . We claim that252

h(T ) is nilpotent. If h(T )k has dense range then h(T ) is T HN and hence, by253

Lemma 2.3, h(T ) is nilpotent. Suppose that h(T )k has not dense range. Then254

with respect the decomposition X = h(T )k(H) ⊕ h(T )k(H)
⊥

, the operator255

h(T ) has a triangulation h(T ) =

(

A B
0 C

)

, such that A = h(T )|h(T )k(H)256

is T HN and257
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σ(h(T )) = σ(A) ∪ {0}.258

By the spectral mapping theorem we have259

σ(h(T )) = h(σ(T )) = {h(0)}.260

Consequently, 0 ∈ {h(0)}, i.e. h(0) = 0, and therefore h(T ) is quasi-nilpotent.261

Since h(T ) is quasi-T HN , by the first part of proof it then follows that h(T )262

is nilpotent. Now, h(0) = 0 so we can write263

h(λ) = µλn
n

∏

i=1

(λiI − T )nig(λ),264

where g(λ) has no zeros in σ(T ) and λi �= 0 are the other zeros of g with265

multiplicity ni. Hence266

h(T ) = µ Tn
n

∏

i=1

(λiI − T )nig(T ),267

where all λiI − T and g(T ) are invertible. Since h(T ) is nilpotent then also268

T is nilpotent. �269

Theorem 3.5. If T ∈ L(H) is an analytically quasi T HN operator, then T is270

polaroid.271

Proof. We show that for every isolated point λ of σ(T ) we have p(λI − T ) =272

q(λI − T ) < ∞. Let λ be an isolated point of σ(T ), and denote by Pλ273

denote the spectral projection associated with {λ}. Then M := K(λI −T ) =274

ker Pλ and N := H0(λI − T ) = Pλ(X), see [1, Theorem 3.74]. Therefore,275

H = H0(λI − T ) ⊕ K(λI − T ). Furthermore, since σ(T |N) = {λ}, while276

σ(T |M) = σ(T )\{λ}, so the restriction λI − T |N is quasi-nilpotent and277

λI − T |M is invertible. Since λI − T |N is analytically quasi T HN , then278

Lemma 3.4 implies that λI − T |N is nilpotent. In other worlds, λI − T is an279

operator of Kato Type, see [1, Chapter 1] for details and definitions.280

Now, both T and the dual T ∗ have SVEP at λ, since λ is isolated in281

σ(T ) = σ(T ∗), and this implies, by Theorem 3.16 and Theorem 3.17 of [1],282

that both p(λI − T ) and q(λI − T ) are finite. Therefore, λ is a pole of the283

resolvent. �284

A bounded operator T ∈ L(X) is said to be hereditarily polaroid, i.e.285

any restriction to an invariant closed subspace is polaroid. An example of286

polaroid operator which is not hereditarily polaroid may be found in [21,287

Example 2.6]. A very important class of hereditarily operators is the class of288

H(p) operators, where T ∈ L(X) is said to belong to the class H(p) if there289

exists a natural p := p(λ) such that:290

H0(λI − T ) = ker (λI − T )p for all λ ∈ C. (7)291

The class H(p) has been introduced by Oudghiri in [36]. Property H(p)292

is satisfied by every generalized scalar operator, and in particular for293

p-hyponormal, log-hyponormal or M-hyponormal operators on Hilbert spaces,294

see [36]. Therefore, algebraically p-hyponormal or algebraically M -hyponor-295

mal operators are H(p). From the implication (4) we see that every operator296
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T which belongs to the class H(p) has SVEP. Moreover, from (1) it follows297

that every H(p) operator T is polaroid. The restriction to closed invariant298

subspaces of any H(p) operator is also H(p), see [36], so every H(p) is hered-299

itarily polaroid.300

Note that a paranormal operator need not to be H(p), and hence a quasi301

T HN operator in general is not H(p). However, we have the following result:302

Theorem 3.6. If T ∈ L(H) is analytically quasi T HN , then T is hereditarily303

polaroid.304

Proof. Let f ∈ Hnc(σ(T )) such that f(T ) is quasi T HN . If M is a closed305

T -invariant subspace of X, we know that f(T )|M is quasi T HN , by Lemma306

3.2, and f(T )|M = f(T |M), so f(T |M) is polaroid, by Theorem 3.5, and307

consequently, T |M is polaroid, by Theorem 2.4. �308

Corollary 3.7. If T ∈ L(H) is the direct sum T = S ⊕ N , where S is T HN309

and N is nilpotent, then T is hereditarily polaroid.310

Proof. If T = S ⊕ N , where S is T HN and N is nilpotent, then T is quasi311

T HN , since T admits a triangulation T =

(

S 0
0 N

)

, with respect a suitable312

decomposition. �313

4. Weyl Type Theorems for Analytically Quasi T HN314

Operators315

Denote by σa(T ) the classical approximate point spectrum, and by σs(T ) the316

surjectivity spectrum. These two spectra are dual one to each other, i.e.,317

σa(T
∗) = σs(T ) and σs(T

∗) = σa(T ).318

An operator T ∈ L(X) is said to be a-polaroid if every λ ∈ iso σa(T ) is319

a pole of the resolvent of T . Obviously, every a-polaroid operator is polaroid.320

Recall that an operator T ∈ L(X) is said to be Weyl (T ∈ W (X)), if T321

is Fredholm (i.e. α(T ) := dim ker T and β(T ) := codimT (X) are both finite)322

and the index indT := α(T ) − β(T ) = 0. The Weyl spectrum of T ∈ L(X) is323

defined by324

σw(T ) := {λ ∈ C : λI − T /∈ W (X)}.325

An operator T ∈ L(X) is said to be Browder (T ∈ B(X)), if T is Fredholm326

and p(T ) = q(T ) < ∞. The Browder spectrum of T ∈ L(X) is defined by327

σb(T ) := {λ ∈ C : λI − T /∈ B(X)}.328

Following Coburn [15], we say that Weyl’s theorem holds for T ∈ L(X) (in329

symbol, (W )) if330

σ(T )\σw(T ) = π00(T ), (8)331

where332

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞}.333
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Note that T satisfies (W ) if and only if T satisfies Browder’s theorem, (i.e.,334

σb(T ) = σw(T )) and π00(T ) = p00(T ), where p00(T ) := σ(T )\σb(T ), see for335

instance [5, Theorem 3.3].336

The concept of Fredholm operators has been generalized in the following337

way [11]: for every T ∈ L(X) and a nonnegative integer n let us denote by338

T[n] the restriction of T to Tn(X) viewed as a map from the space Tn(X)339

into itself (we set T[0] = T ). T ∈ L(X) is said to be B-Fredholm if for some340

integer n ≥ 0 the range Tn(X) is closed and T[n] is a Fredholm operator. In341

this case T[m] is a Fredholm operator for all m ≥ n [11]. This enables one342

to define the index of a Fredholm as ind T = ind T[n]. A bounded operator343

T ∈ L(X) is said to be B-Weyl (T ∈ BW (X)) if for some integer n ≥ 0344

Tn(X) is closed and T[n] is Weyl. The B-Weyl spectrum σbw(T ) is defined345

σbw(T ) := {λ ∈ C : λI − T /∈ BW (X)}.346

Another version of Weyl’s theorem has been introduced by Berkani and347

Koliha ([12] as follows: T ∈ L(X) is said to verify generalized Weyl’s the-348

orem, (in symbol (gW )) if349

σ(T )\σbw(T ) = E(T ), (9)350

where351

E(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T )}.352

Note that (gW ) holds for T if and only if T satisfies generalized Browder’s353

theorem (or, equivalently, Browder’s theorem, see [9]) and E(T ) = Π(T ),354

where Π(T ) is the set of all poles of the resolvent of T , see [7, Theorem 3.13].355

Note that generalized Weyl’s theorem entails Weyl’s theorem.356

The following result shows that in presence of SVEP the polaroid con-357

dition entails Weyl type theorems.358

Theorem 4.1. Let T ∈ L(X) be polaroid and suppose that either T or T ∗ has359

SVEP. Then both T and T ∗ satisfy generalized Weyl’s theorem.360

Proof. If T is polaroid also T ∗ is polaroid, and Weyl’s theorem and general-361

ized Weyl’s theorem for T , or T ∗, are equivalent, see [3, Theorem 3.7]. The362

assertion then follows from [3, Theorem 3.3]. �363

Remark 4.2. In the case of a Hilbert space operator T ∈ L(H) it is more364

appropriated to consider the Hilbert adjoint T ′ instead of the dual T ∗. Note365

that T ∗ satisfies (gW ) if and only if T ′ does. This easily follows from the366

well known equalities, σw(T ′) = σw(T ∗), where E is the conjugate of E ⊆367

C, σb(T ′) = σb(T ∗), E(T ′) = E(T ∗), and Π(T ′) = Π(T ∗). Furthermore,368

T ∗ satisfies SVEP if and only if T ′ satisfies SVEP, so, in the statement of369

Theorem 4.1, T ∗ may be replaced by the Hilbert adjoint T ′.370

We have already seen that quasi T HN operators are polaroid, so, in371

order to apply Theorem 4.1 to these operators, it has a certain interest to372

know whenever these operators have SVEP.373
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Theorem 4.3. Suppose that T ∈ L(X) admits, with respect to the decomposi-374

tion X = M ⊕ N , the representation T =

(

T1 T2

0 T3

)

, where T3 is nilpotent.375

Then T has SVEP if and only if T1 has SVEP.376

Proof. Suppose that T1 has SVEP. Fix arbitrarily λ0 ∈ C and let f : U → X377

be an analytic function defined on open disc U centered at λ0 such that378

(λI − T )f(λ) = 0 for all λ ∈ U . Set f(λ) := f1(λ) ⊕ f2(λ) on X = M ⊕ N .379

Then we can write380

0 = (λI − T )f(λ) =

(

λI − T1 −T2

0 −λI − T3

) (

f1(λ)
f2(λ)

)

381

=

(

(λI − T1)f1(λ) − T2f2(λ)
(λI − T3)f2(λ)

)

.382

Then (λI −T3)f2(λ) = 0 and (λI −T1)f1(λ)−T2f2(λ) = 0. Since a nilpotent383

operator has SVEP then f2(λ) = 0, and consequently (λI − T1)f1(λ) = 0.384

But T1 has SVEP at λ0, so f1(λ) = 0 and hence f(λ) = 0 on U . Thus, T has385

SVEP at λ0. Since λ0 is arbitrary then T has SVEP.386

Conversely, suppose that T has SVEP. Since T1 is the restriction of T387

to M and the SVEP from T is inherited by the restriction to closed invariant388

subspaces, then T1 has SVEP. �389

Every HN operator which is hereditarily polaroid has SVEP, see [14,390

Lemma 3.1], so, by Theorem 3.6, we have:391

Corollary 4.4. Every quasi T HN operator T ∈ L(H) has SVEP.392

Recall that a bounded operator K ∈ L(X) is said to be algebraic if393

there exists a non-constant polynomial h such that h(K) = 0. Trivially, every394

nilpotent operator is algebraic and it is well-known that if Kn(X) has finite395

dimension for some n ∈ N then K is algebraic. In [4] it is shown that if T396

is hereditarily polaroid and has SVEP, and K is an algebraic operator which397

commutes with T then T + K is polaroid and T ∗ + K∗ is a-polaroid.398

The following perturbation result has been proved in [4, Theorem 3.12].399

Theorem 4.5. Suppose that T ∈ L(X) and K ∈ L(X) an algebraic operator400

commuting with T ∈ L(X). If T ∈ L(X), or T ∗, has SVEP and T , or T ∗, is401

hereditarily polaroid, then f(T +K) and f(T ∗ +K∗) satisfies (gW ) for every402

f ∈ Hnc(σ(T + K)).403

Observe that in the case of Hilbert space operators404

T ∗ + K∗ is a-polaroid ⇔ T ′ + K ′ is a-polaroid,405

see Theorem [3, Theorem 2.3].406

Theorem 4.6. Let T ∈ L(H) be an analytically quasi T HN operator on407

a Hilbert space H, and let K ∈ L(H) be an algebraic operator commuting408

with T . Then both f(T + K) and f(T ′ + K ′) satisfies (gW ) for every f ∈409

Hnc(σ(T + K)).410
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Proof. Suppose that T ∈ L(H) is analytically quasi T HN , and let f ∈411

Hnc(σ(T )) be such that f(T ) is quasi T HN , Since T has SVEP then f(T ) has412

SVEP, by [1, Theorem 2.40]. Now, by Theorem 3.6 T is hereditarily polaroid,413

and hence, by Theorem 4.5, T +K is polaroid and T ′ +K ′ is a-polaroid (and414

hence polaroid). By Theorem 2.4 then f(T +K) is polaroid. Moreover, T +K415

has SVEP, by [8, Theorem 2.14] and hence f(T + K) has SVEP, again by416

[1, Theorem 2.40]. The assertions then follows by Theorem 4.1. �417

Theorem 4.6 gives to us a general framework and applies to all classes418

of operators (i)–(viii) considered in this paper (and much more!). Moreover,419

Theorem 4.6 considerably improves most the existing results in literature420

concerning Weyl type theorems for these classes of operators. Observe that,421

always in the situation of Theorem 4.6, the fact that f(T + K) is polaroid422

entails that all Weyl type theorems [as property (gw) and a-Weyl’s theo-423

rem] hold for f(T ′ + K ′), see [3] for definitions and details, in particular424

Theorem 3.10.425
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