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1. Introduction

Since the very early studies on those phenomena where long-
range intermolecular forces and microstructural effects play a cru-
cial role, the inadequacies of the intrinsically free-scale local con-
tinuum approach and, on the other hand, the computational
difficulties involved by a discrete modeling of a medium at an
atomic scale, have encouraged the search for alternative and more
effective theories. As a result of the efforts in this field, non-local
theories have been formulated. Most of these rely on the idea
that microstructural effects can be accounted in an average sense,
by formulating an enriched continuum with non-local terms.
Typical examples are the integral theory (Eringen, 1972, 1983,
1987), the gradient elasticity theory (Aifantis, 1984, 1999; Chang
et al., 2002), the peridynamic theory (Silling, 2000; Silling et al.,
2003) and the so-called continualization theories, where a dis-
crete medium is translated into a non-local continuous model
(Askes and Metrikine, 2002; Metrikine and Askes, 2002). A non-
local 3D continuum has been recently proposed also by the au-
thors, where long-range elementary volume forces are introduced,
as resulting from the relative displacement between elementary
volume elements (Di Paola et al., 2009, 2010a,b).

In the last two decades, non-local beam and plate engineering
theories have been derived from non-local enriched 3D continua.
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This interest has been certainly boosted by the increasing impor-
tance of nanotechnologies, where beam- and plate-like devices are
employed as sensors and actuators for vibration damping, for
instance in electromechanical systems (for a review see Qian et al.,
2002). On the other hand, the importance of microstructural effects
in micro- and nano-components has been shown by atomistic
simulations (Wang and Hu, 2005) and experimental evidence on
several materials, such as polypropylene (McFarland and Colton,
2005), epoxy (Lam et al., 2003), graphite (Tang, 1983) and copper
(Poole et al., 1996).

There exists a remarkable variety of non-local beam theories,
especially for dynamic applications. In general a non-local linearly
elastic stiffness has been considered, in context with the classical
Euler—Bernoulli (EB) or the Timoshenko (TM) beam theory. Lu et al.
(2007), Reddy (2007), Aydogdu (2009), Murmu and Pradhan (2009)
have built non-local EB or TM beams where non-local effects are
modeled by the Eringen integral theory, that involves a stress—
strain relation between the stress at a given point and the strain
in the whole beam volume. Alternative non-local theories have
been also resorted to. McFarland and Colton (2005) have built
a non-local EB beam based on a continuum micropolar elasticity
constitutive law, to be interpreted as the result of long-range forces
exerted by non-nearest neighbor atoms connected in the under-
lying material microstructure of the continuum (Lakes, 1991). Kong
et al. (2008) and Zhang et al. (2010) have derived the motion
equations of a non-local EB beam by the Hamilton’s principle, the
first by a modified couple stress theory and the second by a so-
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called hybrid approach, based on a strain energy functional
depending on local and non-local curvatures. Wang et al. (2010)
have built a non-local TM beam also based on the Hamilton’s
principle, but in conjunction with the strain gradient elasticity
theory proposed by Lam et al. (2003).

Although in the majority of the non-local beam theories devel-
oped to date non-local terms are stiffness terms, yet a very inter-
esting and challenging task is a generalization to non-local
damping. The subject is of particular relevance since the pioneer-
ing work of Russell (1992), who has proposed a non-local damping
model for fiber-reinforced composites (such as fiberglass, boron and
graphite composites) to account for the dissipation that may be
encountered at the fiber—matrix interface, due to imperfect bond-
ing. The physical motivations given by Russell (1992) to pursue
a non-local modeling can be briefly summarized as follows. He has
considered the specific case of EB composite beams with longitu-
dinal fibers. Starting from the observation that, as the beam un-
dergoes flexural deformation, the movement of the fibers relative to
the matrix can be thought as determined by the differential rotation
along the beam axis, he has pointed out that the consequent dis-
sipation forces transmitted from the fibers to the matrix determine,
within any of the individual beam segments which the fibers pass
through, a damping moment. In fact opposite net motions of the
fibers relative to the matrix are encountered above and below the
elastic axis, when a differential rotation takes place along the beam
axis (Russell, 1992). The damping moment acting on a beam seg-
ment of unit length has been then built by Russell (1992) as a vis-
cous long-range moment, given in an integral form depending on
the relative rate of rotation between the beam segment and the
non-adjacent beam segments, through an appropriate attenuation
function. In this mathematical form, the dependence on the relative
rate of rotation through an attenuation function reflects that, due to
presence of the fibers, the motion of the beam segments is inher-
ently coupled and that, as intuition suggests, such a coupling pro-
gressively decays with distance. The viscous form, as customary in
structural engineering applications, has been intended as a general
form accounting for different sources of damping at the fiber—
matrix interface (friction, plastic deformation of the matrix,
etc...). It has to be noted that a viscous long-range moment is
involved also in the mechanical boundary conditions (B.C.). Exper-
imental evidence for his non-local damping model has been found
by Russell (1992) in the free vibrations of a boron-epoxy composite
beam. A similar damping mechanism has been also envisaged by
Russell (1992) for the longitudinal damped vibrations of a bar.

Further investigations on non-local damping have been pursued
by Banks and coworkers (Banks and Inman, 1991; Banks et al,,
1994). For a EB cantilever composite beam with a tip mass, they
have found that the internal damping model proposed by Russell
(1992), used in conjunction with an external air viscous damping,
provide the best fitting to some experimental data (Banks and
Inman, 1991). An attempt has been also made to introduce the
damping model by Russell (1992) in a TM beam, on the assumption
that non-local damping effects do result in an additional damping
moment but not in additional damping terms, such as for instance
transverse (shear) forces, that may affect the beam equilibrium. In
this case, however, results have proved less accurate versus
experimental data available (Banks et al., 1994).

More recently, Friswell and coworkers (Lei et al., 2006a,b;
Friswell et al., 2007) have proposed a non-local EB beam where
non-local damping terms are built as a weighted average of a ve-
locity field over the beam domain, and appropriate attenuation
functions are taken as weighting functions. Specifically, external
and internal non-local damping models have been considered, the
first taken as depending on the transverse displacement, and the
second as depending on the fourth-order derivative of the

transverse displacement (Sorrentino et al., 2003). While the
external damping model is seen as the result of external damping
patches, long adhesive joints in composites or surface damping
treatments using fluids, Friswell et al. (2007) have pointed out that
the internal non-local damping model can be thought of as
a “homogenized” model that accounts, in an average sense, for an
intrinsic dependence between the response at a given point and
the response at the surrounding points of the medium (Flugge,
1975). For instance, a result of such a dependence may be the
effects produced at a given point by the complex deformations of
non-adjacent beam cross sections, that are not captured in a clas-
sical beam model where the cross sections remain planes (Lei
et al., 2006a). In this sense, it can be stated that the sources of
non-local damping shall be seen, according to Friswell and co-
workers, in a more general context than the one envisaged by
Russell (1992). Further, considering that the spatial location of the
damping sources is generally uncertain, that the damping mech-
anism itself and its dependence on the material microstructure are
difficult to characterize, it may be expected that an internal “ho-
mogenized” non-local damping model proves more flexible versus
experimental evidence rather than a typical local one (Friswell
et al.,, 2007). In their work, Friswell and coworkers have consid-
ered either viscous or viscoelastic non-local damping, the latter
with time-dependent exponential forms (Friswell et al., 2007). The
resulting motion equation is an integro-differential equation and
the free vibration problem has been solved in a discrete form
based on the Galerkin method (Lei et al., 2006a,b) and on the finite
element method (Friswell et al., 2007).

It has to be noted that the non-local beam model developed by
Friswell and coworkers may also include an additional non-local
stiffness (Lei et al., 2006a), built on the same mathematical basis
as the non-local damping. This is, in the authors’ opinion, a relevant
feature. Indeed a theoretical model where non-local stiffness and
non-local damping are built on the same mathematical basis, and
may be considered either separately or simultaneously depending
on the material at hand, may be of particular interest in view of the
increasing insight that experimental evidence will give into the
sources of non-local effects and, also, in view of the new and
complex materials that will be produced in the future. In this per-
spective and in an attempt to contribute to the research effort in
this field, a non-local TM beam will be presented in this paper,
where non-local stiffness and damping may be accounted for.
Specifically, internal damping will be considered.

The mathematical approach shares, with most common non-
local beam theories, the idea of formulating an enriched contin-
uum model of the beam, where non-local effects are accounted for,
in an average sense, by introducing non-local terms in the motion
equations. Specifically, the non-local terms are modeled as long-
range volume forces and moments, mutually exerted by non-
adjacent beam segments, that contribute to the equilibrium of
any beam segment, along with the local stress resultants exerted by
the adjacent beam segments. Elastic and viscous long-range vol-
ume forces/moments can be considered. They are built as linearly
depending on the product of the volumes of the interacting beam
segments, and on generalized measures of their relative motion,
through pertinent attenuation functions governing the space decay
of the non-local effects. The generalized measures of relative mo-
tion are based on the pure deformation modes of the TM beam
derived by Fuchs (1991, 1997), i.e. a “pure axial” symmetric mode,
a “pure bending” symmetric mode and a “pure shear” asymmetric
mode.

In the proposed model, elastic and viscous long-range volume
forces/moments can be considered either separately or simulta-
neously. In this manner, various sources of non-local effects can be
addressed, and pertinent applications will be discussed.
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The paper develops in the following steps. The dynamic equi-
librium equations of the proposed non-local TM beam are derived
in Section 2, along with the mechanical B.C. The elastic and viscous
long-range volume forces/moments are introduced in Section 3.
The motion equations are derived in Section 4, and numerical re-
sults are presented in Section 5. In the Appendix A the proposed
non-local TM beam is compared with the previous non-local TM
beam built by Di Paola et al. (2011a, 2012).

2. Formulation

Consider the beam of arbitrary cross section shown in Fig. 1. The
beam is referred to a Cartesian (orthogonal) coordinate system Oxyz
where axis x coincides with the centroidal axis, axes y and z are
principal axes of the cross section, and xz is the bending plane. Be
x=[x y z|"the position vector and L the length of the beam. For
simplicity, a uniform cross section is considered. The material is
isotropic and linearly elastic.

Be u(x,t) the displacement vector, u'(x,t) = [uy Uy U] Ac-
cording to the TM beam theory, the small displacement compo-
nents of a given point P(x,y,z) in the beam can be cast in the form

Ux(X,t) = u(x,t) —zp(X,t); uz(X,t) =v(x,t); uy(X,t)=0, (1)

where, for a cross section at x on the centroidal axis, u(x,t), v(x,t) and
o(x,t) denote the x-, z-displacement and the rotation about the y-
axis. The latter is taken as positive if clockwise. The corresponding
strain components, as given by the small strain equations, are

ou(x,t)
ox
dp(x, 1)

X(Xv t) = - 0x .

dv(x,t)
o P(x,t); (23—

e(x,t) = y(x,t) =

They denote the axial, bending and transverse shear strain,
respectively. Further, be

ux;,t) = u; v(x;, t) = v; X, t) = ¢ i=0,L (3a —¢)
being u;, v; and ¢; the displacements at the beam ends, i.e. at xp = 0
and x; = L. That is, time independent B.C. are considered.

Then, be sV (x,t) = [¢{ o) ol <) <) <{)]" the vector
of the six components of the Cauchy stress tensor and be N“)(x,t),
TO(x,t) and MU(x,t) the classical local stress resultants, i.e. normal

stress, shear stress and bending moment given by

NO(x,£) = / AV (X.0)dA; TO(x,) = / (X, £)dA;
A A

MO (x,£) = / o0 (X, )z dA.
A

(4a—c)

They are related to the corresponding axial, shear and bending
strain by the constitutive laws of the TM beam:

Fig. 1. Timoshenko beam of arbitrary cross section.

NO(x, t) = E"Ae(x, t);
TO (x,t) = K;G Ay(x,1);
MO (x,t) = E'Ix(x, t).

(5a —c)

In Eq.(5), A, I and K; are the area, the moment of inertia and the TM
shear coefficient of the cross section; E* = 81E and G* = 81G, being E
and G the Young and the shear modulus; $; is a dimensionless
coefficient, 0 < 1 < 1, that weighs the amount of local effects (Di
Paola et al., 2010b, 2011a). In this respect, note that #; is intro-
duced here as in those non-local theories where the non-local
material is conceived as a two-phase elastic material (Altan, 1989;
Polizzotto, 2001).

Next, divide the beam domain in N segments of length Ax and be
x; = iAx for i = 0,1,...N — 1 (xy = xr), the abscissas that define the
corresponding positions along the axis. The first, fundamental
assumption of the proposed non-local beam is that non-local ef-
fects can be modeled as long-range volume forces and moments,
mutually exerted by non-adjacent beam segments. This means that
the equilibrium of each beam segment is attained due: (i) to the
local stress resultants (4) exerted by the adjacent beam segments;
(ii) to the resultants of the volume forces/moments exerted by all
the non-adjacent beam segments. Then, according to the d’Alem-
bert’s principle (Humar, 2002) the dynamic equilibrium equations
of the beam segment AV(x;) = AAx at x = x;, fori = 0,1,...N — 1, can
be written in the form (see Fig. 2):

NO (x; 4+ Ax) — NO (x;) + Qu (X1, t) + Fy (X, £) AX — m(x;)ii (x;,t)Ax = 0;
(6a)

TO (x; + Ax) — TO (x;) + Q2 (x;, t) + Fz (i, £) Ax — m(x;)i(x;, t)Ax = 0;
(6b)

MO (x;+8%) = MO (x;) = T (x)) Ax — Qy (x;,£) + 1 (%) (x;, 1) Ax = 0,
(6¢)

where the dots mean differentiation with respect to time, Fy(x,t)
and Fy(x,t) are introduced as generalized measures per unit length
of the external forces on the beam, m(x) = p(x)A and
I(x) = pr(x)zsz, being p(x) the mass per unit volume. Further,
Qx Q; and Q, are the resultants of the long-range volume forces/
moments exerted on the beam segment AV(x;) at x = x; by all the
non-adjacent beam segments AV(£) at x = &, &k # x;. For brevity,
Qx Q; and Q,, will be referred to as long-range resultants.

In the non-local beam model, elastic and damping long-range
resultants will be considered, either separately or simultaneously.
They are denoted as

QX(Xivt) = RX(Xiat) +DX(Xiat):,
QZ(xivt) = Rl(xirt) +Dl(xi7t);
Q‘ﬂ(xivt) = R«J(xi?t) +D(P(Xl'7t)’

(7a —c)

where “R” and “D” mean elastic and damping part. The analytical
form is specified next.

3. Long-range resultants

Both the elastic and the damping long-range resultants are built
on a mechanical basis. The key ideas are illustrated first for the
elastic long-range resultants and then generalized to the damping
ones.
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Qx(x,,t) Ax
N(’)(x,,t) N(')(x,,+Ax,t) x
Fr(x,,t)Ax
(%)
m m(x,)v(x,,t)Ax
00.) b Ax Ax
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘
T(/) (x, + Ax, t)
Qz(xl,t)
LEEYy () Ax
(<)
1,(x)#(x.1)Ax
T(I)(x,.,t)
MO (x,.0) < > ;M(')(x+Axt) A
rg
9, (xr"l) " (x‘ + Av,t)

Fig. 2. Equilibrium of an elementary beam segment: (a) axial; (b) transverse; (c) bending. Positive sign conventions are reported.

3.1. Elastic long-range resultants

The elastic long-range volume forces/moments mutually exer-
ted by two non-adjacent beam segments AV(x;) and AV(&) located,
respectively, at x = x; and x = £ on the beam axis, are built as
a result of a relative motion that may involve, in general, dis-
placements and rotations. Specifically, based on the work by Fuchs
(1991, 1997) who singled out the pure deformation modes of a TM
beam, three separate generalized measures of relative displace-
ments/rotations, that give rise to elastic long-range volume forces/
moments, are used in the non-local beam model. They are con-
ventionally referred to as “pure axial”, “pure bending” and “pure
shear” deformation mode. The pure axial mode is a symmetric
mode, that gives rise to elastic long-range volume axial forces
mutually exerted by two non-adjacent beam segments AV(x;) and
AV(), as a result of their relative axial displacement

n(xi, £k, t) = UGy, t) — u(x;, t). (8)
The pure bending mode is a symmetric mode, that gives rise to
elastic long-range volume moments mutually exerted by two non-
adjacent beam segments AV(x;) and AV(&y), as a result of their rel-
ative rotation

01,6k, t) = @€, ) — @(X;, 8). 9
The pure shear mode is an asymmetric mode, that gives rise to
elastic long-range volume transverse forces + moments mutually
exerted by two non-adjacent beam segments AV(x;) and AV(&y), as
a result of their rotations with respect to the line given by the
relative transverse displacement, i.e.

ooty = [0 o )
+ |:y(§k7 t) - U(Xi’ t) _

Sk — %

(10)
w(xht)}

In his work, Fuchs (1991, 1997) has also derived the self-
equilibrated forces/moments at the ends of the TM beam, that
result from the pure deformation modes (8)—(10). In the non-local
beam model, the elastic long-range volume forces/moments are
built based on the analytical form of the self-equilibrated forces/
moments obtained by Fuchs (1991, 1997), and introducing a linear
dependence on the product of the volumes of the interacting beam
segments, through appropriate attenuation functions governing
the space decay of non-local effects. Therefore, the long-range
resultant Ry(x;t) is written as
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N-1

Re(ist) = >

k=0, k=+i

xlv‘gla 7 (11)

where ry(x;,£k,t) is the long-range volume axial force exerted on the
beam segment AV(x;) by the non-adjacent beam segment AV(&y)
due to the pure axial deformation (8), given by

*

Tx(Xi, ks £) x(Xi, Ei)n(Xi, Ek, DAV (%) AV (Ep). (12)

IXi — &l
The long-range resultant R,(x;t) is written as
N-1

Rz(xiv t) = Z

k=0, k=i

xhgk’ 7 (13)

where 1,(x;£k.t) is the long-range volume transverse force exerted
on the beam segment AV(x;) by the non-adjacent beam segment
AV(&)) due to the pure shear deformation mode (10), given by

%gz(xi,gk)‘//(xifk’t)AV(X")AV(gk)’

r2(Xi, €, ) = sgn(§p —x;)
[X; — &

(14)

where ¢ = 1/(1 + 12c), for ¢ = E‘I/G'AL?, is a dimensionless
parameter depending on the flexural stiffness E'I and the shear
stiffness G'A, while sgn(¢ — x) = +1 if (¢ — x) > 0 and
sgn(§ — x) = —1if (£ — x) < 0 is introduced to ensure consistency of
r,(x,&,t) with the sign convention of the long-range resultants in
Fig. 2. Further, the long-range resultant R,(x;t) is written as

N-1

S Top(XirEio ) + Tz (Xi, g 1), (15)

k=0, k+i

R‘P (Xi7 t) =

where 1,,(Xi.6kt) and 1,,(x;kt) are the long-range volume mo-
ments exerted on the beam segment AV(x;) by the non-adjacent
beam segment AV(£;) due to the pure bending deformation (9)
and the pure shear deformation (10), given respectively by

*

Fop (%, 5. ) =F’Ek'gw(x,-fwe(xhsbt)AV<x,»>AV<€k>: (16)

r(ﬂz(xivgk’t) = |3 g ‘gz(xlvgk)w(xlvﬁkvt)AV(Xl)AV(gk) (17)

In Eq. (12), Eq. (14) and Egs. (16) and (17), gx(x.£), g2(x,£) and g,(x.,£)
are attenuation functions governing the space decay of the non-
local axial, bending and shear elastic effects. They are taken as
symmetric functions with respect to the arguments x and &, to
ensure that the elastic long-range resultants exchanged by the
interacting beam segments are mutual, according to Newton'’s third
law (see Figs. 3 and 4). Further, they are taken as positive functions,
to ensure that the elastic long-range resultants are restoring terms,
at any distance between the interacting beam segments. For gen-
erality, in the proposed model gx(x,£), g/(x.£) and g,(x,§) are intro-
duced as independent functions: for instance, they could be given
the same mathematical form but with different parameters. This
seems an appropriate option in recognition of the fact that non-
local effects may vary significantly depending on the material
microstructure and that, consequently, non-local axial, bending
and shear effects shall not necessarily exhibit the same decay.
Typical mathematical forms of attenuation functions are expo-
nential, Gaussian or bell-shaped functions (Di Paola et al., 2009;

AV(x) AV(E)
% F il | —
X
= ] axial spring
@ { } < bending spring
o S shear spring

Fig. 3. Mechanics of the long-range interactions between elementary beam segments.

Failla et al., 2013; Friswell et al., 2007). In general, a definite choice
on the mathematical form along with the pertinent parameters will
depend on the material and shall be obviously based on exper-
imental evidence, through an optimization procedure.

At this stage, a few comments are worth doing. From a mechan-
ical point of view, the elastic long-range volume forces/moments
can be interpreted as the result of a spring-like connection between
non-adjacent beam segments, where long-range pure axial, pure
bending and pure shear springs are accounted for, see Figs. 3 and 4.
In this sense, it can be stated that the non-local beam is built on the
same mechanical basis as the non-local bar previously developed by
the authors (Di Paola et al., 2009, 2011b; Failla et al., 2010), where
long-range volume axial forces have been also built as linearly
depending on the relative displacement, and on the product of the
volumes of the interacting bar segments, through an attenuation
function g(x,£). It is noted indeed that the long-range resultant (11)
can be readily reverted to the long-range resultant involved in the
equilibrium of the non-local bar (Di Paola et al., 2009, 2011b; Failla
et al,, 2010), as long as gx(x,£) = |x — £|g(x,£)/E*Ais set.

In addition, it shall be noted that the non-local beam model is
a displacement-based model, where the long-range volume forces/
moments arise from relative displacements/rotations between
non-adjacent beam segments, that correspond to the pure defor-
mation modes (8)—(10). In this respect, recognize that if the long-
range volume transverse forces/moments were taken as depend-
ing on the relative transverse displacement and not on the pure
shear deformation (10), long-range volume transverse forces/mo-
ments would erroneously arise from a relative transverse dis-
placement induced, for instance, by a rigid rotation of the beam. In
this sense, it can be stated that the non-local beam model is
invariant with respect to rigid body motion and that the axial,
bending and shear non-local behaviors are mechanically
consistent.

3.2. Damping long-range resultants

Although, at least in principle, different sources of non-local
damping may be endowed in the non-local beam model, here
viscous long-range volume forces/moments are considered. The
analytical form is built consistently with the analytical form of the
elastic counterparts. That is, it is assumed that two beam segments
AV(x;) and AV(&g), located at x = x; and x = £; on the beam axis, may
mutually exert viscous long-range volume forces/moments, as
aresult of the rate of the relative displacements/rotations described
in terms of the generalized measures (8)—(10). Still in analogy with
the elastic counterparts, the viscous long-range volume forces/
moments are taken as linearly depending on the rate of the
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(a)

rx(xnékvt) _rv(xi’é:k?t)
[ T Tol ]
[ I 1N ]
X
AV (x)) 750 AV (&)
(v)
rw(xi"fk’t) _rw(xn‘fkvt)
f D) AR ]
b4 e
x
AV (x) 0>0 AV (&)
11
Ll
k 7 it - zero stiffness in the shear mode
(<)
r{p: ('xi’gk’l) Bt (xi’gk’t)
[ ar i ]
[ % {10k ]
r. (x..1) *
AV(Xi) r:(xi’gk’t) ’ A AV(‘;{)
( zero stiffness in the bending mode
7/
>0

Fig. 4. Long-range springs: (a) axial; (b) pure bending; (c) pure shear.

generalized measures (8)—(10), and on the product of the volumes N-1
of the interacting beam segments, through attenuation functions  De(Xi,t) = Ay (Xi, i, £) + Aoz (X, i, 1)
that are pertinent to the non-local viscous damping effects. k=0, k=i
Therefore, if dy(x,6,t), d(x.£,t), dyo(x.£,t) and d,,(x.£,t) denote the N-1 E'l
viscous long-range volume forces/moments exerted on the beam = X — 5 ‘g(,, (X, Ek)ﬁ(xn £k, DAV (X)) AV (&)
segment AV(x;) at x = x;, by a non-adjacent beam segment of vol- k=0, k=i
ume AV(&) at x = &, the viscous long-range resultants can be N-1 3uE"]
written in the form: + X — &, |gz(xn 5k)‘/’(xn £, DAV (X)) AV (E).
k=0, k=+i
N-1 (20)
Dx(x;,t) = dx(Xi, €, t)
k=0, k=i where the dot means differentiation with respect to time. Further, in
N-1 E'A . ) Egs. (18)—(20) gx(x,§), &,(x,¢) and g, (x, ¢) are attenuation functions
= ‘mgx (%1, E) M (i, S, AV (%) AV (§ ) governing the spatial decay of the non-local axial, bending and shear
k=0, k=it ¢ viscous effects. Like the attenuation functions governing the non-

(18) local elastic effects, they are taken as symmetric functions with

N-1 N-1 *
6uE ] .
Dy (x;,t) = (b)) = > sgn(Ey —x) —-

™ g|2 (%, E)V(%i, £, DAV (X)) AV (Ep); (19)
k=0, k+i k=0, k=i
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respect to the arguments x and £, to ensure that the viscous long-
range resultants exchanged by interacting beam segments are
mutual, according to Newton'’s third law (see Fig. 4). Also, they are
taken as positive functions, to ensure that the viscous long-range
resultants are dissipating terms at any distance between the inter-
acting beam segments. For generality, g, (x, §),8,(x,§) and g, (x, §) are
introduced as independent functions. As already pointed out in
Section 3.1, this option is allowed in recognition of the fact that,
depending on the material at hand, non-local axial, bending and
shear effects shall not necessarily exhibit the same decay. Typical
choices for non-local damping attenuation functions are similar to
those for non-local elastic attenuation functions. For instance, see
the work by Friswell et al. (2007) where exponential and Gaussian
functions have been used for non-local damping effects. A definite
choice on the mathematical form along with the pertinent param-
eters will depend on the material and shall be made based on
experimental evidence, through an optimization procedure.

Next, a few final comments on the viscous long-range volume
forces/moments are of interest. From a mechanical point of view,
they can be interpreted as the result of a dashpot-like connection
between non-adjacent beam segments, where pure axial, pure
bending and pure shear dashpots are accounted for. The corre-
sponding mechanical model is then analogous to the spring model
in Figs. 3 and 4, where springs are replaced by dashpots. It is also
apparent that, if the non-local stiffness terms (11), (13), (15) and the
non-local damping terms (18)—(20) are considered simultaneously
in the model, the long-range volume forces/moments (7) can be
interpreted as the result of a non-local viscoelastic connection of
the Kelvin—Voigt type.

Finally, it shall be pointed out that the proposed non-local
damping model is not proportional, as the viscous long-range
volume forces/moments do not exhibit the same analytical form
of the (elastic) restoring forces/moments, to which contribute both
local and non-local terms.

4. Dynamics of the non-local beam
4.1. Motion equations
Upon introducing the long-range resultants in Sections 3.1 and

3.2, it can be readily seen that dividing Eq. (6) by Ax and taking
the limit Ax — 0 lead to the following equations:

* (X t) 2
EATJrFx(Xt )+ A /|X B I ED o1
+ &% HN(x, ¢, )]dffm ®)iL(x, £);
« |0%u(x, ) de(x,t f 6UE']
KSGA{%—% 1 Eo(x,£) + A2 / sgn( — x) \xliE|2
J ~
X (82X EWE,0) + &, (x OY(X.E D] dE = m(x)i(x, 0);
(22)
L
< O2p(x,t « a [v(x,t " El
E Ii(g)(; ) kG A[Lg; Lgo(x,t)} +A2/|X_
0

FauErr (23)

% [0 (x. E)0(x,E,0) + 8, (x HB(x.E,0)|dE + A2

x [ EY(X.E ) + E (X EWXE, >]d£—1p<x> (x,£),

where the constitutive local laws (5) have been introduced and
AV(x) = AAx, AV(£) = AA¢ have been set for the volumes of the
interacting beam segments. As concerns the B.C. it can be seen that,
in the dynamic equilibrium equations at the beam ends, the long-
range resultants (11), (13), (15), (18)—(20) can be considered as
infinitesimal of higher order with respect to the local stress re-
sultants (see Di Paola et al., 2009). For this reason, the mechanical
B.C. hold in the classical form of local theory:

T
a X, - +N1(t)7

KsG [ w<x,t>] — T (242 —0)
do(x,t) M.
2 L = M

where Nj, M; and T; are the external forces/moments acting at the
ends of the beam (i = 0, L).

Eqgs. (21)—(23) are the motion equations of the proposed non-
local TM beam model. It is a continuum model, where the non-
local effects are accounted for, in an average sense, by the integral
terms in the Lh.s. of Egs. (21)—(23). They represent the elastic and
viscous long-range resultants per unit length. The following few
remarks are now worth doing on the applications.

Remark 1. If elastic long-range resultants only are considered in
Eqgs. (21)—(23), the proposed model is a TM beam model with non-
local elastic effects. It is suitable for typical applications of alter-
native existing non-local beam theories, as for instance to capture
small-size effects in micro- or nano-beams. An example will be
given in Section 5.1. It shall be also pointed out that in a non-local
TM beam previously introduced by Di Paola et al. (2011a, 2012)
within the more general formulation of a non-local 3D contin-
uum (Di Paola et al., 2010a,b), elastic long-range resultants per unit
length are also involved in the equilibrium equations. The relation
between the non-local beam by Di Paola et al. (20114, 2012) and the
non-local beam of this paper will be discussed in the Appendix A.

Remark 2. If viscous long-range resultants only are considered in
Egs. (21)—(23), the proposed model is a TM beam model with non-
local viscous effects. In this case, it can be seen as a generalization of
the model by Russell (1992) to address, for instance, non-local
damping effects in fiber-reinforced composite beams. It can be
noted indeed that the viscous long-range axial force per unit length
in Eq. (21) and the viscous long-range moment per unit length in
Eq. (23), specifically the part due to the pure bending mode (9),
have respectively the same mathematical form of the viscous long-
range axial force and the viscous moment per unit length intro-
duced by Russell (1992): they account for the dissipation forces
transmitted to the matrix from fibers as a result of a differential
axial displacement and a differential rotation along the beam axis,
in a beam with longitudinal fibers.

With respect to the model by Russell (1992), however, the
proposed model introduces some important novelties. The motion
equations (21)—(23) involve, along with the viscous long-range
terms already considered by Russell (1992), the viscous long-
range terms due to the pure shear deformation mode (10). The
presence of these terms allows the proposed model to be applied to
beams where embedded fibers may be also inclined with respect to
the beam axis. In fact in such beams, along with the dissipation
forces due to a differential axial displacement and a differential
rotation along the beam axis, it shall be also accounted for the
dissipation forces transmitted to the matrix from the inclined fi-
bers, as a result of a shear deformation along the beam axis. Based
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on the same reasoning by Russell (1992), it can be readily seen that
these dissipation forces will generally result, within any beam
segment which the inclined fibers pass through, in an additional
transverse force and an additional moment: on a beam segment of
unit length, they are indeed the viscous long-range transverse force
in Eq. (22) and the viscous long-range moment in Eq. (23) of the
proposed model, due to the pure shear deformation mode (10).

In light of the considerations above it can be concluded that,
when viscous long-range resultants only are considered in Egs.
(21)—(23), the proposed model includes and generalizes the pre-
vious model by Russell (1992). Specifically, when viscous long-
range moments due to the pure bending mode (9) and long-
range transverse forces/moments due to the pure shear deforma-
tion mode (10) are considered in Egs. (22) and (23), the proposed
model can be applied to study the flexural response of composite
beams with multi-oriented 2D fiber reinforcements: a typical
example is the in-plane flexural response of symmetric or quasi-
isotropic laminates (Campbell, 2010). On the other hand, when
viscous long-range moments due to the pure bending mode (9)
only are considered in Eq. (23), the proposed model can be
applied, as the model by Russell (1992), to study the flexural
response of composite beams with longitudinal fibers: typical
example is the out-of-plane flexural response of unidirectional
laminates.

As a further comment on the generalizations introduced by the
proposed model, it shall be also pointed out that the proposed
model applies to shear-deformable TM beams, while the model by
Russell (1992) applies to EB beams only. Finally, it is noted that in
the proposed model the mechanical B.C. do not involve non-local
terms, and are identical to those of the classical local theory.

Remark 3. If elastic and viscous long-range resultants are con-
sidered simultaneously in Egs. (21)—(23), the proposed model is
aTM beam model with non-local Kelvin—Voigt viscoelastic effects. It
can be readily seen, in fact, that the total long-range resultants in
Eqgs. (21)—(23) are viscoelastic terms of the classical Kelvin—Voigt
type. In this case, the proposed model can be seen as a further
development of the model by Russell (1992) for fiber-reinforced
composite beams, in the sense that the long-range resultants in
Egs. (21)—(23) now account for a different dissipation mechanism at
the fiber—matrix interface, i.e. viscoelastic and not purely viscous as
in the model by Russell (1992). Several studies have shown that, in
some fiber-reinforced composites, a viscoelastic modeling of the
dissipation mechanism at the fiber—matrix interface has to be
pursued (Gosz et al., 1991). In general, it may account for mechanical
imperfections, unreacted polymer components, fiber treatments or,
in some cases, for the presence of an “engineered” interphase be-
tween fibers and matrix, to optimize composite performances
(Matzenmiller and Gerlach, 2004; Fisher and Brinson, 2001).

Based on the considerations made in Remark 2 it can be stated
that, as in the case of viscous long-range resultants, also in this case
the proposed model applies to beams with longitudinal or multi-
oriented 2D fiber reinforcements. An example will be given in
Section 5.2. To substantiate the interest that is currently devoted to
non-local viscoelastic models for fiber-reinforced composites, it is
also worth noting that an alternative theoretical non-local viscoe-
lastic model has been recently proposed by Zhao et al. (2008) for
a bar in tension, based on a generalized strain gradient viscoelas-
ticity theory.

4.2. Free vibration problem

Attention will be now devoted to the solution of the free vi-
bration bending problem, governed by Egs. (22) and (23) for

F,(x,t) = 0. Here, the solution is found based on a finite difference
discretization of the integro-differential equations (22) and (23).
Upon discretizing the beam domain in N segments Ax (x; = iAx for
i=01,..,N — 1), the following forms are then adopted for the
differential terms

K.C'A {azu(x, B op(x, t)]

ox2 ox

X=X;
U(Xi+1 ) t) + U(Xifl ) t) - ZU(Xi7 t) 7 w(xi+] ) t) - w(xifl ) t) .

Ax2 2Ax ’
(25)

=K,G'A {

P o(x,1)
ox2

ov(x,t)

E'l 1 KG'A {T — (X, t)}

X=X;

X=X;
_ e eXig1: t) Ho(Xim1, ) — 20X, t) (26)
=E'1]

Ax2

U(xi+1 ) t)ZZ;(Xi71 ) t) _ (ﬂ(xh t):| )

The integral terms are reverted to discrete summations such as, for
instance (the corresponding discrete expressions for the integral
terms in Eq. (23) are not reported for brevity)

+KG'A [

L

# [[sgnte - x) [t 0i 2.0 + gk i £ 0
0
N-1 *
=AY s -x) ]

k=0k#i xi — &l
x [k £V (i, B 0 + &% BV (i, . D] A
(27)

Then, assuming the standard form U = West for the displacement/
rotation response involved in the discretized Eqs. (22) and (23)
leads to the following complex eigenvalue problem

[sZM +sC+ K]lp =0, (28)

where M, K and C are a mass, a stiffness and damping matrix, W is
the eigenvector corresponding to the eigenvalue s.

To solve Eq. (28) the Galerkin method is applied. This approach
has been successfully adopted by Lei et al. (2006a) for non-local and
non-proportional damping. Specifically, the following expression is
considered for the sought eigenvector W

L L Zcifbi, (29)

where ®; for i = 1,2,...M, are the eigenvectors of the undamped
beam. Upon computing the complex eigenvalues s;, the damping
ratios {; are derived as {; = —%(s;)/|s;|. Obviously, whereas non-
local effects are considered only in the stiffness (i.e, C = 0
in Eq. (28)), the non-local natural frequencies and the corre-
sponding eigenvectors can be determined by standard methods of
eigenanalysis.

5. Numerical applications

The free vibration flexural response of the proposed non-local
TM beam model is investigated in two cases. In the first, an
epoxy micro-beam with non-local elastic effects only is considered,
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i.e. only elastic long-range resultants are considered in Egs. (22) and
(23). In the second, a 2D isotropic laminated fiberglass/polyester
beam with non-local Kelvin—Voigt viscoelastic effects is consid-
ered, i.e. elastic and viscous long-range resultants are simulta-
neously included in Egs. (22) and (23).

5.1. Undamped free vibrations of a TM beam with non-local elastic

effects

A simply supported epoxy micro-beam with the following pa-
rameters is considered: L = 300 um, rectangular cross section of
width b = 100 pm and variable height h, Young’s modulus
E = 1.40 GPa, v = 0.35, mass density p = 1200 kg m>.

It is assumed that the non-local bending and shear behaviors are
governed by the same attenuation functions, i.e.

gq(xa E) = g(xa §)7 forq = (P,Z; (30)

where g(x,£) is given by

gx.5) = crexp(— "‘f‘). (31)

It is worth noting that the exponential function (31) is commonly
used as attenuation function in many non-local theories. For
instance, it has been used for a non-local stiffness model by Friswell
et al. (2007). It is symmetric with respect to the arguments and
positive, i.e. it meets the requirements given in Section 3.1. Obvi-
ously, there exist alternative attenuation functions with similar
properties, and examples can be found in Eringen (1972, 1983,
1987), Polizzotto (2001), Friswell et al. (2007). Pertinent applica-
tions are not included for brevity.

In Eq. (31) G, is a constant, [, is the internal length. The larger is
the internal length, the wider is the so-called influence distance, i.e.
the maximum distance beyond which the attenuation functions
and therefore the non-local effects become negligible. The nu-
merical values C; and I, will be set on a theoretical basis, in order to
enhance non-local effects and assess how they affect the free vi-
bration solution. Specifically, C; = 10'° m~® is set in Eq. (31), while
different values of the internal length I, are considered. Note that
lower values of C; (C; < 10'° m~%) would not result in appreciable
non-local elastic effects with respect to local ones and, for this
reason, they have been disregarded.

In the constitutive equations (5) 61 =1 is selected. As a result of
this choice, the non-local solution will tend to the solution obtained
by the classical local TM theory, as I, — 0 in g(x,£) given by Eq. (31).
The numerical results reported are obtained for N = 800 intervals in
the beam domain. No significant differences are encountered for
N > 800. The first four natural frequencies w}"” = —is;j (i is the
imaginary unit) are given in Table 1.

Regardless of the L/h ratio, it is seen that the natural frequencies
are higher than the corresponding values of the classical local TM
theory (i.e., the values corresponding to I = 0, for which g(x,£) =0
in Eq. (31)). This result can be explained considering that the elastic
long-range interactions between non-adjacent beam segments
provide additional stiffness. It is also noted that the natural fre-
quencies increase with the internal length [. A larger internal
length [, corresponds indeed to a larger amount of mutually
interacting non-adjacent beam segments, with a consequent
stiffening of the solution. Further, as concerns the dependence on
the L/h ratio, it is seen that the ratio of the natural frequencies to the
corresponding values of the classical local TM theory increases as
the L/h ratio decreases, i.e. as the beam height increases (L is held
constant). This result shall be attributed to the fact that higher
values of h determine an increased magnitude of the elastic long-

Table 1
Undamped free vibrations of an epoxy micro-beam: natural frequencies (MHz).

Iy (um) Mode 1 Mode 2 Mode 3 Mode 4

L/h =20 0.0 0.08134 0.32125 0.70833 1.22614
0.5 0.08166 0.32510 0.72575 1.27647

1.0 0.08199 0.32664 0.73002 1.28589

3.0 0.08520 0.33959 0.75952 1.33920

6.0 0.09517 0.37931 0.84830 1.49565

9.0 0.10975 0.43696 0.97592 1.71809

12.0 0.12729 0.50553 1.12575 1.97616

15.0 0.14661 0.57986 1.28597 2.24892

L/h =10 0.0 0.16059 0.61294 1.28933 2.11919
0.5 0.16278 0.64207 1.41275 2.43889

1.0 0.16345 0.64526 142151 2.45750

3.0 0.16986 0.67088 1.47906 2.55922

6.0 0.18974 0.74937 1.65195 2.85797

9.0 0.21881 0.86327 1.90033 3.28248

12.0 0.25378 0.99868 2.19179 3.77456

15.0 0.29230 1.14545 2.50325 4.29416

LIh=5 0.0 0.30645 1.05955 2.01861 3.05630
0.5 0.32162 1.22696 2.57494 4.21311

1.0 0.32295 1.23300 2.58966 4.23949

3.0 0.33561 1.28189 2.69357 4.41099

6.0 0.37489 143173 3.00763 4.92322

9.0 0.43230 1.64905 3.45839 5.65009

120 0.50136 1.90721 3.98637 6.49013

15.0 0.57742 2.18680 4.54944 7.37416

range resultants (as in fact the stiffness E'I is involved in the
long-range resultants in Eqgs. (22) and (23)) and, consequently,
a stiffening effect. It is interesting to note that experimental evi-
dence of an increased stiffness with respect to the classical local
solutions, due to non-local microstructural effects in micro-beams,
has been found (Lam et al., 2003; McFarland and Colton, 2005), and
is also encountered in the theoretical models devised by Lam et al.
(2003) based on strain gradient elasticity and by McFarland and
Colton (2005) based on micropolar elasticity.

Fig. 5 shows the ratio w™) /w(!) of the first four non-local natural
frequencies, (™, to the corresponding local values, ¥, for Ljh = 5
and the internal lengths I considered in Table 1. The non-local nat-
ural frequencies increase with the internal length [, approximately
with the same rate. It can be also noted that the ratio w™/w® is
higher for the higher vibration modes. This result is due to the fact
that the non-local beam model is displacement based: the higher
vibration modes involve a larger relative motion between

23 T T T T

(JJ'"”JIU)E”

I, [sm]

Fig. 5. Ratio of non-local to local natural frequencies of an epoxy micro-beam, for L/
= 5 and different internal lengths I,.
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Fig. 6. Non-local modes of an epoxy micro-beam: (a) 1st and 3rd symmetric modes;
(b) 2nd and 4th anti-symmetric modes.

non-adjacent beam segments and, as such, they are affected by
alarger amount of elastic long-range interactions, with a consequent
stiffening of the solution.

Fig. 6 shows the first four vibration modes of the non-local
beam, for L/h = 5 and I, = 15 um, along with the corresponding

local modes. They are all normalized with respect to the mass
matrix and then scaled by a factor 108, The modes are symmetric
or anti-symmetric as in the local case. No very significant changes
are encountered with respect to the local vibration modes, in
agreement with the results provided by different non-local beam
theories (Xu, 2006).

5.2. Damped free vibrations of a TM beam with non-local
viscoelastic effects

The in-plane flexural response of a 2D isotropic laminated beam
is considered. The laminate is made of polyester resin with a fiber-
glass reinforcement. The beam is simply supported. The following
geometry/parameters are selected: L = 1 m, rectangular cross
section of width b = 5 mm and variable height h, Young’s modulus
E = 28.0 GPa, G = 4.0 GPa, mass density p = 1800 kg m>.

It is assumed that pure bending and pure shear behaviors are
governed by the same attenuation functions. Among the many
potential attenuation functions, an exponential form is considered
for both elastic and viscous non-local effects, i.e.

gq(x,8) = gx,§) = Crexp<f |X;E‘

>, forq = ¢,z,  (32a)

_£
gq(x7g) = g(x,g) = Cdexp(_|xld‘:|

), forq = o,z. (32b)

An exponential form analogous to Egs. (32a) and (32b) has been
proposed by Friswell et al. (2007) in his beam model with non-local
stiffness and damping. Both are symmetric with respect to the ar-
guments and positive, i.e. they meet the requirements given in
Sections 3.1 and 3.2. As already pointed out in Section 5.1, there
exist alternative attenuation functions with similar properties, ex-
amples can be found in Eringen (1972, 1983, 1987), Polizzotto
(2001), Friswell et al. (2007) and pertinent applications are not
included for brevity.

In Eq. (32) G- and Cy are two constants, [ and Iy are internal
lengths governing the spatial decay of elastic and viscous non-local
effects. Here, the respective numerical values will be set on a the-
oretical basis, in order to enhance non-local effects and assess how
they affect the free vibration solution. They will be thought as in-
dependent parameters, i.e. G- #+ Cq4 and I # Ig. In this manner, it is
ensured that the stiffness and viscous damping parameters of the
long-range viscoelastic interactions are not identical, as generally
encountered in any viscoelastic model. On the other hand, allowing
I # |y means that the stiffness and the viscous damping parameters

Table 2
Damped free vibrations of a fiberglass—polyester composite beam: complex eigenvalues.
lq (m) Mode 1 Mode 2 Mode 3 Mode 4
L/h =20 0.02 —5.2 £+ 2350.3i —121.4 + 8254.4i —588.8 + 16,279.9i —1699.7 + 25,518.6i
0.04 -9.7 + 2350.3i —197.6 + 8255.6i —947.0 + 16,280.0i —2751.4 + 25,460.7i
0.06 —16.2 4 2350.3i —295.2 + 8253.7i —1395.0 + 16,249.3i —4063.3 + 25,259.5i
0.08 —24.6 £ 2350.2i —412.1 + 8248.6i —1922.2 + 16,188.7i —5575.5 &+ 24,924.9i
0.10 —34.5 4+ 2350.1i —544.0 + 8240.2i —2505.6 + 16,098.2i —7196.3 + 24,460.1i
L/h =10 0.02 —28.8 4 4684.8i —664.3 + 16,307.3i —2809.4 + 32,365.3i —6118.7 + 50,920.2i
0.04 —47.3 £+ 4685.4i —958.0 + 16,328.7i —4069.0 + 32,310.7i —9946.8 + 50,032.8i
0.06 —73.3 + 4685.4i —1336.4 + 16,308.7i —5787.5 + 31,953.7i —15,130.0 + 48,248.1i
0.08 —106.6 + 4684.9i —1794.5 + 16,258.4i —7855.3 + 31,370.1i —21,070.8 + 45,505.5i
0.10 —146.1 + 4683.9i —2312.6 + 16,179.8i —10,142.7 & 30,562.4i —27,335.3 4+ 41,631.4i
LIh=5 0.02 —203.2 + 9277.6i —3285.8 + 32,156.7i —7701.9 + 63,081.4i —11,352.1 &+ 92,062.5i
0.04 —280.2 + 9286.3i —4188.2 + 32,146.5i —12,220.3 £+ 61,551.1i —24,322.6 + 87,862.7i
0.06 —382.2 + 9287.6i —5578.7 + 31,819.0i —18,857.3 + 58,887.6i —41,577.9 + 79,340.0i
0.08 —512.0 + 9283.5i —7331.8 + 31,297.5i —26,587.5 + 54,882.1i —60,607.8 + 64,015.7i

0.10

—666.2 + 9274.0i

—9321.7 + 30,587.1i

—34,832.3 + 49,159.8i

—80,006.6 + 34,312.7i
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Table 3
Damped free vibrations of a fiberglass—polyester composite beam: damping ratios.
lq (m) Mode 1 Mode 2 Mode 3 Mode 4
L/h =20 0.02 0.00223 0.01470 0.03614 0.06645
0.04 0.00415 0.02393 0.05807 0.10744
0.06 0.00691 0.03574 0.08553 0.15882
0.08 0.01046 0.04990 0.11791 0.21829
0.10 0.01468 0.06587 0.15379 0.28224
L/h =10 0.02 0.00615 0.04070 0.08647 0.11930
0.04 0.01011 0.05857 0.12494 0.19499
0.06 0.01565 0.08167 0.17822 0.29922
0.08 0.02275 0.10971 0.24290 0.42018
0.10 0.03118 0.14149 0.31497 0.54886
LIh=5 0.02 0.02189 0.10165 0.12119 0.12238
0.04 0.03016 0.12919 0.19473 0.26679
0.06 0.04112 0.17269 0.30497 0.46417
0.08 0.05507 0.22808 0.43598 0.68751
0.10 0.07166 0.29152 0.57813 0.91904

may exhibit a different spatial decay. It is believed that, in practical
applications, this option may ensure a better fit of the proposed
model to experimental evidence, in recognition of the fact that the
long-range resultants are not built based on an exact description of
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Fig. 7. Fiberglass—polyester composite beam: real and imaginary parts of complex
mode 1.

the actual microstructure at the fiber—matrix interface (that,
however, is virtually impossible due to several, inherent un-
certainties) but, consistently with a typical approach of non-local
theories, they account for the coupling effects due to the fibers in
an average sense.

Specifically, the following numerical values are selected for C-
and I,, C4 and l4in Eq. (32): G, = 2-10° m ® and I, = 0.5 m in Eq.
(32a); C4=2-10~2 m~® and different values of the internal length Iy
in Eq. (32b).

In the constitutive equations (5) $1 =1 is selected. As a result of
this choice, the non-local solution will tend to the solution obtained
by the classical local TM theory, as I, — 0 and l; — 0 in g(x,£) and
g(x,§) given by Eq. (32).

The numerical results reported are obtained for N = 800 in-
tervals in the beam domain. To solve the complex eigenvalue
problem (28), M = 10 undamped modes are retained in the
eigenvector expression (29). No significant variations are found in
the solution, for N > 800 and M > 10.

The first four eigenvalues are reported in Table 2. As the real part
of all the eigenvalues is not equal to zero, it is evident that the free
vibration response of the beam is damped and decays with time.

Table 3 gives the damping ratio {; = —%(s;)/|s;| corresponding to
the first four eigenvalues in Table 2. Regardless of the L/h ratio, it is
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Fig. 8. Fiberglass—polyester composite beam: real and imaginary parts of complex
mode 2.
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seen that the damping ratios increase with the internal length I4. In
fact the larger is the internal length lg, the larger is the amount of
interacting beam segments and, consequently, the energy dis-
sipation. Still regardless of the L/h ratio, it is seen that the damping
ratio is larger for higher vibration modes. Higher vibration modes
involve indeed a larger relative motion between beam segments
and, consequently, they are affected by a larger energy dissipation.
In this respect, this behavior appears consistent with the results of
many experimental tests, where higher damping is encountered in
higher vibration modes (Russell, 1992). As concerns the dependence
onthe L/hratio, it is noted that the damping ratios are larger as the L/
h ratio decreases, i.e. as the height h increases (L is held constant).
This result shall be attributed to the fact that higher values of h
determine an increased magnitude of the viscous long-range re-
sultants (as in fact the stiffness E'I is involved in the long-range
resultants in Eqs. (22) and (23)) and, therefore, a larger energy dis-
sipation. It shall be finally pointed out that, for the selected pa-
rameters, the damping ratios are <1 for any value of the internal
length Iy, i.e. the modes are all oscillatory. This appears consistent
with typical behaviors of composite structural components. How-
ever, it can be readily seen that higher values of Cy (i.e.
Cg > 21072 m~®) would generally lead to damping ratios = 1, i.e. to
non-oscillatory modes, for almost any value of the internal length Ig.

Mode 3
'0.06 T T T T

-0.03

REF) [m]

0.03

0.06 1 1 1 1

x [m]

Mode 3
'0008 T T T T

-0.004

3(¥,(x)) [m]

0.004

0.008 t . ! L
0 0.2 0.4 0.6 0.8 1

x [m]

Fig. 9. Fiberglass—polyester composite beam: real and imaginary parts of complex
mode 3.
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mode 4.

Figs. 7—10 show the real and the imaginary parts of the first four
vibration modes of the non-locally damped beam, for the following
parameters: G, = 2-10> m™%, ¢; = 2:1072 m™%, I, = 0.5 m and
lg=0.06 min Eq. (32), L/h = 5. They are all normalized with respect
to the mass matrix. As expected (Friswell et al., 2007), real and
imaginary parts reflect the symmetry or the asymmetry of the
corresponding local undamped modes.

6. Concluding remarks

A non-local TM beam has been presented. As in most common
non-local beam theories, the mathematical approach relies on
formulating an enriched continuum model of the beam, where
non-local effects are accounted for, in an average sense, by intro-
ducing non-local terms in the motion equations. Specifically, the
non-local terms have been modeled as long-range volume forces/
moments mutually exerted by non-adjacent beam segments, that
contribute to the equilibrium of any beam segment along with the
classical stress resultants exerted by the adjacent beam segments.
Elastic and viscous long-range volume forces/moments have been
introduced, to be considered either separately or simultaneously.
They are taken as linearly depending on the product of the volumes
of the interacting beam segments and on generalized measures of
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their relative motion, through pertinent attenuation functions. As
a result, the equilibrium equations of the beam have been built in
an integro-differential form, while the mechanical B.C. have been
derived in the same form of the classical local theory. Indeed the
long-range volume forces/moments are infinitesimals of higher
order, that do not contribute to the equilibrium equation at the
beam ends. The generalized measures of relative motion have been
built based on the pure deformation modes of the TM beam, to
ensure that the long-range volume forces/moments are invariant
with respect to rigid body motion.

The proposed model lends itself to address different sources of
non-local effects. If elastic long-range volume forces/moments only
are considered, it can be seen as a generalization of a non-local bar
model already developed by the authors (Di Paola et al., 2009,
2011b; Failla et al., 2010), with typical applications of alternative
non-local beam theories, as for instance to capture small-size ef-
fects in micro- or nano-beams. If either viscous or elastic and vis-
cous (i.e. viscoelastic) long-range volume forces/moments are
considered, it can be seen as a generalization of the non-local vis-
cous damping model by Russell (1992) to address, for instance,
non-local damping effects in fiber-reinforced composite beams.

In the proposed model a certain number of functions/parame-
ters are involved, which affect the non-local terms, i.e. the
attenuation functions governing axial, bending and shear behavior
and pertinent parameters (in this paper, the exponential functions
(31)—(32) and parameters C, and I, Cg and I;), as well as the local
terms (see (7 in Eq. (5)).

The mathematical form of the attenuation functions, the related
non-local parameters as well as parameter $; in Eq. (5), shall be
generally determined via an optimization procedure, where the
theoretical model is fitted to experimental results, on static or dy-
namic response. It is important to note that a similar procedure is
not characteristic of the proposed model only, but is typical of all
classical non-local theories involving an enriched continuum with
additional non-local terms. Depending on the formulation, the
non-local terms always involve a number of unknown parameters
that only experimental evidence may allow to select. For instance,
examples of enriched continua with five additional parameters for
non-local terms exist in the literature (Lam et al., 2003; Mindlin,
1965). Obviously, any optimization procedure to fit experimental
evidence shall be generally preceded by numerical simulations,
that may serve to determine the expected order of magnitude of the
non-local terms, with respect to the local ones. An example of
a fitting procedure has been proposed by Banks and Inman (1991).

As specifically concerns the selection of the attenuation func-
tions when elastic and viscous long-range resultants are simulta-
neously introduced in the model, i.e., when viscoelastic long-range
resultants are considered, for generality they have been allowed to
be taken as independent functions. This option has been considered
in view of ensuring that, when fitted to experimental results, the
proposed model can be as much versatile as possible. In practice, it
may be thought that they have the same mathematical form, but
different parameters (see also comments in Section 5.2).

In the numerical applications, parameters and attenuation
functions have been set on a theoretical basis, to enhance non-local
effects. The undamped free vibrations of an epoxy micro-beam and
the damped free vibrations of a fiberglass—polyester beam have
been addressed, the latter when elastic and viscous long-range
resultants are simultaneously included in the model. This case
corresponds to a Kelvin—Voigt viscoelastic modeling of the dis-
sipation mechanism at the fiber—matrix interface. From a qual-
itative point of view, the results have been found consistent with
typical behaviors emerged by experimental tests, such as a stiffen-
ing effect of the undamped vibration modes due to small-size ef-
fects in micro-beams (Lam et al.,, 2003; McFarland and Colton,

2005), and an increase of damping in the higher vibration modes
of fiber-reinforced composite beams (Russell, 1992). The proposed
model appears however sufficiently versatile and potentially
capable of predicting different behaviors, as they should be sug-
gested by experimental evidence. For instance an appropriate se-
lection of parameter (1 (<1) could be made whereas a softening
with respect to classical local solution is expected, as a result of
non-local effects (Di Paola et al., 2010b, 2011a). Potential general-
izations to alternative damping mechanisms, such as for instance
a fractional viscoelastic damping, are feasible. Pertinent results will
be presented in a self-contained study.

A final remark concerns the solution of the motion equations.
The proposed model lends itself to numerical solutions, by a finite
element modeling or by a Galerkin series expansion, computa-
tionally more efficient than the finite difference solution built in
this paper. In this respect, however, it shall be pointed out that the
finite difference solution generally requires a relatively high num-
ber of intervals when an accurate description of the high frequency
modes is requested, and that the computational effort involved
drastically reduces if only the first modes are of interest.

Appendix A

It is of interest to compare the non-local TM beam proposed in
this paper to the non-local TM beam previously built by Di Paola
et al. (20114, 2012), in context with the general formulation of
a non-local 3D continuum.

Both are conceived on the key assumption that non-local effects
can be modeled as long-range volume forces, see Eq. (10) of the
paper by Di Paola et al. (2011a) or volume forces/moments, see Eq.
(6) of this paper. Both are displacement based, that is non-local
effects are assumed to stem from the relative displacements (and
rotations, in this paper) between non-adjacent interacting volume
elements. However some relevant differences exist, as explained in
the following.

A.1. Non-local TM beam by Di Paola et al. (2011a, 2012)

In the non-local TM beam built by Di Paola et al. (2011a, 2012),
the long-range forces have been modeled as elementary volume
forces mutually exerted by non-adjacent elementary volume ele-
ments. These forces are central forces, i.e. they are directed along
the line joining the positions of the interacting volume elements in
the original configuration. Further, they are built as linearly
depending on the product of the interacting volume elements and
on their relative displacement (as measured along the line joining
the corresponding positions in the original configuration), through
an appropriate attenuation function. Based on the kinematic model
of the TM theory, the principle of virtual work has been used to
derive long-range resultants per unit length (forces and moments),
in the form given by Eq. (34) of the paper by Di Paola et al. (2011a),
and here reported for completeness:

L
Ri(x) = /{11 (%, E)[u() —u)] = I(x,§)0(§) +I3(x,£)o(x)
0
+19(x,8)p(€) —v(x)]}dE;
(A.1a)
L
Ra(x) = / {lo(x,5)[u(?) — uX)] — L(x.£)(E) + I3(x.£)p(x)
0
+ Ia(x,§)[v(€) — v(x)]}dE;
(A.1b)
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L
R0 = [{ - Is(x ) ~ u(o) + Is(x )o(E) - s(x. o)
0

= B3(x,)[(§) —v(x)]}dE.
(A.1c)

In Eq. (A1), Ri(x), Ra(x) and R3(x) are the long-range axial
force, transverse force and moment per unit length, Ii(x,) for
(i = 1,2,...,9) are integrals depending on the cross section (note
that I7(x,£) = Ig(x,£) always holds, for any cross section).

Arelevant feature in Eq. (A.1) is that, in a beam of arbitrary cross
section, a long-range axial force Ry(x), see Eq. (A.1a), may arise not
only due to a relative axial displacement but, also, due to a relative
transverse displacement or a relative rotation. Such a coupling is
not encountered, instead, if the cross section has a double sym-
metry, being in this case I7(x,£) = Is(x,§) = Ig(x,£) = 0. An explanation
of this result may be found on a mechanical basis, as explained in
the following.

In the TM beam by Di Paola et al. (20114, 2012), it can be thought
that the long-range elementary volume forces mutually exerted by
two elementary volume elements are yielded by an elementary
truss that connects them in the original configuration. As a result,
a truss-like connection is established between non-adjacent beam
segments, where each elementary truss corresponding to a couple
of interacting volume elements may undergo either traction or
compression, depending on the relative displacement/rotation be-
tween the beam segments. It can be seen that, if the cross section

Truss n.2

features a double symmetry, no total long-range axial force arises
on a beam segment at x, as a result of a relative transverse dis-
placement with respect to a beam segment at £ + x. In fact the
contribution to the total long-range axial force given by any couple
P—Q of interacting volume elements is balanced by the contribu-
tions given by other couples of interacting volume elements that,
along with the couple P—Q, form a symmetric truss. An example is
shown in Fig. 11: in the beam with an I section, where the beam
segments at x and £ undergo the relative transverse displacement
V(&) — v(x), the contribution to the total long-range force given by
the couple P—Q is balanced by the contributions given by the cou-
ples P1—Q, P,—Q, P3—Qy: the four couples form indeed a symmetric
truss where the axial component of the force in truss n.1 is balanced
by the axial component of the force in truss n.2. On the contrary it
can be seen that, if the cross section features a single symmetry,
a total long-range axial force does arise on a beam segment at x, as
aresult of a relative transverse displacement with respect to a beam
segment at £ #+ x due to the fact that, in general, the contribution
given by a couple P—Q of interacting volume elements cannot be
balanced by the contributions given by other couples that may form,
along with the couple P—Q, a symmetric truss. For instance in the
beam with a T section shown in Fig. 11, it is evident that the axial
component of the force in truss n.1 cannot be balanced by the axial
component of any of the other elementary trusses between the
beam segments at x and £. The same statements hold true also
whereas two beam segments undergo a relative rotation.

A further, important consideration on Eq. (A.1) is that, even if the
cross section has a double symmetry, a relative transverse

Truss n.1

Fig. 11. Mechanics of the non-local beam by Di Paola et al. (2011a) for single- and double-symmetric sections.
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displacement always determines long-range transverse forces (see
Eq. (Al.b)). This means that the beam model by Di Paola et al.
(2011a, 2012) is not suitable for those applications where it can
be assumed, for instance, that non-local effects result only in long-
range moments but not in long-range transverse forces, as it may be
the case in composite beams where long fibers passing through
a material matrix are placed only at the upper and lower surface of
the beam (Russell, 1992).

A.2. Proposed non-local TM beam

In the non-local TM beam proposed in this paper, consistently
with typical engineering beam theories where the equilibrium of
a beam segment is set in a weak sense based on the stress re-
sultants on the cross section, the non-local effects have not been
modeled as elementary forces (Di Paola et al., 2011a, 2012), but they
have been given an analytical form in terms of long-range volume
forces/moments exchanged between non-adjacent beam seg-
ments. As shown in Figs. 3 and 4, from a mechanical point of view
this can be considered as equivalent to assuming a spring-like
connection between non-adjacent beam segments where pure
axial, pure bending and pure shear long-range springs can be
separately accounted for. The model of this paper is then suitable
for those applications where it can be assumed that non-local ef-
fects result only in long-range moments but not in long-range
transverse forces (Russell, 1992).

It shall be also pointed out that, in the beam model built by Di
Paola et al. (2011a, 2012), the integrals Ii(x,¢) for (i = 1,2,...,9)
have to be computed numerically, for any couple (x,£) singled out in
the beam axis, discretized according to the finite difference
method. Depending on the applications at hand, the computational
effort may be significant. The computational effort required by the
beam model of this paper is drastically lower, as no numerical
integration is required to evaluate the non-local stiffness terms.
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