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ments. For comparison purpose, the fluctuating elastic modulus of the material is modeled following both
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cept, able to limit the overestimation affecting ordinary interval analysis, is introduced. Approximate
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1. Introduction

Almost all structural systems exhibit physical and geometrical
uncertainties due to modeling inaccuracies, measurement and
manufacturing errors or other factors. These sources of uncertainty
are usually described following two contrasting points of view,
known as probabilistic and non-probabilistic approaches. Probabilis-
tic approaches represent the uncertain parameters as random vari-
ables or random fields with given probability density function
[1,2]. Criticism on the credibility of these approaches arises when
they are based on limited data [3]. If available information on the
uncertain parameters is fragmentary or incomplete, non-probabi-
listic approaches [4], such as convex models, interval models and
fuzzy sets [5], can be alternatively applied. The interval model turns
out to be a very useful tool when available data provide accurate
information on the range within which a non-deterministic struc-
tural property may vary. Indeed, this model is derived from the
interval analysis [6-8] in which the number is treated as an interval
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variable ranging between its lower and upper bounds. In spite of
the simplicity of the interval concept, the application of the inter-
val analysis to practical engineering problems often leads to very
complex algorithms. For this reason, in the literature several
approximate methods have been proposed to perform both the sta-
tic and dynamic analysis of structures with interval uncertainties
[9-15]. Moreover, the “ordinary” interval analysis [6] suffers from
two main shortcomings which hinder its application to structural
engineering problems: the first one is the so-called dependency
phenomenon; the second one is the inability to handle spatial
dependency of a model property. The latter problem involves the
introduction of the so-called interval field [16,17] as a proper exten-
sion of the random field concept within the non-probabilistic
framework. On the other hand, the dependency phenomenon often
leads to an overestimation of the interval solution width that could
be catastrophic from an engineering point of view [3,8,18]. This oc-
curs when an expression contains multiple instances of one or
more interval variables.

Both probabilistic and non-probabilistic models have been
widely used in the literature to investigate the effects of uncertain-
ties in the context of the classical local continuum models. How-
ever, nowadays it is recognized that classical local continuum
mechanics that is an intrinsically scale-free theory fails to predict
several phenomena, such as screw dislocation, dispersion of elastic
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waves, stress tip concentration, where long-range intermolecular
forces and microstructure play a significant role. A considerable re-
search effort has been devoted since the sixties of the last century
(see e.g. [19-21]) to develop non-local models of elastic solids aim-
ing to capture, in a continuum field formulation, the influence of
the inner microstructure of the matter. Some of these models in-
volve the introduction of additional contributions in the stress—
strain relations of materials in terms of integrals (see e.g. [22,23])
or gradients (see e.g. [24,25]) of the strain field, yielding the so-
called integral or weak and gradient or strong theories of non-local
elasticity. A quite different description of non-local effects as long-
range body forces, referred to as mechanically-based model of non-
local elasticity theory, has been recently proposed [26-29].

The random microstructure of materials has been analyzed in
the context of weak and strong models of non-local elasticity at
the beginning of the century [30,31]. Relying on the mechani-
cally-based approach, a random model of long-range interactions
in 1D heterogeneous solids with uncertain mass density has been
recently developed [32].

In this paper, the effects of Young’s modulus uncertainty on the
response of 1D heterogeneous solids with long-range interactions
subjected to static loads are analyzed. Long-range interactions
are handled resorting to the mechanically-based model of non-lo-
cal elasticity. The fluctuations of the uncertain material property
along the 1D solid are modelled by adopting both a non-probabilis-
tic and a probabilistic approach, namely both as an interval field
and a homogeneous random field. An efficient procedure is pro-
posed to characterize the interval and random displacement fields
describing the response of the 1D non-local solid with uncertain-
but-bounded and randomly varying Young’s modulus, respectively.
The following key steps are involved: (i) the use of the so-called
improved interval analysis presented in Ref. [15] in order to limit
the effects of the dependency phenomenon; (ii) the introduction
of a novel definition of the interval field able to describe the depen-
dency between values of the fluctuating elastic modulus at various
abscissas along the 1D solid; (iii) the finite difference discretization
of the governing equations; (iv) the evaluation in explicit approx-
imate form of the lower and upper bounds of the interval displace-
ment field for the 1D non-local solid with interval Young's
modulus; (v) the derivation of approximate closed-form expres-
sions of the mean-value vector and covariance matrix of the sto-
chastic response for the 1D non-local solid with randomly
varying elastic modulus.

The main novelties introduced in the present study may be
summarized as follows: (i) the use of the interval model to describe
material property uncertainty in 1D non-local elastic solids; (ii) a
novel definition of the interval field, quite different from existing
ones [16,17], in order to account for the spatial dependency of
the uncertain-but-bounded material property; (iii) the evaluation
in explicit approximate form of the bounds and statistics of the re-
sponse within the context of the interval and random models of
the uncertain Young’s modulus, respectively.

Numerical results concerning a non-local elastic bar under ten-
sion with uncertain Young’s modulus of the material are presented
to demonstrate the effectiveness of the proposed procedure. The
consistency of the novel interval field definition is also scrutinized
through appropriate comparisons between the interval and sto-
chastic responses.

2. The long-range interaction model in a one-dimensional
heterogeneous solid

In this section, the mechanically-based model of 1D solids with
long-range interactions, recently proposed by Di Paola et al. [26-
29], is briefly summarized. To this aim, let us consider a 1D elastic

bar of length L referred to a coordinate system 0 — x positive right-
ward (Fig. 1a).

In the context of the mechanically-based model of non-local
elasticity, it is thought that the actions applied to a volume ele-
ment dV(x) at the abscissa x consist of three contributions: the
well-known local Cauchy stress, ¢'(x), the external body force
field, b(x), and the additional central body forces exerted by non-
adjacent volumes dV(¢) located at the abscissas ¢ (Fig. 1b). More-
over, it is assumed that the long-range interactions between vol-
umes dV(x) and dV(¢) depend on the product of the elementary
interacting masses, dM(x) = p(x)dV(x) and dM(¢&) = p(& )dV(¢&), p(x)
and p(¢) being the mass density of the material at locations x
and ¢, as well as on their relative axial displacement field
n(x, &) =u(&) — u(x) (see Fig. 1b), i.e.:

q(x, )AM(x)dM(&) = cgp?A(X)A(E)g(x, E)n (x, &)dxdE (1)

where q(x,¢&) = cqg(x, &n(x, &) is the specific long-range force; [cq] =
F/LM? is a physical material-dependent force constant; A(x) is the
cross-section at the abscissa x; p = p(x) = p(¢) denotes the mass
density of the material herein assumed constant along the bar;
g(x,¢) is a material-dependent, symmetric, real-valued scalar func-
tion which must be strictly positive to satisfy the Drucker stability
criterion. Moreover, the function g(x, ¢) is monotonically decreasing
with the distance |x — ¢| between interacting volume elements.
Then, the equilibrium equation of the 1D heterogeneous solid
with long-range interactions takes the following form [29,32]:

o [E00nw TG et [ a@igte i s

= —A(X)b(x) ()

where E*(x) is a non-local elastic modulus, related to the measure of
the Young’s modulus of the material E(x) as E*(x)=E(x)p;, with
0 < B1 <1 being a dimensionless real coefficient which weights
the amount of local effects. The non-local elastic modulus E*(x) rep-
resents the value of the elastic modulus measured in a specimen at
a sufficient distance from the boundaries that any edge effect may
be disregarded.

Finally, the boundary conditions associated to the integro-dif-
ferential equation in Eq. (2) read:

u(0) =ug or E*(x)A(x)% - —Fo:
. du(x)| (3a,b)
u(L) = u, or E"(x)A(X) i F,

where u; and F; (i=0,L) are prescribed displacements and loads at
x=0 and x = L, respectively.

A remarkable feature of the mechanically-based model of
non-local elasticity is that the static boundary conditions in
Eqgs. (3a,b) involve only the local Cauchy stress. Indeed, the
non-local effects, being represented by long-range body forces,
vanish at the edges of the body where the applied external trac-
tions are equilibrated only by the contact Cauchy stress (see e.g.
[27,28]). Moreover, by performing a finite difference discretiza-
tion of Eq. (2), the physical implications of the mechanically-
based model of non-local elasticity can be captured, as will be
outlined next.

The aim of the present study is to analyze the effects of the
Young’s modulus uncertainty on the non-local displacement field
of the 1D heterogeneous solid with long-range interactions ruled
by Eq. (2). For comparison purpose, in the next sections both the
well-known probabilistic approach and the interval model will
be adopted to represent the uncertain material property.
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Fig. 1. (a) One-dimensional elastic solid; (b) mechanical representation of long-range interactions.

3. Interval model of uncertainty
3.1. Improved interval analysis

Following a non-probabilistic approach, the Young’s modulus of
the material E*(x), at the generic abscissa x of the 1D heteroge-
neous solid with long-range interactions (see Eq. (2)), is modelled
here as a variable which can assume real values inside a real
interval.

The interval model of uncertainty, stemming from the interval
analysis [6,8], turns out to be very suitable when the range of var-
iability of a structural parameter is known (see Appendix A).
Denoting by IR the set of all real interval numbers, the bounded
interval of real numbers of £ [o, &] € IR such that o < o < &, can
be introduced. The symbols « and & are the lower bound and upper
bound of the interval, respectively, while the apex I characterizes
the interval variables. Mathematical derivations involving real
numbers o bounded by intervals should be performed by means
of the “ordinary” interval analysis [6]. Unfortunately, the “ordinary”
interval analysis suffers from the so-called dependency phenomenon,
[3,8,18] which often introduces a high amount of conservatism
leading to useless results for real sized structures. This is due to
the inability of ordinary interval arithmetic to keep track of the
dependency between interval variables. Therefore, when an
expression contains multiple instances of one or more interval
variables, the operand interval numbers are erroneously treated
as independent. When the operands are partially dependent on
each other, not all combinations of values in the given intervals
will be valid and the exact result interval will generally be smaller
than the one produced by the formulas. In an attempt to limit the
catastrophic effects of the dependency phenomenon, the general-
ized interval analysis [33] and the affine arithmetic [34,35] have
been introduced in the literature. In these formulations, each inter-
mediate result is represented by a linear function with a small
remainder interval [36]. In the context of the stochastic analysis
of structures with uncertain-but-bounded parameters, following
the philosophy of the affine arithmetic, Muscolino and Sofi [15] pro-
posed an improved interval analysis based on the definition of the
so-called extra symmetric wunitary interval (EUI) variable
el £ [-1,+1]. The subscript i in the interval variable é! indicates
that the variable is associated to the ith uncertain-but-bounded
parameter. Moreover, unlike the unitary interval used in the “or-

dinary” interval analysis (see Appendix B), the EUI is defined in such
a way that the following properties hold:

(4a-f)

Xiéf i}’iég = (xi £Y;)é;; Xié! X }’iég = XiJ/i(éf')z =xyi[1,1].

In these equations, [1,1] = 1 is the so-called unitary thin interval. It is
recalled that a thin interval occurs when o = & and it is defined as
of 2 [a, 0], so that o € R.

Then, in the context of the improved interval analysis, the generic
interval variable o/ can be expressed in the so-called affine form,
i.e.:

ol = o + Acié!, (5)

where &/, is the EUI variable associated to o

to =@ t3); An=2 (52

denote the midpoint and the deviation of o, respectively.

(6a,b)

3.2. Interval field

Two extreme approaches are commonly used to model uncer-
tainties within both a probabilistic and non-probabilistic frame-
work. The first one assumes that an uncertain parameter can be
represented as a single (random or interval) variable constant over
the whole domain. In the second approach, a (random or interval)
variable is introduced for each element of a finite element model or
a dicretized system. It is argued that these two approaches are both
unrealistic since they imply total spatial dependency and spatially
independency of the uncertain parameter, respectively. Moreover,
introducing an uncertain parameter for each element may involve
heavy computations.

As known, within a probabilistic context, the spatial depen-
dency of uncertainties is handled by the random field concept
which may be viewed as an intermediate model between the
two extreme approaches discussed above. While interval variables
are extensively used as the non-probabilistic counterpart of
random variables, handling spatial dependency is still a main
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challenge in the interval analysis of structural systems. In order to
cope with this problem which hinders the application of the “or-
dinary” interval analysis to structural engineering problems,
Moens et al. [16] introduced the concept of interval field. In analogy
with the random field, an interval field is conceived as a more real-
istic model of interval uncertainties able to define a form of depen-
dency between adjacent values that cannot differ as much as
values that are further apart. Physically, an interval field describes
an uncertain model parameter which exhibits a spatially depen-
dent variability bounded by lower and upper values. Typical exam-
ples are uncertain material properties or loads which possess a
spatial character, namely they take different values over a given
domain within the same realization.

In order to gain further insight into this concept, let us consider
the case in which the variability of the uncertain elastic modulus
along the 1D non-local solid introduced in Section 2 is represented
by the following interval function:

[E*(x), E* (x)] (7)

where E*(x) and E*(x) are the lower bound and upper bound of the
function E*(x) for every x € R within the domain [0,L]. Without loss
of generality, it is assumed that the interval function E*(x) can be
defined as follows:

El(x) =

E'(X) = Es[1+B'(x)], x€[0,L] 8)
with midpoint E; € R taken constant over the whole domain [0,L]
and deviation AE*(x) given, respectively, by:
E* E* E* _E*
(X +E®) EW-E® o
2 2
9)
In the previous equation, mid{-} denotes the midpoint of the inter-
val quantity between curly parentheses.
Furthermore, in Eq. (8) B'(x) = [B(x), B(x)] denotes a dimension-
less interval function having zero midpoint and deviation
AB(x) < 1,i.e.

_ B )+B(X)

mid{E"(x)} = =E); AE(x)

AE'(0) _E(X) -E®
2 E,  2E

x € [0,L].
(10a,b)

The value of the dimensionless interval function B/(x), at the generic
abscissa x, is partially dependent on the values it takes at the other
abscissas ¢ different from x. The key issue is to assume an appropri-
ate pattern for modelling the spatial dependency of the interval
function B!(x). Such spatial dependency is assumed here to be gov-
erned by a real deterministic symmetric non-negative function,
I'g(x,¢), defined as:

mid(E” (x)E"(¢))

Ts(x, &) = mid{B'(x)B'(¢)} (E,)?
0

~1, x¢eloL.

(11)

Notice that I'p(x,¢) represents the midpoint of the dimensionless
interval function B'(x)B'(¢) which is related to the midpoint of the
interval function E*(x)E*! (¢) as specified in Eq. (11).

If the mid{-} operator is viewed as the analogue of the stochastic
average operator, within the interval framework, the function
I'p(x,¢) in Eq. (11) may be regarded as the non-probabilistic
counterpart of the autocorrelation function characterizing
probabilistically a random field. Based on this analogy, a proper
generalization of the Karhunen-Loéve decomposition is applied
here, i.e.:

00

= Ziilﬁi(x)l//i(f) = I'p(x,%) =

i=1

T(x,¢) mid{(B'(x

D v
(12)

where J;, (i=1,2,...),is the ith eigenvalue of the bounded symmetric
non-negative function, I'p(x, &), and y,(x) is the corresponding eigen-
function, which satisfies the following orthogonality condition:

t 1 ifi=j
/Onb,-(X)t//j(X)dxf{o if i (13)

The eigenproperties of the function I'g(x, ¢) are found by solving the
following homogeneous Fredholm integral equation of the second
kind:

[rons

The eigenvalues solutions of this eigenproblem are real positive
numbers and the associated eigenfunctions are real functions. No-
tice that the expansion in Eq. (12) is usually truncated after N terms
to reduce the computational burden of the subsequent structural
analysis.

Based on the decomposition (12) and taking into account Eq.
(11), the following expression of the dimensionless interval func-
tion B!(x) is readily found:

N
i=1

It can be observed that Eq. (12) allows to express the dimensionless
interval field B/(x) as superposition of N interval functions associ-
ated to the EUI variables &! (i=1,2,...,N).

Upon substitution of Eq. (15) into Eq. (8), the interval function
E*l(x) can be rewritten in the following form:

1+Z\/—d/, } x €0, (16)

x)dx = Jih;(&). (14)

x € [0,L]. (15)

E*I E*

where é! is the ith EUI variable.
Then, the lower bound and upper bound, E*(x) and E*(x), of the
interval Young’s modulus E*/(x) in Eq. (16) can be defined as:

E*(x) = Ej[1 — AB(x)]; E*(x) =Ej[1+AB(x)], xc[0,l] (17a,b)
with
AB(x) = AE» Z‘\/’w ‘ c[0,1] (18)

where | - | denotes the absolute value of -.

It is worth emphasizing that the proposed definition of the
interval field (16) is formally analogous to the model proposed
by Verhaeghe et al. [17]. The main difference consists in the use
of the EUI variable é! and of the basic features of the improved inter-
val analysis [15], briefly summarized in the previous subsection. In-
deed, it can be readily verified that substituting Eq. (15) into Eq.
(11) and taking into account the properties of the EUI variable re-
ported in Eq. (4), the function I'p(x,¢) defined in Eq. (12) is recov-
ered. This result cannot be obtained by means of the “ordinary”
interval analysis (see Appendix B).

The consistency of the presented interval field definition can
also be assessed by examining the two limit cases of total spatial
dependency and spatially independency of the uncertain property.
To this aim, let us assume that the function governing the spatial
dependency of the interval field E*/(x) has the following exponen-

tial form:
X~ 5\) 19)
lp

Ta(e.8) = Gexp (-
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where Cg and I are appropriate parameters. It can be argued that Cg
affects the deviation amplitude of the interval field, while the value
of I actually rules the spatial dependency of the uncertain property.
In other words, Iz may be regarded as the non-probabilistic counter-
part of the correlation length characterizing random fields. In fact,
as Iz decreases only values of the Young’s modulus at close locations
are dependent on each other. On the other hand, if Iz — oo, the func-
tion (19) reduces to Cé. Physically, this circumstance corresponds
to the total dependency condition in which the uncertain property
is described by a single interval variable constant over the
whole domain [0,L], that is the symmetric interval function B/(x) re-
duces to:

B'(x)=b' = be'. (20)

The radius b of the symmetric interval variable b’ in Eq. (20) can be
evaluated from Eq. (11) which yields:

mid{B'(x)B' (&)} =b* =Co=b=Cs (21)

being &' x &' = [1,1] (see Eq. (4)) and T's(x, &) — C2 Then, the inter-
val Young’s modulus is defined as follows:

E' = Ej(1 + be') (22)
where b = Cz. The bounds of E* read:

=E,(1-b); E =E;(1+b). (23a,b)
On the other extreme, if Iz —» 0 the uncertain property turns out
to be spatially independent and the proposed interval field
model reduces to a series of independent interval variables,
one for each grid point or element of the discretized domain

[0,L].

4. Long-range interactions in presence of uncertain-but-
bounded elastic modulus

4.1. Interval integro-differential equilibrium equation

The equation governing the response of the 1D heterogeneous
solid with uncertain-but-bounded elastic modulus in presence of
long-range interactions can be readily derived by substituting
the expression (16) of the interval elastic modulus E*(x) into
Eq. (2), which yields the following interval integro-differential
equation:

g4 {A(x du

0 dx

I
+ EOZ\/_e1 dx |: WI ) (X):|

AP / AR, &)lu'() — U (x))de
— —AWb(x) (24)

where u/(x) denotes the interval displacement function. Equation
(24) must be supplemented by the pertinent kinematic and static
boundary conditions given by Eq. (3), with the interval Young’s
modulus defined as in Eq. (16).

Following the strategy commonly adopted within of a non-
local deterministic setting [27], a finite difference discretization
of Eq. (24) is performed here by subdividing the bar domain
[0,L] into n intervals of amplitude Ax, so that x;=(j — 1)Ax de-
notes the abscissa of the j-th grid point with j=1,2,...,n. After
multiplying both sides by Ax, the discretized form of Eq. (24)
reads:

E;
Ax [A U,y — (A + Ay +Aj—1”}'>1]
N
+ Z [Squ+1 (s + sij*])ujl + Sij-1 ujl‘fl} é|
i=1
n
+ cq(pr)ZAjZArg(xj,xr)(ug u}) = —bAjAx (25)
r=1
where A; = A(x), uf =u'(x;), bj = b(x;) and s; = (EgyyAiv/ai)/Ax
with ¥y =yi(x), (i=1,2,...,N; j=1,2,...,n).
lntroducmg the followmg positions:
ki = %; K = A (pAX) g (%, X,), (26a,b)

the set of linear interval equations in Eq. (25) can be written in com-
pact form as:

Ku' = (l(o + Al(g)u’ =F (27)

where o is the vector of order n collecting the interval displace-
ments u} at the grid points x;, (j=1,2,...,n); F is a n-vector whose
j-th element, F; = bA;A x, is the resultant of the body force field ap-
plied at the grld point x;; Ko = K* + K™ is the stiffness matrix of the
nominal system, i.e. with E*(x) = Ej, which can be evaluated as the
sum of the local and non-local stiffness matrices, K* and K™,
respectively, defined as:

k3 —k; 0 0o - 0
-k kK+k ok 0o - 0
K=1|20 k5 k+ky —ky - 0 ;
0 0 0 0 k; k;
W S (28a,b)
Kkl ke — ki
ko b _
I((nl) _ 22 23 2n
SYM 7l<,,”’m
kn':f

Z ki ) Notice that
v#)
in Eq. (28b), the main features of the distance-decaying function,
g(x, &), are fulfilled and the matrices K* and K™ turn out to be sym-
metric and positive-definite matrices also for heterogeneous
materials.

The interval stiffness matrix K’ in Eq. (27) involves an additional
local contribution given by the interval matrix AK} associated to
the EUI variables, which can be expressed as:

The diagonal terms of the matrix K" read k](.j"l

N
AKG = "ASg;é]. (29)

i=1

In the previous equation, ASg; is a tridiagonal symmetric and posi-
tive-definite matrix, given by:

Si1 —Si1 0 o - 0
—Sit Sit +S2 —Si2 o - 0
ASpi=| O S Sn+Sz —S3 0 (30
0 0 0 0 Sin-1 + Sin

The finite difference discretization of the integro-differential Eq.
(24) shows that the discrete counterpart of the continuous mechan-
ically-based model is equivalent to a point-spring network [27].
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Within a deterministic setting (see Eq. (2)), indeed the contact
forces are represented by linear springs of axial stiffness kj’-‘ (see
Eq. (26a)) and the long-range interactions are described by linear
springs of distance-decaying stiffness kj(.f” (see Eq. (26b)) connecting
all non-adjacent points. When the Young’s modulus is modelled as
an interval field according to Eq. (16), additional contributions to
the contact forces arise (see Eq. (25)) which are mechanically equiv-

alent to linear springs of interval axial stiffness.
4.2. Bounds of the interval response

Once the finite difference discretization of Eq. (24) has been
performed, the solution of the problem consists in the evaluation
of the narrowest interval u' containing all possible vectors, u, sat-
isfying Eq. (27), when the elements of the matrix ASg;é! assume all
possible values inside the intervals [—s;,+s;]. Preliminarily, it is
useful to underline that the square interval matrix K is regular,
that is each matrix K € K' is non-singular [37] (see Appendix B).
Therefore, the solution of Eq. (27) exists for all K € K' and can be
written, by adopting the interval formalism, as:

1 N -1
u = (KO + AK;) F= (l(o + ZASB,,@;) F. (31)
i=1

Under the assumption of small dimensionless deviation of the inter-
val elastic modulus, i.e. AB(x) < 1 for all x € [0,L], an efficient pro-
cedure for the solution of the set of linear interval equations (27)
is herein proposed. The procedure relies on the following decompo-
sition of the local interval matrix AK}:

AKp = ZASB,e = ZZSB W[ e (32)

i=1 (=1

where s, is the ¢th column of the matrix A Sg; in Eq. (30) and w, is
a column vector of order n containing all zeros except the ¢th ele-
ment which is equal to 1. Substituting Eq. (32) into Eq. (27), the
interval stiffness matrix K’ takes the following form:

N n
K =Ko+ AKy =Ko+ ) 0> spiw,e]. (33)
i=1 (=1
Notice that, by virtue of the decomposition (32), the deviation, AK},
with respect to the nominal stiffness matrix, Ko, is expressed as
superposition of N x n modifications of rank one. Then, following
the formulation proposed by Muscolino and Sofi [38,39], after some
algebra, the approximate inverse of the interval stiffness matrix in
Eq. (33) can be evaluated in explicit form as:

I o4

where the following quantities have been introduced:

(Ko + AK} ) Ak

dyi = ‘w}l(gl St ( Dy = Ky 's5, WK, (35a,b)
Eq. (34) holds if and only if the following condition is satisfied:
dgi < 1. (36)

Upon rewriting the ratio appearing in the summation in Eq. (34) in
affine form, the following approximate explicit expression of the
interval vector solution u' € IR" is obtained:

i=1 (=1

N n
I((;] + ZZ(GO‘M + Aai/ég)DB.ié:| F (37)

where the quantities ag; and Aay, after some interval algebra, can
be written as:

Ao = d“'i‘; i Agy = % (38a,b)
1- dB.ié 1- dB.i[

From an engineering point of view, within the interval framework,
the main goal of structural analysis is the evaluation of the narrow-
est interval which certainly contains the response. This interval is
bounded by the lower and upper bounds, u and u, of the interval re-
sponse vector u'. Based on the explicit solution in Eq. (37) and
adopting the interval formalism, the vectors u and u can be evalu-
ated as follows:

u=1uy— Au;u = up + Au, (39)
where

N n N
u = (KO] + ZZGO,MDB.M) F, Au= Z

i=1 (=1 i=1

n

ZAawDB,MF

=1

(40a, b)

are the midpoint and the deviation of the interval displacement
vector u’. The symbol || in Eq. (40b) denotes the component wise
absolute value.

5. Long-range interactions in presence of randomly varying
elastic modulus

5.1. Random field

Following the well-known probabilistic approach, the Young’s
modulus function E*(x) of the 1D heterogeneous solid with long-
range interactions is now modelled as a homogeneous Gaussian
random field, defined as:

E'(x) = Ej[1+B(x)], xe€[0,L] (41)

where B(x) is a homogeneous zero-mean Gaussian random field
describing the dimensionless fluctuation of the elastic modulus
about the nominal or mean-value E;. The random field B(x) must
satisfy the mathematical restriction |B(x)| < 1 to yield always posi-
tive values of E*(x). Notice that, such a condition is not mathemat-
ically satisfied for Gaussian random fields, but as small fluctuations
are considered in the analysis, then we may assume a Gaussian dis-
tribution of the elastic modulus along the bar axis. Let E{ - ) denote
the mathematical expectation operator so that first-and second-or-
der statistics of the random field B(x) read:

Hs(x) = E(B(x)) = 05 Rg(x. &) = E(B(x)B(9)). (42)
By applying the Karhunen-Loéve decomposition, the autocorrela-
tion function Rg;(x, &) of the random field B(x) can be expressed as:

D P, (43)

Rgp(x,¢) = Ziilﬁi(x)l//i(f) = 05(X) = Rgz(x,x)
i=1

where %; (i = 1,2,...) is the i-th eigenvalue of the bounded symmet-

ric non-negative function Rz;(x,¢) and y;(x) denotes the corre-

sponding eigenfunction, which satisfies the orthogonality condition

(13). The eigenproperties of the autocorrelation function Rg(x, ¢)

can be evaluated by solving the following integral eigenproblem:

/ Ry (x,

The eigenvalues are real positive numbers and the associated eigen-
functions are real functions. As usual, the expansion (43) is trun-
cated after M terms to reduce the computational effort of the
subsequent stochastic structural analysis. Then, the random field
B(x) can be expressed as summation of deterministic functions
combined with a set of uncorrelated Gaussian zero-mean random
variables Z;:

x)dx = Aipi(&). (44)
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M
B(x) = Z\/}Tﬂzi(x)zi (45)
i=1
with
) B L il
E(Z) =0 E(ZZ)= {0 ;f : 7&; | (46)

5.2. Stochastic integro-differential equilibrium equation

Substituting Eq. (45) into Eq. (41) and then the resulting expres-
sion of the randomly varying elastic modulus E*(x) into Eq. (2), the
following stochastic integro-differential equation is obtained:

ES;X[A ]+Eozfz [ X)i(x ‘ﬂéi )}
T GAMp / A8, U - Ud
= —A(X)b (47)

where the capltal letter U(x) denotes the random displacement
field. Eq. (47) must be supplemented by appropriate kinematic
and static boundary conditions given by Egs. (3a,b) with the ran-
domly varying Young’s modulus.

The solution of Eq. (47) can be obtained resorting to the finite
difference method discussed in the previous section (see also
[40]). To this aim, let us introduce a discretization grid of the do-
main into intervals of amplitudes Ax so that, after multiplying both
sides by Ax, Eq. (47) takes the following discretized form:

e
Ay AU =

(Aj +Aj71)Uj +Aj71Uj71:|
M ~
+ > iU — Gy +85-0)Uj + 831 Uja ) Z;

i=1

+Co(PAX)* Ay Ag(%, %) (Uy — Uj)

r=1

= 7b]'AjAX (48)

where U; = U(x)) and §j = (Egz/),-jAj \/5_,) /Ax with
Vi = vi(xj), (i=1,2,...,M; j=1,2,...,n). The set of linear alge-
braic equations with random coefficients in Eq. (48) can be written
in compact form as:

KU = (Ko + AK;)U = F (49)
where U is the vector of order n collecting the stochastic displace-
ments Uj (j=1,2,...n) at the grid points x;; Ko = K* + K" is the stiff-
ness matrix of the nominal system (see Eqgs. (28a,b)). Notice that the
stiffness matrix K in Eq. (49) has a stochastic nature due to the con-
tribution of the random matrix AKj associated to the uncorrelated
random variables Z;, whereas the vector F is deterministic and coin-
cides with the one defined in the previous section (see Eq. (27)). Fi-
nally, it is observed that the additional stochastic stiffness matrix
AKj can be written as:

M
AK; = "AS; 7 (50)
i=1

where AS;; is a tridiagonal symmetric and positive-definite matrix
given by:

gil _51‘] 0 0 . 0
=S Su+S2 —Se 0 0
Asg,i -0 ~Sp  Sp+S3 —S3 - 0 (51)
0 0 0 0 Sin-1 + Sin

which is formally analogous to the matrix defined in Eq. (30).

It is worth mentioning that the effects of random material prop-
erties on the response of a 1D non-local elastic solid have been re-
cently analyzed in the context of the mechanically-based approach
by modeling the mass density as a homogeneous Gaussian stochas-
tic field [32]. Under this assumption, the long-range interactions
are affected by the material randomness because they are taken
as depending on the elementary interacting masses. Conversely,
the problem addressed in the present study always involves deter-
ministic long-range forces since the uncertain Young’s modulus af-
fects only the local contact forces.

Finally, it is noted that the probabilistic model of the uncertain
Young’s modulus leads to a mechanically equivalent point-spring
network where linear springs of random axial stiffness describe
the additional stochastic contribution to the contact forces.

5.3. Mean-value and covariance of the stochastic response

As known, the solution of Eq. (49) depends on the realization of
the random field B(x) describing the fluctuation of the elastic mod-
ulus along the 1D solid. Therefore, direct inversion of the random
stiffness matrix K, providing the displacement vector U = K-'F, is
not useful to evaluate the statistics of the mechanical response of
the bar unless the onerous Monte Carlo Simulation (MCS) method
is used.

In order to avoid MCS, the stochastic matrix Af(,; in Eq. (50) can
be decomposed according to Eq. (32), as

AK; = ZASB Zi = ZZSB JWIZ; (52)

i=1 (=1

where §;,, is the ¢th column of the matrix AS;; (see Eq. (51)),
whereas wy is a column vector of order n containing all zeros except
the ¢th element which is equal to 1. Based on Eq. (52), the approx-
imate inverse of the matrix K can be evaluated by applying an
expression analogous to the one given in Eq. (34). Accordingly,
the solution of the set of linear stochastic equations (49) can be
written in the following approximate explicit form:

~K;'F - ZZ

U= (K, + AK;
(O B) llé]1+d31f

D F (53)

where Kj is the stiffness matrix of the nominal system and
aiajz = ’Wzl(algé,m‘? ﬁB.iﬁ = K61§B,MW5K61- (54a,b)

Notice that Eq. (53) holds provided that the following condition is
satisfied:

dg;, < 1. (55)

Finally, the mean-value vector and the covariance matrix of the
stochastic response vector U can be evaluated, respectively, as
follows:

M n
~ K51F - ZZE<XM>DB.NE

by = E(U)
i=1 (=1
(56a, b)
= E<UUT ”U”U ZZZ[E Xl[/(im
i=1 (=1m=1
— E(%i0)E{¥im) D FF D,
where:
7.
b =——a— (k=1¢,m). 57
T =1 + dgZi ( : >

The previous equations provide substantial computational savings
over classical MCS method since they just involve the statistics of
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the random variables y;, (see Eq. (57)) without requiring the inver-
sion of the global stochastic stiffness matrix. Furthermore, the
closed-form expression of the random response in Eq. (53) enables
one to evaluate higher-order statistical moments useful to deter-
mine the probability density function of the response.

In particular, based on Eq. (53) and taking into account that the
random variables Z; are uncorrelated, the uth order statistical mo-
ment of the ¢th nodal displacement can be formally evaluated as:

E<Ug-ﬂ> - ug-” ugvlzzmmpg”m

i=1 p=1 p=1q=1i=1

B zpqr 8vip8uvig8uir-

J#i

where uf , is the pth power (p =1,2,.. ., 1) of the ¢th element of the
vector uy = K, 'F; 8up is the vth element (¢=1,j,k...) of the vector
{D; wFh mY )pqr denotes the p — th statistical moment of the ran-
dom varlables (57) which is defined as follows:

(2 o Z Z Z i
Mg par :/ d; 2 s 42 az)
a0\ 14 dB,szk' 1+ d,;_’[qzc 1+ dBAé‘rZ[

The previous expression takes into account that the zero-mean
random variables Z, posses one-dimensional Gaussian probability
density function p; (z,).

As a final remark, it is noted that by using the Karhunen-Loéve
decomposition in conjunction with the finite difference method, a
set of linear stochastic equations (see Eq. (49)) formally analogous
to the one governing the displacement field (see Eq. (27)) in the
context of the interval model is obtained. This analogy allowed
us to apply the same approach for deriving approximate closed-
form expressions of the statistics and bounds of the response.

6. Numerical application

For validation purposes, the response of a carbon nanotube
(CNT) with uncertain Young’s modulus, fixed at x = 0 and subjected
to a tensile force F=1 nN at the free end, x = L, has been analyzed.
The geometrical and mechanical properties have been selected as
follows: diameter D=2nm, thickness t=0.34nm, length
L =100 nm, nominal Young’s modulus Ey =1 TPa and mass density
p =2300 kg cm—>. An exponential form has been assumed for the
distance-decaying function governing the long-range forces in Eq.

(1), ie.:
[x —¢]
o)

where Iy denotes the internal length material scale defining the size
of the so-called influence distance, namely the maximum distance
beyond which g(x,¢) and therefore the long-range interactions be-
come negligible. The material constant ¢, in Eq. (1) has been set
equal to [32]:

g(x,2) = exp (— (60)

25555 I

i=1 j=1 p=1q=1r=1

CQZL—EO(I_[;]).

p* 2A%p? 6D
Due to the lack of rigorous values from experimental tests, the
parameters lp and f;, entering the non-local terms, have been set
so as to enhance non-local effects, say lp =5 nm and p; = 0.7.

The analysis of the axial displacement field in the CNT has been
performed resorting to both interval and stochastic modeling of

u/l ! ZZZ Blpqgmpgmq + ZZZZ’“B ip BquVngUJq o

i=1 p=1 j=1 q=1
j#i

sz B,)qr gvxpgwqgwr o (58)

the uncertain Young's modulus E*(x). For comparison purposes,
the deterministic symmetric non-negative bounded function
T'p (x,¢), governing the spatial dependency between adjacent val-
ues of the dimensionless interval function B'(x) in Eq. (8), has been

pz,(z)dze;, p=1,...,u (=ijk... (59)
chosen coincident with the autocorrelation function
Ryz(x, &) = Rgp(Jx — &|) characterizing the homogeneous zero-mean

Gaussian random field B(x) (see Eq. (41)) in the context of the

1.05 1

0.7

[TPa]

0.35

x/L

Fig. 2. Region of the interval Young’s modulus E*(x/L) along the 1D solid for
different values of the parameter [; governing the spatial dependency of the interval
field (see Eq. (62)).
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stochastic modelling of the uncertain material property. In partic-
ular, the following exponential function has been assumed:

T(x, &) = Ryp(x — &]) = 0% exp (—"‘[—5') (62)

where g2 = 0.05 and I; denotes the correlation length herein taken
variable to investigate the effects of spatial correlation on the re-
sponse. The function I's(x, &) = Rgs(|x — ¢|) has been decomposed
by applying Eq. (12) (or equivalently Eq. (43)) retaining N=12
(N=M) terms. By comparing Eqgs. (19) and (62), it is found that
02=Cpand Iy = .

Both the interval and stochastic integro-differential equilibrium
equations in Egs. (24) and (47) have been discretized by the finite
difference method using a uniform grid with 200 subdivisions.

(a) 14

1;=0.25L

[TPa]

x/L

0 T T T T
0 0.2 0.4 0.6 0.8 1
x/L

Fig. 3. Lower bound and upper bound of the interval field E(x/L) along the 1D solid
contrasted to samples EM(x/L), (r=1,2,3,4), of the homogeneous Gaussian
random field E*"(x/L): (a) Iy = 0.25L; (b) I = L.

As a first step, the consistency of the proposed definition of the
interval field has been scrutinized. Fig. 2 displays the upper bound
(UB) and lower bound (LB) of the Young’s modulus interval field
E*l(x) (see Egs. (17a,b)) for three different values of the correlation
length [; as well as the midpoint value E; = $,E, taken constant
along the bar. As expected, the radius of the interval field is af-
fected by the parameter [; governing the spatial dependency
through the deterministic function I'p(x, &) defined in Eq. (62). Spe-
cifically, the smaller the value of I; the larger the amplitude of the
Young’s modulus region. Conversely, as larger values of the param-
eter [ are considered, the deviation amplitude of the interval field
E*l(x) decreases. As outlined in Section 3, the limit case [; — oo cor-
responds to the total dependency condition in which the uncertain
property is described by a single interval variable constant over the
whole CNT domain [0,L]. It is argued, therefore, that the assump-
tion of total dependency may lead to a serious underestimation
of the bounds of the interval Young’s modulus.

(a) 0.018
e—eo[B >
B
—+—+UB
----- Midpoint %
’
+—+— U,~0, /i
g 0.0124 “—*HUy+0y /,/,
5 Ly //
= <%
Q -
31 <
s s
% ,///
g =
= | %
2 0.006
< //’
B,=0.7, [,=5 nm, 3=0.25L
0 T T T T
0 0.2 0.4 0.6 0.8 1
x/L
(b) 0.018
oo B
+—+—+UB
----- Midpoint

+ %LLU—GU
a4 AUy t+oy

Ky

0.012

0.006

axial displacement [nm]

B,=0.7, [,=5 nm, lz=L
0 T T T T
0 0.2 0.4 0.6 0.8 1
x/L

Fig. 4. Comparison between the interval and stochastic (uy * oy) regions of the
axial displacement field along the non-local elastic bar: (a) [; = 0.25L ; (b) I; = L.
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In Fig. 3, the bounds of the Young’s modulus interval field, E*(x),
along with some samples E*"(x) of the corresponding homoge-
neous Gaussian random field, E*(x), for two different values of
the correlation length [;, are plotted. The region of the interval field
almost encloses the samples of the random Young’s modulus, con-
sistently with the meaning of the interval model.

Within the context of the proposed definition of the Young’s
modulus interval field, the LB and UB of the interval displacement
along the non-local bar under tension have been computed by
applying the closed-form expressions derived in Section 4. Simi-
larly, the mean-value, py(x), and the standard deviation, oy(x), of
the stochastic displacement field in the case of randomly varying
Young’s modulus have been determined by using the explicit
expressions presented in Section 5. The region of the non-local dis-
placement field provided by the proposed improved interval anal-
ysis has been compared with the confidence interval of the
stochastic response bounded by the values puy(x)— koy(x) and
Lu(x) + kay(x), k being a positive integer. In Fig. 4, the interval re-
gion is compared with the stochastic one for k = 1, considering dif-
ferent values of the correlation length I; in Eq. (62). As expected,
both the interval and stochastic responses are affected by the cor-
relation length I;. It can be observed that the confidence interval
involved in stochastic analysis turns out to be tighter than the re-
gion of the displacement field obtained via interval analysis for all
values of the correlation length [; herein considered.

To gain a deeper insight into the effects of the interval and sto-
chastic modeling of the uncertain Young’s modulus on the non-lo-
cal response of the CNT under tension, in Fig. 5 the radius of the
interval displacement, Au(x), is compared with the standard devi-
ation, gy(x), of the random response for different values of the
parameter . It can be seen that the condition Au(x) > o,(x) holds.
Furthermore, the correlation length [; has a different influence on
the interval and stochastic responses. Indeed, as the parameter [;
decreases, the radius of the interval displacement, Au(x), increases,
while smaller values of the standard deviation of the random re-
sponse, a(x), are obtained.

Similar considerations can be drawn by investigating the dis-
persion of the interval and random responses around the corre-

0.0014
0.00105
g 0.0007 -
0.00035
— L=L
B,=0.7, [,=5 nm B
0 T T T T
0 0.2 0.4 0.6 0.8 1

x/L

Fig. 5. Radius of the interval displacement field, Au(x/L), and standard deviation of
the random displacement field, o(x/L), along the non-local bar under tension for
different values of the parameter [ governing the spatial dependency of the interval
and stochastic Young's modulus (see Eq. (62)).

0.8

x/L

Fig. 6. Coefficient of interval uncertainty, Au/uo, of the interval displacement field
and coefficient of variation, oy/uy, of the random displacement field along the non-
local bar under tension for different values of the parameter [; governing the spatial
dependency of the interval and stochastic Young’s modulus (see Eq. (62)).

sponding midpoint and mean-values, ug(x) and py(x).
Appropriate measures of such dispersion are the well-known coef-
ficient of variation for the random displacement field, o y(x)/u(x),
and its non-probabilistic counterpart given by the so-called coeffi-
cient of interval uncertainty, Au(x)/ug(x). Fig. 6 shows that the
interval response exhibits a larger dispersion than the stochastic
one for all values of the correlation length [;, in agreement with
the comparison between the regions of the interval and stochastic
displacements plotted in Fig. 4. Furthermore, it is noted that the
extreme assumption of total spatially dependent interval field cor-
responding to l; — oo would lead to an underestimation of the
interval response deviation. Indeed, both Figs. 5 and 6 show that,
as l; increases, the deviation of the interval displacement with re-
spect to the midpoint value decreases.

7. Conclusions

The analysis of one-dimensional heterogeneous non-local elas-
tic solids with fluctuating Young’s modulus of the material has
been addressed. According to a recently proposed mechanically-
based approach, non-local effects have been described as long-
range interactions between non-adjacent volume elements. Long-
range forces depend on the product of interacting masses, as well
as on their relative displacements by means of a proper material-
dependent distance-decaying function. Besides the traditional
modeling of Young’s modulus fluctuation as a homogeneous
Gaussian random field, a non-probabilistic approach has been ap-
plied to describe the material property variability along the one-
dimensional solid. To this aim, a novel definition of the interval
field concept has been presented which allows to account for the
dependency between interval values at various locations by intro-
ducing a deterministic symmetric non-negative bounded function
playing the same role of the autocorrelation function in random
field theory. The main novelty of the proposed interval field model
consists in its decomposition as superposition of interval functions
through the use of a proper extension of the Karhunen-Loéve
expansion in conjunction with the improved interval analysis, re-
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cently proposed by the first two authors to limit the overestima-
tion due to the dependency phenomenon. Such decomposition al-
lows to build formally analogous integro-differential equilibrium
equations within the interval and stochastic settings. Based on this
analogy, after performing a finite difference discretization, an effi-
cient procedure is proposed to derive approximate explicit expres-
sions of the bounds of the interval displacement field and of the
mean-value and variance of the random response. Furthermore, a
meaningful mechanical interpretation of the 1D heterogeneous so-
lid with long-range interactions in presence of interval or random
Young’s modulus fluctuations has been provided.

Numerical results have demonstrated the consistency of the no-
vel definition of the interval field as well as the accuracy of the pro-
posed approximate closed-form solutions.

Appendix A. Basic elements of interval algebra

Interval algebra is an elegant tool to solve practical problems
with inequalities like, for instance, those occurring in presence of
approximate numbers, error bounds, uncertain experimental data
and so on. Then, the purpose of interval analysis is to provide upper
and lower bounds on the effects all such errors and uncertainties
have on a computed quantity. Furthermore, the major focus of
interval analysis is to develop practical interval algorithms that
produce sharp (as narrow as possible) or nearly sharp bounds on
the solution of numerical computing problems [6-8,41]. The his-
tory of interval analysis could go all the way back to Archimedes
who defined the transcendental number 7 by an interval: 30/
71 <mw<3/7 [4,5,8]. He derived such bounds showing that the
number 7 belongs to the interval obtained by approximating the
circle with the inscribed and circumscribed 96-side regular
polygons.

Recent developments in interval arithmetic are mainly based on
the book of Moore [6], who introduced the so-called “ordinary”
interval algebra as well as the interval vectors and matrices with
their first non-trivial applications.

In this Appendix, the fundamentals of interval algebra are
briefly summarized and some basic notations are introduced.

While the field of real numbers is denoted by R, the field of all
closed real interval numbers is denoted by IR. In particular, a sub-
set of R of the form:

1

X=K2xX={xXx<x<X XxcR} (A1.1)

is called a closed real interval or an interval if no confusion arises. In
writing Eq. (A.1.1), the set-builder notation {x|P(x)} is adopted
which defines x' as “the set of all elements x such that the proposi-
tion P(x) holds”. The apex I denotes an interval variable € IR and x
and X define the lower and upper bounds of the interval, respec-
tively. Alternatively, an interval x' could be represented by its mid-
point (or mean), xo, and by the deviation (or half-width also simply
termed width), Ax, i.e.

X+X
+_; AX =——.

Xo=—=—>

5 (A.12a,b)

Denoting by x',y',z' € IR three closed bounded intervals, the basic
interval operations are listed below:

Xty =x+yx+yk

X =y =x-y,x-yk

X' x y' = [min(xy, xy, Xy, Xy), max(xy, Xy, Xy, Xy)];
Xy =[x, x| < [1/y, 1/y]if 0 ¢ y".

(A.1.3a-d)

Furthermore, two arithmetic expressions which are equivalent in
real arithmetic are also equivalent in interval arithmetic when

every variable occurs only once on each side. Therefore, the follow-
ing properties are in agreement with real arithmetic:

X +y =y +xx xy' =y x ¥ (commutativity)
®+y)+Z =x'+ (' +2) - (A.1.4a—d)
(associativity)
(X xy)y x 2 =x1 x (y) x 2)
while the following ones are in disagreement:
X x (Y +2) ey + X7 (subdistributivity)

X-yci+2)- (' +2),

Oex! —x '
Xy € (X)) (y'2) (subcancellation)

1ex/x
(A1.5a<)

Notice that the relaxation of distributivity and cancellation proper-
ties of the traditional arithmetic to the subdistributivity and sub-
cancellation properties of the interval arithmetic is due to the so-
called dependency phenomenon. This phenomenon arises because
different occurrences of a single interval variable in an expression
are treated as independent variables. For example, if the interval
x'=10,1] is subtracted from itself, the interval [ — 1,1] is obtained
as result and not [0,0], as in the traditional algebra. Another typical
example of the dependence phenomenon is the evaluation of the
bounds of the function flx) = x//(1 +x') in which the interval vari-
able x! appears twice [5,7,8,41]. The dependency problem can be
eliminated if the previous function is rewritten in the following
equivalent form f(x') = 1/[1 + (1/x)] where the interval variable
appears only once. Indeed, the two functions f(x)=x/(1+x) and
f(x) = 1/[1 + (1/x)], which are equivalent in the classical real arith-
metic, x € R, turn out to be different in the framework of interval
analysis, x € IR. As an example, if we assume x € [0,1], the first
interval function f{x') furnishes the interval [0, 1], which overesti-
mates the actual interval [0,1/2] obtained by means of the second
expression of the interval function f (x). The two simple examples
described above show that the subcancellation and subdistributivi-
ty properties give an overestimation of the interval width when the
same variable x' appears twice in the same expression.

An n-dimensional interval vector, X' € IR" is an ordered n-tuple
of intervals (x}, x},...,x). If two vectors X,X € R" satisfy the con-
dition X < X (or equivalently x; < X;), an interval vector, x € IR", is
generally identified with the (nonempty) set of vectors of the form:

(A.1.6)

With suitable modifications, many of the notions for ordinary inter-
vals can be extended to interval vectors. An interval vector x' could
be also represented by its midpoint (or mean) vector, Xo, and by the
deviation (radius or half-width also simply termed width) vector,
AX, i.e.

X 2xX={XXx<X<X, X €R}.

Ax:l(i—g)@gzxo—Ax;

X = Xg + AX.
2 0t

(A1.7.a—d)

Xo=%(i+l);

Obviously, Ax is a nonnegative vector, that is all its elements are
positive numbers. An m x n matrix is an m x n interval matrix,
Al € IR™", if its entries aj’.k =lay.ax] j=1,...,m; k=1,...,n) are
intervals. Alternatively, the interval matrix A’ can be defined as:

A'2[AA={AA<A<A, aeR} (A.1.8)

where A and A are the lower and upper bounds matrices. The fol-
lowing properties hold for matrix’s addition and subtraction:

A+B=[A+BA+B]

A-B=[A-BA-B

A +B =B +A" (commutativity)
A+ (B'+C)=(A"+B)+C; (associativity)

(A.1.9a-d)
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Notice that the product of two or more interval matrices may be
subjected to interval dependency [7,8,41,42]. It follows that the
associative and distributive properties may not hold for the interval
matricial product C'= A’ x B'. The dependency phenomenon occurs
because the interval arithmetic does not assume that the same
point elements are chosen from the interval elements of the left
matrix A’ in forming the sets comprising the different columns of
the product interval matrix C. This is similar to interval dependency
in scalar expressions. Indeed, each interval element of the left ma-
trix A’ is an interval variable which occurs multiple times, once
for each column, in forming the columns of the interval product ma-
trix C'.

Appendix B. Solutions of a set of linear interval equations

The Finite Element Method (FEM) is one of the most celebrated
numerical methods for solving differential equations with enor-
mous applications in different fields of sciences and engineering.
In the static analysis of structures, the FEM performs the solution
of a differential problem through the solution of a set of algebraic
equations. In several structural problems, different sources of
uncertainties may affect the mathematical model. It follows that
the associated set of governing equations is also affected by uncer-
tainties. If the uncertainties are modelled by interval variables, the
structural response is obtained as solution of a set of linear interval
algebraic equations. Since the main drawback of the interval anal-
ysis is the dependency phenomenon, researches in the framework of
structural analysis have focused on two major problems: the first
one is how to obtain solutions for the resulting set of linear interval
equations with reasonable bounds on the system response that
make sense from a practical point of view, or in other words, with
the least possible overestimation of their bounding intervals; the
second problem is how to obtain reasonable bounds on the derived
quantities that are functions of the system response [43].

To gain further insight into these problems, we recall that in the
framework of interval analysis an interval matrix B' = [B, B], satis-
fying (A"~ C B, B), is called an enclosure of the inverse interval ma-
trix [44]. This matrix can be evaluated if and only if the square
matrix A is regular, that is a matrix for which each A € A’ is non-
singular. A set of linear interval equations with coefficient matrix
A € IR™™ and right-hand side b’ € IR" is defined as the family of
linear equations
A'X' =1 (A2.1)
The narrowest interval vector containing the solution set of Eq.
(A.2.1) is called the interval hull of the solution. Then, the interval hull
of the solution of linear interval equations is an interval vector,
x'™ ¢ x!, that contains the solution set and has the narrowest pos-
sible interval components. In the framework of the “ordinary” inter-
val analysis, there are two types of methods for the numerical
solution of such problems [8,42]: direct and iterative methods. Direct
methods, such as Gaussian elimination (with or without various
“pivoting” schemes), can produce exact results in a finite number
of arithmetic operations if the matrix is regular and if infinite pre-
cision arithmetic is used. Iterative methods produce a sequence of
approximate solutions which converge to the unique solution.
One of the best known methods for obtaining very sharp enclosures
of interval linear set of equations is the iterative method developed
in the work [45]. However, the main drawbacks of these methods
are their complexity, which often produces an overestimation of
the interval vector solution, and their poor flexibility for specific
structural problems in which the interval matrix of coefficients
takes a very particular expression (see e.g. Eq. (27)). To overcome
these limitations, two new approaches have been recently pro-
posed: the improved interval analysis [15] and the parameterized

interval analysis [47,48]. In the present paper, the first approach is
adopted which requires the following main steps [15,39,46]: (i)
the introduction of the so-called extra unitary interval (EUI) variable;
(ii) the expansion of the interval coefficient matrix in a series of
rank-one interval matrices. The use of the EUI variable, for mono-
tonic interval functions, drastically reduces the effects of the depen-
dency phenomenon. Indeed, the EUI variable, associated to an
interval parameter, follows the properties (4). Such properties are
different from the ones obtained for the “ordinary” unitary sym-
metric interval e/ 2 [ — 1, + 1] by applying the rules (A.1.3) of the
“ordinary” interval algebra, which read:

el —el=[-2,42]; el x e =[-1,+1];
el/e!  does not exist because 0 € [-1, +1];
xie' £ yiel = [—xi — y;, % + yil;

I '
Xie' X Y&’ = [=XiY;, XYy

(A2.2ae)

As an example, by adopting the EUI variable the two functions
fix')=x/(1+x") and f(x') = 1/[1 + (1/x")], unlike “ordinary” interval
algebra (see Appendix A), give the same result in the interval
x €[0,1], as it should be.

The second step involved in the improved interval analysis, say
the expansion of the interval coefficient matrix, produces an
approximate, but very accurate, explicit expression of the inverse
of the interval matrix (see Section 4). So operating, the overestima-
tion due to the dependency phenomenon is drastically reduced.

Finally, let us observe that the definition (11) of the symmetric
non-negative function, I'g(x,¢) is strictly connected to the use of
the improved interval analysis. Indeed, by applying the “ordinary”
interval algebra, the product in Eq. (11) gives a different result:
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