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The use of a non-destructive technique in situ can be a valuable diagnostic tool to support verification of res-
toration, as well as a monitoring technique in works of art or historical monuments.

We present a high resolution 3D ultrasonic tomography to one of the most important statues of the Regional
Gallery of Palazzo Abatellis of Palermo, the bust of Eleonora d'Aragona by F. Laurana (1430-1502). This tech-
nique allowed to study the structural continuity of the material of the marble.

Some tests have been carried out to optimize inversion parameters, such as voxel size and to choose between
straight and curved rays.

We propose to calculate a minimum lateral resolution using the sampling frequency instead of that of the
probes. Consequently it was chosen to use a voxel size of 2 cm, lower than the expected resolution, 0.07 m
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Voxel size (calculated considering the median ray length), and also to use curved rays instead of straight rays
Raytracing approximation.
The resulting model showed velocity values corresponding to a sufficiently homogeneous and well-preserved
marble, but in the lower front portion of the trunk at the breasts, that bears the entire weight of the artwork,
low velocity values are present.
© 2013 Published by Elsevier B.V.
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1. Introduction

Many techniques are generally used for investigations of historical
monuments and artworks. Ground penetrating radar (GPR) method is
regularly used for non-destructive imaging (Conyers, 2004; Daniels,
2004). Numerous studies have shown that the GPR method can give
good results to detect and locate fractures and discontinuities within
the investigated medium (Bavusi et al., 2010; Grandjean and Goury,
1996; Pérez-Gracia et al., 2009; Rashed et al., 2003; Sambuelli et al.,
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2011). However this method does not allow to obtain an estimate
of mechanical parameters of the material and it is difficult to apply
it on small artworks characterized by irregular sculpted exterior
surfaces.

Also the electrical resistivity tomography (ERT) method is generally
used for the study of cultural heritage (Capizzi et al., 2012; Cardarellj,
2002; Leucci et al., 2007; Nuzzo and Quarta, 2010; Tsokas et al., 2008).
However, the potential field distribution within a volume delimited by
a very irregular surface, such as that of a statue, is difficult to model.

Surely a technique that can be used on small objects with irregular
surfaces is ultrasonic one. Ultrasonic survey for non-destructive test
and for characterization of artefacts is a rather established methodol-
ogy (Blitz and Simpson, 1996; Dynes and Lytle, 1979; Gambardella et
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Fig. 1. Eleonora d'Aragona by Francesco Laurana (1430-1502).

al., 2008; Phillips and Fehler, 1991). 3D Ultrasonic Tomography is
among the diagnostic methods for studying the structural continuity
of the material, a fairly well-established technique in the diagnostic
study of works of art (Capizzi et al,, 2009; Cardarelli and De Nardis,
2001). This technique can be performed to evaluate either the velocity
(or slowness) parameter and/or the amplitude attenuation, but the
first is almost always preferred for its easiness of implementation. In
any case, essential for the proper use of this diagnostic technique for
the study of works of art is the careful choice of parameters used to in-
vert experimental data. The optimization of these parameters allows lo-
cating within the studied volume possible structural unhomogeneous
areas, fractures or damages.

Some tests are here presented to optimize data analysis and inver-
sion parameters in order to better fit the shape and type of the investi-
gated anomalies. In particular, we present the application of 3D
ultrasonic tomographic technique on one of the most important statues
of the Regional Gallery of Palazzo Abatellis of Palermo, the bust of
Eleonora d'Aragona by F. Laurana (Fig. 1). Furthermore, the results
obtained using different inversion parameters are also presented.

2. The problem of the Eleonora d'Aragona (by F. Laurana)

During the restoration and the expansion of the Regional Gallery
of Palazzo Abatellis (Palermo, Sicily) most of the marble works of mu-
seum has been subjected to an intense analytical restoration.

The bust of Eleonora d'Aragona is a beautiful bust, shown on the
original support designed by the architect Carlo Scarpa in the 60s.

The sculpture (thickness 22 cm, width 40 cm and height 43 cm) is
finely carved from a block of white and microcrystalline marble, re-
sult of metamorphism of a limestone or dolomite. Veins are usually
due to various mineral impurities such as clay, silt, sand or iron oxides
which were present in the original limestone. The quarry where the
block was caved is not known.

The cleanup of the sculpture has revealed the sign of a possible
veining (or fracture that probably originated on a natural veining of
the marble block) in the central portion of the neck, involving the
whole face of the lady.

For these reasons the curators started a diagnostic study aimed
not only to monitor the structural continuity of the veining or lesion,
but also to detect the internal marble conditions and the precautions
to be taken in view of the mobility of the bust.

3. Ultrasonic data acquisition and analysis

To answer to the above given questions, we decided to survey the
statue using the high resolution 3D ultrasonic tomography.

Berryman (1990) suggests that it is better to use full waveform in-
formation (damping of the waves) instead of first arrival traveltimes
(velocity) as input data for inversion, especially when the wave-
lengths are comparable in size to the anomaly dimension. In our
case, considering a marble velocity of about 4600 m/s and the central
frequency of probes (55 kHz), we obtain a wavelength of about 0.07
meter, considering the median ray length. However, in spite of the
Berryman suggestion, we chose to use the acquired data sets only to
implement traveltimes tomography, because in our opinion it is a
very rough approximation to consider every amplitude variation
due to absorption effects, especially when the coupling between
transductors and marble are not fixed but changing for every ray
according to the stress applied by the operator to the probes. There-
fore, although amplitude information could be a valid support to in-
terpretation of velocity analysis, the absorption (or damping) data
are often affected by problems in source and receiver acoustic cou-
pling with rough and irregular surface, like in our case.

We used the TDAS 16 instrument produced by the Italian Boviar.
This multi-channel equipment acquires 16 channels using en elec-
tronic switch on four channels at a time with a maximum sampling
rate of 1.25 MHz. The equipment is supplied with both receiver and
transmitter probes with a central frequency of 55 kHz. Probes were
equipped with special aluminium cone (0.5 cm of diameter for con-
tact area) to allow accurate positioning of the sensor on the surface.

Fig. 2. Measurement points were placed on a transparent film used to avoid damages
on the surface.
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Fig. 3. The 157 measurement points used for data acquisition were located in a 3D topographic relief of the bust.

Table 1
Some acquisition parameters.
Number Number Number Number Probe Sampling
of shots  of receiver of total of analysed frequency frequency
points traveltime traveltime
85 157 1832 1768 55 kHz 1.25 MHz

The surface of the art work was covered with transparent film on
which were placed measurement points selected for acquisition
(Fig. 2) which enabled to maintain contact with the surface probes
and plasticine, used to increase the acoustic coupling between surface
and probes.

A 3D topographic relief of the bust, performed with Mephisto system
(produced by 4D Dynamics), was provided by Representing Department
of University of Palermo to support 3D ultrasonic tomography, allowed to
calculate the distances among the points used to locate the transductors
and to eliminate the straight rays passing outside of the statue in the con-
cave and convex parts.

A 3D ultrasonic tomography was obtained from 157 measurement
points (Fig. 3) identified along the surface of the work was performed.
The measure points were spaced from 2 to 5 cm and 1832 raypaths
were acquired but only 1768 of these were processed. The Table 1
shows some acquisition parameters.

Traveltimes of elastic waves were measured using a manual pick-
ing procedure (Fig. 4).

Before processing, a boundary constraint was applied to tomo-
graphic data removing the straight-line velocity values lower than
2000 m/s and higher than 6000 m/s, both being considered as outlier

data. The traveltime straight ray length graph in Fig. 5 shows that all
the acquired data are distributed on two different velocity trends:
3500 and 5000 m/s. Data relative to internal paths in the head of
the statue, where the lesion was found, were isolated to check if
they coincide with the low velocity values (Fig. 6). Fortunately,
these data show high velocity values, which are evidence of good
marble conditions. Further tests showed that most of the low values
of velocity are associated to the paths in the frontal part of the bust
(Fig. 6).

4. Inversion tests

Traveltime data were inverted using the commercial software
package GeoTomCG, based on the tomography program 3DTOM
(Jackson and Tweeton, 1996). It performs inversions with the simul-
taneous iterative reconstruction technique (SIRT, Peterson et al.,
1985). SIRT calculations modify an initial velocity model by repeated
cycles in three steps: forward computation of model travel times, cal-
culation of residuals and application of velocity corrections to the set
of voxels contained in the model. The cycle recurs through a specified
number of iterations.

Some tests have been carried out to optimize inversion parame-
ters such as voxel size and to choice between straight and curved
rays.

Surely, the size and the shape of the anomalies should be consid-
ered for a correct choice of cell size for the inversion process that con-
strain the acquisition grid (location of transmitter and receiver
probes) and the number of acquired rays. In principle, if all the inves-
tigated voxels are suitably covered by a number of rays running
through, the most appropriate voxel size is that which allows a better
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Fig. 4. Example of records with and withoutmanual picking that shows the good quality of acquired data.
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Fig. 5. Travel time graph of acquired data.

definition of the size and shapes of the anomalies contained in the
artifact.

Generally investigations to identify anomalies with regular shapes
allow the use of cells larger than those used in the investigations of
anomalies with irregular or unknown shape.

In principle, for monochromatic waves, lateral resolution should
be calculated using the theory of Fresnel radius r (Cerveny and
Soares, 1992), that can also be expressed as:

r=[ovar + 2] 05

L being the ray length and A the wavelength calculated using
A=V/f, 12where v is the velocity and fis the frequency of the waves.

However, regarding the lateral resolution obtained by picking the
first arrivals of the signals, we have to consider the maximum fre-
quency contained in the ramp. This part of the signal contains very
high frequencies (Fig. 7), much higher than the dominant one, due
to the pulse modulation of the source signal. The highest frequency

0.12

contained in the area of the first arrival must be extracted from the
digitized signal ramp, and generally depends on the sampling fre-
quency (Capizzi and Cosentino, 2011; Sambuelli et al, 2011),
according to the well-known rule derived from the Nyquist-Shannon
theorem (Grenander, 1959; Stiltz, 1961).

In Fig. 8 the lateral resolution, calculated using the frequency of
the probes and the Nyquist frequency (1.25/2 MHz) versus the ray
lengths are plotted. Considering the lateral resolution calculated for
the Nyquist frequency and the median ray length (0.118 m), the
voxel size should be set to 2 cm.

Fig. 9 shows the results for a horizontal 2D section obtained using
different voxel size for inversion process. The 2D sections are extracted
at the bottom of the 3D model, obtained using all 1832 paths. It's clear
that using a big voxel size (4 cm) the shape of anomalies are too
smoothed, whereas the use of a voxel size too small (0.5 cm) highlight-
ed anomalous rays. This comparison has been repeated for different 2D
sections and finally the voxel size has been set to 2 cm. Probably it is
below the real resolution and cause a too large number of cells, some
of which are characterized by an “anomalous value” of velocity. For
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Fig. 6. Travel time graph of acquired data, where data relative to head and front torso have been isolated.
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Fig. 7. Spectra of the traces showed in Fig. 4. Higher frequencies than the dominant one are present.

these reasons, an upper and lower bounds on calculated velocities and a
regularization to the average velocity were applied to reduce the velocity
variation. The velocity bounds were applied based on a general knowl-
edge of rock type: 2000 m/s and 6000 m/s respectively as lower and
upper bounds. A regularization to the average velocity (Santamarina
and Fratta, 1998) were used to decrease the node-to-node variation in
the velocity. The average velocity, in the first iteration, is the average
straight-line velocity of all raypaths and, for subsequent iterations, the
average node velocity for all nodes that are affected by each raypath.
Nodes for zones without raypaths are not considered.

The strength of the regularization coefficient (also called damping)
can be chosen. Regularization started with a small coefficient, 0.01,
then gradually increased it (step of 0.01) to determine the effect on
the residuals. Increasing the value of the damping coefficient increases
the effect of the average velocity and decreases the node-to-node vari-
ation in the velocity, but a too large coefficient will force too much uni-
formity and will hide important velocity anomalies. For this reason and
considering the goodness of the data, the maximum value of damping
applied was 0.1.

Ray tracing and travel-time computation may be performed with
either straight or curved raypaths. As stated by the Fermat principle,
energy travels along the fastest path, so that a fast anomaly attracts
energy where a slow anomaly rejects energy. This behaviour cannot
be considered when we use straight rays. The effect on the inversion
is that fast anomalies are over-dimensioned, while slow anomalies
are reduced in size or even undetected. Then, for a more accurate es-
timation of the anomaly dimensions, a curved ray inversion is neces-
sary. GeoTomCG software, used for data inversion, performs curved

ray tracing with a revised form of ray bending, derived from the
method given by Um and Thurber (1987).

A comparison between a tomography performed using straight
and curved rays is shown in Fig. 10. The other parameters of inversion
have not been changed.

Although the use of curved beams describes sometimes a too
strong simplification compared to the true distribution of the rays in-
side investigated volume, the curved-ray tomography shows better
results than the tomography obtained considering the straight-ray
approximation. Apparently the choice between straight and curved
rays should be done case by case, considering the size and shape of
the expected anomalies.

5. 3D tomography

A tomographic model were calculated, using elementary cells of
size 2x2x 2 cm, optimized for the size of the anomalies investigated,
for a total of 4750 cells. 1832 data were inverted simultaneously. The
model obtained shows quite homogeneous velocity values for the
marble bust with an average speed of about 4600 m/s, and does not
highlight anomalies located in the area of the assumed internal frac-
ture. Considering this final model, the median misfit calculated as
percentage difference between measured traveltimes and calculated
traveltimes was 10%. This is a good result considering the irregular
shape of the volume under investigation and the resulting numerous
phenomena of diffraction and reflection which are not considered in
the model.
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Fig. 8. Plot of the lateral resolution versus ray lengths in a material with a velocity of 4600 m/s. The median ray length is 0.118 m.
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Fig. 9. Inversion results obtained for the same 2D section, using different cell dimension. In the picture the trace of the 2D section is shown.

A 3D representation with a 3300 m/s isosurface is shown in
Fig. 11. Luckily, the model does not show significant anomalies at
the lesion on the face of the lady. Also the upper torso (head and
neck) shows velocity values corresponding to a sufficiently homoge-
neous and well-preserved marble. However, the velocity model
shows low values in the lower front portion of the trunk at the
breasts, according to the traveltime graph analysis (Fig. 12). In fact,
the original pedestal designed by Carlo Scarpa makes this area bears
the entire weight of the statue.

6. Conclusion

An ultrasonic investigation was performed on the statue of Eleonora
d'Aragona by F. Laurana (1430-1502) and the data were used to per-
form some tests on the importance of the choice of the main inversion
parameters.

A comparison between inversion models obtained using different
voxel size was done. We choose to use a cell size lower than expected
resolution and a large number of cells. This obviously caused some in-
stability in the inversion process and we needed to apply some grid
constrains as stabilizers.

Obviously the expected resolution has to be considered, but prob-
ably the real resolution is higher than that calculated using the central
frequency of probes, due to the multi-frequency nature of the pulsed
signal.

Also the choice between straight rays and curved rays must be
taken with care, considering that the distribution of rays within the
investigated volume is always a simplification of the real behaviour
of the paths of the elastic waves in the material. In our case curved
rays showed better results than straight rays, but the choice between
straight and curved rays should be done considering the size and
shape of the expected anomalies.

The obtained model shows velocity values corresponding to a suf-
ficiently homogeneous and well-preserved marble. However, the ve-
locity model shows low values in the lower front portion of the trunk
at the breasts, according to the traveltime graph analysis.
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