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Abstract

We study the effect of thermal fluctuations on a probe qubit interacting with a Bose–Einstein
condensed (BEC) reservoir. The zero-temperature case was studied in our previous work
(Haikka et al 2011 Phys. Rev. A 84 031602), where we proposed a method for probing the
effects of dimensionality and scattering length of a BEC based on its behavior as an
environment. In this paper, we show that the sensitivity of the probe qubit is remarkably robust
against thermal noise. We give an intuitive explanation for the thermal resilience, showing that
it is due to the unique choice of the probe qubit architecture of our model.

PACS numbers: 03.75.Gg, 03.65.Ta, 03.65.Yz

(Some figures may appear in color only in the online journal)

1. Introduction

Over the last three decades, quantum computing has been
the holy grail of quantum information sciences [1]. Lately,
there has been a notable shift of focus from studies of
circuit-based quantum computers, where a long computation
involving many qubits is broken down into elementary
one- and two-qubit quantum gates, to studies of quantum
simulators, where a physical system is modeled using another
physical realization of the original Hamiltonian [2]. One
celebrated example of the latter is the simulation of a
Bose–Hubbard model in optically trapped ultracold gases.
Mapping between the Bose–Hubbard Hamiltonian and the
Hamiltonian describing ultracold atoms in an optical lattice
was proposed in 1998 by D Jaksch et al [3] and realized
experimentally a few years later by the group of I Bloch [4].
Since this milestone there has been an explosion in studies
of the systems that can be simulated with ultracold quantum
gases [5, 6].

Quantum simulations have been considered in the context
of open quantum systems with proposals of simulating the

spin-boson model using, for example, a quantum dot coupled
to a Luttinger liquid [7] or a more general Bose–Einstein
condensed (BEC) reservoir [8]. Both cases realize the
independent-boson Hamiltonian with an Ohmic-like spectrum
of the reservoir [9]. Another proposal in this direction was
presented in [10], where an impurity atom in a double-well
potential is immersed in a BEC reservoir, forming a
spin-boson model with a reservoir spectral function that can
be tuned from sub-Ohmic to Ohmic to super-Ohmic. With
a super-Ohmic spectrum the spin-boson model can acquire
non-Markovian properties [11], thus simulating a prototype
of a non-Markovian open quantum system model.

Non-Markovian systems have been the subject of
intensive studies over the last few years, boosted by the
recent introductions of several non-Markovianity measures
that define and quantify the amount of non-Markovianity
in a quantum process [12–14]. Fundamental interest in
non-Markovian processes stems from the fact that Markovian
dynamics is typically only an approximation, which is no
longer valid when considering shorter time scales and/or
stronger system–environment couplings. Furthermore, there
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have been proposals for using non-Markovianity as a resource
in the context of quantum metrology [15] and quantum key
distribution [16], to name a couple of examples.

Spin systems coupled to ultracold gases are important
not only for quantum simulations, but also because they can
be used to probe ultracold gases: the way a spin decoheres
under the action of an ultracold gas may depend crucially
on certain properties of the gas. Hence, it is possible to
recover information about the large and generally inaccessible
environment by looking at the spin alone. Indeed, the
afore-mentioned independent boson models can be used to
probe the Luttinger liquid parameter [7] and the density
fluctuations of the BEC [8]. In [11], we demonstrated that
the non-Markovian properties of the impurity atom in a
double-well potential give us indications of the effective
dimensionality of the BEC reservoir. In this work, we further
consider this model, taking a step toward a more realistic
scenario by considering the effect of thermal fluctuations on
the sensitivity of the probe qubit. We demonstrate that the
double-well qubit is remarkably robust against thermal noise
and is therefore a good candidate for probing ultracold gases.

2. The model

We consider a qubit model based on a single atomic impurity
trapped in a double-well potential, where the pseudo-spin
states are represented by the presence of the impurity atom
in the left or the right well of the double-well potential. The
qubit is immersed in a thermally equilibrated BEC reservoir.
The Hamiltonian of the total closed system is (h̄ = 1)

Ĥ = Ĥ A + Ĥ B + Ĥ AB, (1)

where

Ĥ A =
�

dx �̂†(x)

�
p

2
A

2m A

+ VA(x)

�
�̂(x) (2)

is the Hamiltonian of the impurity atom with �̂(x) the
impurity field operator and VA(x) the double-well potential
formed by an optical lattice,

Ĥ B =
�

dx �̂†(x)
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p

2
B

2m B

+ VB(x) +
gB

2
�̂†(x)�̂(x)

�
�̂(x)

(3)
is the Hamiltonian for the BEC with �̂(x) the condensate field
operator, VB(x) the harmonic trapping potential and gB =
4π h̄

2
aB/m B the boson–boson coupling constant, and finally

Ĥ AB = gAB

�
dx �̂†(x)�̂†(x)�̂(x)�̂(x) (4)

is the interaction Hamiltonian with gAB = 2π h̄
2
aAB/m AB the

coupling between the impurity atom and the condensate gas.
Masses of the impurity atom and the background bosons are
m A/B , m AB = (m A + m B)/(m Am B) is their reduced mass and
aB/AB are the s-wave scattering lengths for the boson–boson
and impurity–boson collisions, respectively.

We would like to stress that the boson–boson scattering
length can be manipulated by Feshbach resonances, providing
a controllable environment of interacting bosons. The

significance of this is twofold: firstly, many typical
models of open qubit systems assume a non-interacting
bosonic environment and it is fundamentally interesting
to study interacting models. Secondly, the ability to
have experimentally feasible and precise control over the
environment is vital for reservoir engineering.

We assume that the BEC is trapped in such shallow
potential that it may be considered to be homogeneous,
while the double-well trap for the impurity atom is so deep
that tunneling from one well to the other is suppressed.
The condensate is treated in the Bogoliubov approximation,
assuming weak to moderate boson–boson coupling. After
imposing these assumptions on Hamiltonians (2)–(4) the qubit
dynamics can be derived without any further approximation.
The result is purely dephasing dynamics of the qubit with
constant populations and off-diagonal elements of the qubit
density matrix decaying as

|ρ01(t)| = e−�(t)|ρ01(0)|. (5)

The decoherence factor is

�(t) = 8g
2
AB

n0

�

k

(|uk | − |vk |)2 e−k
2τ 2/2

× sin2(Ekt/2h̄)

E
2
k

coth
�

βEk

2

�
sin2(k · L), (6)

where n0 is the condensate density, |uk | and |vk | are
the kth Bogoliubov mode amplitudes with energy Ek =�

2�kn0gB + �2
k
, free modes have energy �k = h̄

2
k

2/(2m B), τ

is the width of the impurity wavefunction, assumed Gaussian,
in each well of the double well and β = 1/kBT . The spatial
separation between the two wells is L. For a detailed
derivation of the decoherence factor, see [10, 11].

3. Non-Markovianity measure

With the decoherence factor at hand one has a full description
of the qubit dynamics. We proved in [11] that in this case
non-Markovianity is directly connected to the negativity
of the decay rate γ (t) = d�(t)/dt . In this section, the
connection is briefly reviewed and extended to the case of
thermal reservoirs. We focus on the approach of [12], which
defines Markovianity to be a property of a dynamical map
ρ(0) �→ ρ(t) = �(t, 0)ρ(0) that monotonically decreases the
distinguishability D[ρ1, ρ2] = 1

2 |ρ1 − ρ2| of any two system
states ρ1,2(t). Non-Markovianity is then the ability of a
dynamical map to temporarily increase the distinguishability
of two states. The temporal change in the distinguishability
σ = dD[ρ1, ρ2, t]/dt can be associated with information
flowing from the system to its environment (σ < 0) or back
to the system (σ > 0). The amount of non-Markovianity
in a quantum process is given by the cumulant of the
positive information flux, N = maxρ1,ρ2

�
σ<0 ds σ (s), with a

maximization done over all possible pairs of states to find
the largest amount of information that the system can recover
from the environment.

The maximization required in the calculation of the
non-Markovianity measure is generally difficult. In the case
of pure qubit dephasing, however, it has been proven that
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the optimizing pair is formed by two antipodal states in the
equator of the Bloch sphere and in this case the measure can
be recovered analytically. One easily finds that information
flows back to the qubit from the environment iff the decay
rate is negative. Moreover, in the model considered in this
paper there is at most a single interval of time a < t < b such
that γ (t) < 0 and thus we introduce a normalized version of
the non-Markovianity measure, which measures the amount
of recovered information against the amount that was lost to
the environment in the time interval 0 < t < a. Summarizing,
the measure we use in this work to study the non-Markovian
properties of a qubit dephasing in a BEC environment is

N = e−�(b) − e−�(a)

e−�(0) − e−�(a)
, γ (t) = d�(t)

dt
< 0 ⇐⇒ t ∈ [a, b].

(7)

In [11], we studied the changes in the non-Markovianity
measure induced by different effective dimensions of the
reservoir and for a range of different values of the scattering
length of the environment, assuming a zero-T environment.
We found the existence of a dimension-dependent critical
scattering length such that when 0� aB < acrit the dynamics
of the qubit is Markovian and when aB > acrit it is
non-Markovian. The dependence on the effective dimension
of the BEC is such that acrit,3D < acrit,2D < acrit,1D; that is,
the higher the dimension, the smaller the critical scattering
length. Hence, one has at hand a model where the
Markovian-to-non-Markovian crossover can be controlled
either by changing the scattering length of the background
bosons or by lowering the effective dimension of the
BEC. Conversely, one may deduce these properties of the
environment by looking at the qubit alone, without directly
measuring the BEC. In this work, we proceed to consider
the effect of thermal fluctuations on this result. Thermal
fluctuations can, in principle, wash out non-Markovian effects
and thus compromise the sensitivity of the probe qubit.
Fortunately, we find the double-well qubit model to have a
remarkable robustness against thermal effects, as shown in the
next section.

4. Results

Figure 1 shows the decoherence factor �(t) and decay rate
γ (t) for a three-dimensional (3D) and a one-dimensional (1D)
87Rb condensate with a range of temperatures T = 0–200 nK
and T = 0–20 nK, respectively. We take the same parameters
as in [11] and a fixed value aB = aRb for the scattering length.
In the 1D case, the negative part of the decay rate, indicating
the existence of non-Markovian effects, decreases in size with
increasing temperature until it reaches a critical temperature
of about T = 6.5 nK, where it vanishes completely. When
this happens, the qubit dynamics is Markovian. In the 3D
case, the negative part of the decay rate splits into two lobes:
the low-temperature lobe, enclosed by the line corresponding
to the zero-T decay rate, and the high-temperature lobe,
indicated by the high-temperature decay rate. The transition
between the two lobes, indicated by the decay rate for T =
50 nK, corresponds to the transition from the low-temperature
regime to the high-temperature regime. We next demonstrate

Γ1D(t)

Γ3D(t) γ3D(t)

γ1D(t)

t (ms) t (ms)

t (ms) t (ms)

×10−5

×10−15 ×10−18

Figure 1. Top: the decoherence factor, �1D(t), and the decay rate,
γ1D(t), for a 1D environment for temperatures ranging between 0 K
(blue solid line) and 20 nK (red dotted line). The T = 6.5 nK line,
shown in dashed green, shows the transition from the
non-Markovian low-temperature limit and the Markovian
high-temperature limit. Bottom: the decoherence factor, �3D(t), and
decay rate, γ3D(t), for a 3D environment for temperatures ranging
between 0 K (blue solid line) and 200 nK (red dotted line). The
T = 50 nK line, shown in dashed green, shows the intermediate
stage between the low- and high-temperature limits.

N

T (nK)

Figure 2. Non-Markovianity measure N as a function of
temperature for quasi-1D (blue solid), quasi-2D (green dashed) and
3D (red dotted) environments. The scattering length is fixed at
aB = aRb.

that the transition from low to high temperatures is clearly
visible also in the non-Markovianity measure.

The temperature dependence of the non-Markovianity
measure N is shown in figure 2 for all the three effective
dimensions. In the case of a quasi-1D condensate, the system
is non-Markovian only for very low temperatures T ∼ 1 nK,
and for a higher temperature thermal fluctuations wash out
the memory effects in the qubit dynamics. When the qubit is
embedded in a quasi-2D or a 3D condensate, the dynamics
is more robust against thermal effects. In these cases,
the non-Markovianity measure is almost constant for low
temperatures when coth(βEk/2) ≈ 1. When the temperature
is increased, the value of the non-Markovianity measure
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NN

aB/aRb aB/aRb

Figure 3. Non-Markovianity measure N as a function of relative
scattering length aB/aRb for quasi-1D, quasi-2D and 3D
environments with temperatures T = 0.5 and 100 nK.

decreases as the system moves toward the high-temperature
regime, whereas in the high-T regime the measure increases
in value again. The minima in figure 2 correspond to the
decay rate moving from the low-T lobe to the high-T
lobe (see figure 1). In the high-T regime, coth(βEk/2) ≈
(βEk/2)−1, and temperature acts as a coefficient for the
decoherence factor of equation (6). Consequently, the whole
dynamics is amplified, also leading to higher values of the
non-Markovianity measure.

Finally, figure 3 shows the non-Markovianity measure
N as a function of the manipulated scattering length of
a Bose–Einstein condensate for temperatures T = 0.5 and
100 nK. In both cases, we reproduce the main result of [11],
namely that the qubit system has a transition from Markovian
to non-Markovian dynamics with increasing scattering length,
and that the critical scattering length depends on the effective
dimensionality of the BEC: acrit,3D < acrit,2D < acrit,1D. For
high temperatures the quasi-1D environment is unable to
return information back to the system, leading to purely
Markovian dynamics. However, since the quasi-2D and
the 3D environments still induce non-Markovian dynamics,
information obtained on the effective dimensionality of
the environment by looking at the qubit dynamics is the
same. Thus, we found our main result: thermal effects
do not compromise the ability of the probe qubit to
detect information about the effective dimensionality and the
scattering length of the environment.

5. Discussion and conclusions

The remarkable sensitivity of the probe qubit we propose
in this paper derives from its general robustness against
thermal effects. This, in turn, is due to the very specific qubit
architecture we choose. The deep double-well potential, in
which the impurity atom is trapped imposes limitations on
the contribution of certain Bogoliubov modes to the qubit
dynamics. The decoherence function �(t) is defined as an
integral over all modes k; however, in this model there
are two cut-off momenta: 1/τ relates to the size of each
harmonic potential in the double well and 1/L characterizes

the distance between the minima of the wells, and only
excitations corresponding to 1/L < k < 1/τ contribute to the
dynamics. For high temperatures the temperature-dependent
term coth(βEk/2) diverges at Ek = 0, that is, when k = 0.
However, the lower cut-off frequency excludes the diverging
terms and thus prevents non-Markovianity being washed
out in the higher-temperature regimes. This is a feature
specifically due to the spatial nature of the double-well qubit,
rendering this model well suited for realistic temperatures.

In summary, the double-well probe qubit model provides
an ideal system for observing non-Markovianity in an atomic
system, and for exploiting the Markovian-to-non-Markovian
crossover to probe the BEC environment. In addition
to involving systems that are straightforwardly combined
experimentally, it is an example of a system showing
a Markovian-to-non-Markovian crossover in accessible
parameter ranges. We have shown here that in addition to the
above advantages, this system is also robust to temperature
effects, with the measured quantity maintaining its size for
temperatures up to and, in some cases, beyond those necessary
for experimental realization of these systems.
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