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Patients with Parkinson’s disease develop motor disturbances often accompanied by peripheral
autonomic dysfunctions, including gastrointestinal disorders, such as dysphagia, gastric stasis and con-
stipation. While the mechanisms subserving enteric autonomic dysfunctions are not clearly understood,
they may involve the enteric dopaminergic and/or nitrergic systems. In the present study, we demon-
strate that rats with unilateral 6-hydroxydopamine lesion of nigrostriatal dopaminergic neurons develop
a marked inhibition of propulsive activity compared to sham-operated controls, as indicated by a 60%
reduction of daily fecal output at the 4th week of observation. Immunohistochemical data revealed that 6-
hydroxydopamine treatment did not affect the total number of HuC/D-positive myenteric neurons in both
the proximal and distal segments of ileum and colon. Conversely, in the distal ileum and proximal colon
the number of nitrergic neurons was significantly reduced. These results suggest that a disturbed distal
gut transit, reminiscent of constipation in the clinical setting, may occur as a consequence of a reduced
propulsive motility, likely due to an impairment of a nitric oxide-mediated descending inhibition during
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peristalsis.

© 2009 Elsevier Ireland Ltd. All rights reserved.

Parkinson’s disease (PD) is a multi-system disorder characterized
by the involvement of selected neuronal populations throughout
the central and peripheral nervous systems [3,6]. The pathologi-
cal hallmark of PD is the degeneration of dopaminergic, melanized
neurons of the substantia nigra pars compacta (SNc) projecting to
the striatum, which triggers the motor symptoms of the disease
(tremor, rigidity and bradykinesia) [5]. Although PD is considered
the prototypical movement disorder, PD patients also experience
numerous non-motor symptoms, including cognitive dysfunction,
sleep disorders, psychiatric symptoms and, especially, gastroin-
testinal (GI) dysfunctions [25]. Almost all parkinsonian patients
experience GI dysfunctions, such as dysphagia, nausea and other
dyspeptic symptoms as well as abdominal distension, and severe
constipation [24]. GI dysfunctions are now considered a core com-
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ponent of PD clinical picture [9,22,24,25], since they often precede
the onset of motor symptoms by many years and their occurrence
in otherwise healthy people has been associated with an increased
risk for PD [1,9,22,24,25].

GI motility is controlled by various mechanisms acting both
at central and local levels. Local control is exerted by the enteric
nervous system (ENS), an intrinsic neural network endowed in
the gut wall, that comprises a multitude of neurons mainly
organized in the myenteric (Auerbach’s) and submucosal (Meiss-
ner’s) plexuses [16]. Neuronal circuitries of the myenteric plexus
include intrinsic primary afferent neurons, ascending excitatory
and descending inhibitory pathways involved in the regulation of
peristalsis, leading to anal displacement of intraluminal contents
[11,16]. Dopamine has been recently claimed to be an enteric neu-
rotransmitter, since dopamine, tyrosine hydroxylase (TH), and the
dopamine transporter (DAT) co-localize within a subset of ENS neu-
rons [20].

Lewy bodies, the typical alpha-synuclein positive inclusions
found in the parkinsonian brain [7], have been also detected in the
myenteric plexus of PD patients, particularly within nitric oxide
synthase (NOS) and other enteric neurons [31]. These inclusions
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have been detected in patients with advanced pathology, but also
in non-symptomatic subjects with PD-related brain lesions limited
to the lower brainstem [8], thereby supporting the hypothesis that
the GI tract may be an early target of the disease [18].

So far, the involvement of enteric dopaminergic and nitrergic
neurons has been suggested in GI dysmotility. Early studies in rats
showed altered myoelectric activity in the duodenum, following
systemic administration of parkinsonian neurotoxin 1-methyl-4-
phenyl 1,2,3,6-tetrahydropyridine (MPTP) [13,27]. However, MPTP
does not cause parkinsonism in rats (unlike primates and mice)
[19], thus limiting the value of these observations. Anderson et
al. [2] reported a 40% reduction of dopamine neurons in the ENS
of mice receiving intraperitoneal MPTP administration, without
loss of cholinergic or nitrergic neurons. Recently, Tian et al. [28]
reported increased expression of TH and DAT in the GI tract of rats
bearing bilateral lesions of the SNc obtained by stereotaxic injec-
tion of 6-hydroxydopamine (6-OHDA), a neurotoxin with selective
toxicity for dopaminergic neurons [30]. Given the inhibitory nature
of dopamine in the ENS, an excess of enteric dopamine production
caused by 6-OHDA would have been expected to reduce the gas-
trointestinal propulsive motility, especially gastric emptying [28].
The inhibitory effect of dopamine is exerted through activation of
prejunctional D, receptors located on cholinergic neurons leading
to delayed gastric emptying. Indeed, in patients with PD, peripheral
dopamine D, antagonist domperidone improves gastric emptying
delayed by L-DOPA treatment [29].

This study was designed to investigate whether lesion of the
nigrostriatal tract induced by 6-OHDA in rats may be associated
with neuroanatomical and neurochemical modifications leading
to GI dysfunction. Currently, there is no evidence that a selective
nigrostriatal lesion may induce GI dysfunction in PD animal mod-
els. Following the lesion, we monitored the daily fecal output of
the rats for 4 weeks. Then, we investigated whether changes in
the nitrergic population of myenteric neurons occur in segments of
proximal and distal ileum and colon.

Male Sprague-Dawley rats (Charles River, Calco, Como, Italy),
weighing 250-280¢g at the beginning of the experiment, were
used. Animals were housed two per cages at 20-22°C on a 12-
h light-dark cycle with food and water ad libitum, until moved
to the metabolic cages (see below). Animal care and procedures
were in accordance with the European Union Directive 86/609 on
care and humane use of experimental animals. All experimental
procedures were approved by the Animal Research Ethics Com-
mittee of the University of Pavia. The number of animals used was
kept to the minimum necessary for a meaningful interpretation of
data.

Animals were anaesthetized with 50mg/kg of sodium-
thiopental and placed in a stereotaxic frame (Stoelting, Wood Dale,
IL, USA). 6-OHDA, dissolved in saline solution containing 0.02% of
ascorbic acid (Sigma, USA), was unilaterally injected in two sites
of the right medial forebrain bundle, at the following coordinates
(mm): (i) AP=-4.0, ML= -0.8, DV=-8.0 (9 ng/3 nL); (ii) AP = —4.4,
ML=-1.2,DV=-7.8 (7.5 pg/3 L) [23]. Injections were performed
at 1 pL/min, using a Hamilton 10-pL syringe. After injection, the
needle was left in place for 5 min before being retracted, to allow
complete diffusion of the medium and wounds were clipped. The
untreated contralateral area (left nigrostriatal tract) served as inter-
nal control. Control rats underwent sham stereotaxic surgery.

After recovering from surgery, rats were individually housed in
metabolic cages (Tecniplast, Varese, Italy) with stainless steel grid
floor equipped with an apparatus that allowed complete recovery
of feces outside the cage. The animals were supplied with water and
a standard pelleted diet ad libitum. Special feeders allowed accurate
measurement of food intake. After an equilibration period of 1 week
in the metabolic cage, physiological parameters including food (g)
and water (mL) consumption, body weight (g), and fecal excretion

(g) were measured daily, beginning from the second week, for 3
weeks. Data were analyzed and plotted as mean + SEM.

At the end of the 4th week, rats were sacrificed and perfused
transcardially with cold saline solution. Brains were removed and
frozen at —80°C. Serial coronal sections (25 wm thick) were cut
with a cryostat at the level of the striatum and SNc and mounted on
polylysine-coated slides. Every fourth section underwent immuno-
histochemical staining for TH to evaluate dopaminergic terminal
damage in the striatum and loss of dopaminergic cell bodies in
the SNc. Sections were postfixed in 4% neutral buffered formalde-
hyde (Carlo Erba, Milan, Italy), rinsed in Tris-buffered saline (TBS),
treated with 3% H,0, and incubated in TBS containing 10% nor-
mal goat serum/0.6% Triton X-100, for 30 min at room temperature.
Sections were then incubated overnight at 4°C with a mouse
anti-TH antibody (diluted 1:2000, Chemicon International Inc.,
Temecula, CA, USA), rinsed in TBS and re-incubated for 1h, at
room temperature, with a goat biotinylated anti-mouse IgG anti-
body (diluted 1:1000, Vector Laboratories, Burlingame, CA, USA).
Finally, sections were processed with the avidin-biotin technique
and reaction products were developed with nickel-intensified
3’,3’-diaminobenzidine tetra-hydrochloride, using commercial kits
(Vector Laboratories, Burlingame, CA, USA).

Segments of the GI tract (proximal and distal ileum and colon)
were excised and immersed for 15min in phosphate-buffered
saline (PBS) pH 7.2 and type-I calcium-channel blocker nicardipine,
as a muscle relaxant. Intestinal segments were then opened along
the mesenteric border, flushed out with PBS and pinned on balsa
wood, with the mucosa facing down. Specimens were subsequently
fixed overnight in 2% paraformaldehyde containing 0.2% picric acid
in 0.1 M PBS at 4 °C. Afterwards, specimens were removed from the
balsa wood, washed in dimethylsulfoxide, and stored at 4°C in PBS
containing 0.1% Na-azide.

Specimens were then processed as longitudinal muscle-
myenteric plexus whole mount preparations (LMMPs) by peeling
away the different layers (i.e. mucosa, submucosa and circular mus-
cle). Before immunostaining, LMMPs were incubated in 10% normal
goat serum in PBS containing 1% Triton X-100 for 30 min at room
temperature to reduce nonspecific binding. For double labeling
immunohistochemistry, LMMPs were incubated in a mixture con-
taining a mouse monoclonal anti-HuC/D (pan-neuronal marker)
(Invitrogen, USA) and a rabbit monoclonal anti-nNOS (marker of
nitrergic neurons) (Swant, Bellinzona, Switzerland) both diluted
(1:200 and 1:400, respectively) in a suitable medium (1.8% NaCl
in 0.01 M phosphate buffer with 0.1% Na-azide). After a 48-h incu-
bation at 4°C in a humid chamber, LMMPs were washed in PBS;
antigen-antibody complexes were identified with a mixture of
secondary antibodies, i.e. donkey anti-mouse IgG conjugated to
fluorescein isothiocyanate (FITC) and donkey anti-rabbit IgG conju-
gated to tetramethyl rhodamine iso-thiocyanate (TRITC) (Listarfish,
Milan, Italy), both diluted at 1:200 in PBS. LMMPs were then
mounted on gelatin-coated slides and cover-slipped with buffered
glycerol (pH 8.6).

LMMPs were examined with a confocal laser scanning micro-
scope (Leica TCS-SP system mounted on a Leica DMIRBE inverted
microscope). An Ar/Vis laser at 500/530 nm and 580/630 nm was
used to excite FITC and TRITC fluorescence, respectively. For each
sample, the total number of HuC/D-immunoreactive neurons was
counted in 10 microscopic fields (0.24 mm? each field) previously
determined by means of two orthogonal coordinates taken from a
table of random numbers and measured on the movable stage of the
microscope. Therefore, for each preparation, a total area of 2.4 mm?
was evaluated. To determine the proportion of nNOS immunola-
beled neurons, at least 500 HuC/D-immunoreactive neurons were
counted in the LMMPs. Thus, the number of nNOS immunolabeled
neurons was expressed as percentage of HuC/D-immunopositive
neurons and calculated as mean + SEM.
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CONTROL

Fig. 1. Representative examples showing TH immunoreactivity (dark staining) in the striatum and substantia nigra of rats treated with 6-OHDA injection into the right medial
forebrain bundle. Compared to untreated animals, note the marked decrease (virtual lack) of dopaminergic fibers and neuronal cell bodies in the striatum and substantia
nigra (right panel) in rats receiving the central unilateral injection of 6-OHDA.

Statistical analysis was performed using GraphPad Prism 3.
Comparisons between groups were made using Student’s t-test for
unpaired data or two-way analysis of variance (ANOVA) followed
by a Bonferroni post-hoc test. P values < 0.05 were considered sig-
nificant.

Rats injected with 6-OHDA in the right hemisphere showed
complete, ipsilateral loss of dopaminergic (TH-positive) terminals
and cell bodies in the striatum and SNc, respectively (Fig. 1). No
changes in TH immunoreactivity were detected in control rats.

Compared to controls (n=12), animals with nigrostriatal lesions
(n=13) showed a significant (P<0.001) reduction in daily fecal
output throughout the 3rd and 4th post-lesional weeks (Fig. 2A),
reaching a nadir at the end of the observational period (—60%).
Conversely, food and weight gain throughout the 3 weeks of
observation were equivalent in the two groups (Fig. 2B and D).
Concerning water consumption, the difference upon time between
treated rats and controls was not significant; however, direct com-
parison of daily data revealed a significant difference in water
consumption during days 7-14 and 17 and 21 (values ranging from
P<0.05 to P<0.001) (Fig. 2C).

The total number of HuC/D immunoreactive myenteric neurons
did not change between 6-OHDA treated rats and controls in any of
the selected Gl regions (Fig. 3). However, we observed differences
when the percentage of HuC/D immunolabeled neurons express-
ing nNOS was assessed. In particular, rats with nigrostriatal lesions
showed a significant reduction of nNOS-immunoreactive neurons
in the distal ileum (—15%) (P<0.005) and in the proximal colon
(—14%) (P<0.05), whereas no difference was observed in the prox-
imal ileum and distal colon (Fig. 3).

The neurochemical substrate of PD-related GI dysfunction is
still unclear, mostly because of the paucity of experimental stud-
ies addressing this issue. In this study, we investigated the effects
of a complete, unilateral lesion of the nigrostriatal pathway on a
specific parameter of GI function, such as the daily fecal output.
Furthermore, we tested whether the central dopaminergic den-
ervation was able to affect the nitrergic component of myenteric
innervation, one of the preferential targets of PD within the ENS
[8,18]. We found that lesioned rats showed both functional and
neurochemical alterations of the GI tract, including a reduction of
daily fecal output and percentage of myenteric nitrergic neurons.

The reduction of daily fecal output was present throughout the
3rd and 4th week of observation following 6-OHDA injection, the
lowest value (—60%) being recorded at the end of the observation

6-OHDA

period. Previous evidence in the same model showed that 6-OHDA
injection causes a fast lesion that reaches full expression within
the first week after surgery. In fact, cell loss in the SNc occurs in
12-24h followed, within 3-4 days, by marked lesions of striatal
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Fig. 2. Fecal daily output (A), food (B) and water consumption (C) and weight gain
(D) in control and 6-OHDA treated rats. Compared to controls, treated rats showed
a significant (P<0.001) reduction in daily fecal output throughout the 3rd and 4th
post-lesional weeks (A). A direct comparison of the daily data revealed a significant
difference in water consumption during the days 7-14 and 17 and 21 (values ranging
from P<0.05 to P<0.001) (C).
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Fig. 3. Quantitative analysis of Hu and nNOS immunoreactive myenteric neurons. The number of Hu positive myenteric neurons is unchanged in the proximal and distal
ileum, as well as in the proximal and distal colon (A, C, E and G, respectively) of controls and 6-OHDA treated rats. Conversely, compared to control rats, the percentage of
nNOS expressing neurons is significantly reduced in the distal ileum (D: P<0.005) and proximal colon (F: P<0.05), whereas unchanged in the proximal ileum (B) and distal

colon (H), of 6-OHDA treated rats. Calibration bars: 10 pm.

dopaminergic terminals [12]. Thus, the nigrostriatal damage is not
immediately associated with a reduced fecal output, implying that
enteric dysfunction occurs later with respect to the early central
lesions.

We considered the possibility that changes in food and water
intake may have influenced these results. Indeed, Greene et al.
[17] reported that rats chronically treated with systemic rotenone,
a mitochondrial toxin that replicates PD features in rodents [4],
showed a transient decrease in stool frequency and weight loss.
Aphagia and weight loss have been described in rotenone-treated
animals [4,14] and may play a major role in the decreased stool fre-
quency observed in this model. Marked aphagia also represents a
complication in animals with 6-OHDA bilateral lesion of the nigros-
triatal pathway, although it is not usually reported in animals with
a unilateral lesion [12]. For this reason, we monitored food con-
sumption and weight gain in lesioned and unlesioned animals. Both
parameters were similar in the two groups, thereby ruling out the
possibility that a reduced fecal output in lesioned rats was due to
a reduced food intake. Concerning water intake, a significant dif-
ference was observed at days 7-14 and occasionally at other time
points (days 17 and 21). This implies that there was no difference
in water intake during the 3rd and 4th week, when the reduction in
daily fecal output was observed in lesioned rats. Thus, we believe
the early difference in water intake is unlikely to have influenced

the late changes in defecatory behaviour. Nevertheless, the present
data cannot rule out an influence of modified water intake on daily
fecal output in treated rats and further experiments are necessary
to address this issue. Our findings are reminiscent of the constipa-
tion that affects the lower Gl tract in PD patients, which can precede
the onset of motor symptoms by many years [1]. In fact, infrequent
bowel movements assessed in mid-life have been associated with
an increased risk of developing PD [1]. An association between con-
stipation in PD patients and a dopaminergic defect in the ENS has
been previously demonstrated [26]. Apparently, this is a poten-
tial mechanism leading to gut transit abnormalities observed in
patients with PD.

Based on our results, however, the enteric nitrergic system may
also play a role. Overall, available data indicate either unchanged
[2] or increased numbers of myenteric nitrergic neurons in the
MPTP model of PD [10]. In our hands, rats lesioned with 6-OHDA
showed a significant reduction in the percentage of myenteric neu-
rons expressing nNOS in the distal ileum and proximal colon, while
the total number of neurons was unchanged. These findings hold
a scientific rationale to explain the reduced daily fecal output, as
observed in our functional experiments. Indeed, enteric nitrergic
neurons, which are strategically placed on descending pathways
of peristalsis, exert a major contribution in the regulation of gut
propulsion [15,16]. An impaired descending inhibition related to a
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nitrergic defect in the distal gut may very well explain the reduction
of fecal output in lesioned rats.

An important question arising from this study is how the nigros-
triatal dopaminergic denervation may affect the nitrergic system in
the ENS. We discard the hypothesis that centrally administered 6-
OHDA may have systemic effects by diffusing from the injection
site into the blood stream. In recent experiments, we found no
detectable levels of 6-OHDA in the bloodstream during the first
24 h following stereotaxic injection (Blandini, unpublished data).
Furthermore, the reduced expression of enteric nNOS in a region-
specific manner argues against the possibility that a “humoral
circulating factor”, triggered by 6-OHDA treatment, might be
responsible for the nitrergic system alterations. An involvement of
extrinsic pathways (parasympathetic and/or sympathetic), linking
the CNS to the ENS, is probably the most appropriate explana-
tion of the neurochemical plasticity in our model. In line with
this, there is evidence that sympathetic denervation is associated
with increased nNOS expression in the ENS, suggesting that extrin-
sic nerve pathways may have an impact on the enteric nitrergic
expression [21,32].

In conclusion, in our rat model of PD, we demonstrated a marked
reduction of daily fecal output, reminiscent of constipation in the
clinical setting, along with a reduced percentage of enteric nitrergic
neurons. Taken together, these data provide a basis to understand
the pathophysiology of GI tract abnormalities in PD patients.
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