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SUMMARY

Background

Recent advancements in understanding the roles and functions of gluca-
gon-like peptide 1 (GLP-1) and 2 (GLP-2) have provided a basis for target-
ing these peptides in therapeutic strategies.

Aim
To summarise the preclinical and clinical research supporting the discovery
of new therapeutic molecules targeting GLP-1 and GLP-2.

Methods
This review is based on a comprehensive PubMed search, representing liter-
ature published during the past 30 years related to GLP-1 and GLP-2.

Results

Although produced and secreted together primarily from L cells of the
intestine in response to ingestion of nutrients, GLP-1 and GLP-2 exhibit
distinctive biological functions that are governed by the expression of their
respective receptors, GLP-1R and GLP-2R. Through widespread expression
in the pancreas, intestine, nervous tissue, et cetera, GLP-1Rs facilitates an
incretin effect along with effects on appetite and satiety. GLP-1 analogues
resistant to degradation by dipeptidyl peptidase-IV and inhibitors of dipept-
idyl peptidase-IV have been developed to aid treatment of diabetes and
obesity. The GLP-2R is expressed almost exclusively in the stomach and
bowel. The most apparent role for GLP-2 is its promotion of growth and
function of intestinal mucosa, which has been targeted for therapies that
promote repair and adaptive growth. These are used as treatments for
intestinal failure and related conditions.

Conclusions

Our growing understanding of the biology and function of GLP-1, GLP-2
and corresponding receptors has fostered further discovery of fundamental
biological function as well as new categories of potent therapeutic medi-
cines.
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INTRODUCTION
In the last few decades, a wealth of data have expanded
our knowledge on glucagon-like peptide 1 (GLP-1) and
glucagon-like peptide 2 (GLP-2) as important molecules
involved in a wide variety of functions. Because the bio-
logical actions of GLP-1 and GLP-2 converge at multiple
levels on the regulation of nutrient assimilation and
energy homeostasis, a great deal of interest has been gen-
erated for drug development with therapeutic potential.
In particular, GLP-1 analogues or inhibitors of GLP-1
breakdown have been developed largely because of their
incretin effects and have been directed towards treatment
of endocrine abnormalities and type 2 diabetes.' > In
contrast, GLP-2 analogue development has primarily
addressed the treatment of gastrointestinal (GI)-related
disorders, such as short bowel syndrome (SBS), inflam-
matory bowel disease (IBD) and chemotherapeutically
induced GI mucositis, largely because of the intestino-
trophic effects of GLP-2 in the GI tract.* ©

In this review, a comprehensive PubMed search was
conducted for literature published in the past 30 years to
identify information regarding GLP-1 and GLP-2. Search
terms included GLP-1 or GLP-2 in combination with
intestines, colon, stomach, incretin, diabetes, receptor,
exenatide, liraglutide and teduglutide. This review pro-
vides a brief overview of the synthesis and metabolism
of these two peptides, followed by a detailed summary of
their respective physiological effects and therapeutic
potential. We will highlight that, although both GLP-1
and GLP-2 are part of the proglucagon molecule, they
have vastly different biological activities. A discussion of
preclinical and clinical models will be presented to help
differentiate these actions. Also, a brief summary of
those agents that have been approved for therapeutic
use, as well as those in development, will be presented.

OVERVIEW: MECHANISMS OF ACTION OF GLP-1
AND GLP-2

Synthesis

GLP-1 and GLP-2 are co-encoded within the progluca-
gon gene, which in mammals, gives rise to a single
mRNA transcript that is expressed in the alpha (o) cells
of the endocrine pancreas, in the enteroendocrine L cells
of the intestine and in the hypothalamus and brainstem
in the central nervous system (CNS)."” ® Proglucagon
mRNA is translated into a single 160 amino acid precur-
sor protein, producing several biologically active progluc-
agon-derived peptides via tissue-specific posttranslational
processing." In pancreatic o cells, proglucagon is cleaved
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by prohormone convertase (PC)-2 to form glucagon, the
major glucagon fragment and intervening peptide (IP)-1.
In the GI tract and in the brain, the processing of prog-
lucagon, which is operated by PC1/3, results in GLP-1,
GLP-2, IP-2, oxyntomodulin and glicentin formation
6, 9-13

(Figure 1).

Secretion

GLP-1 and GLP-2 are secreted in a 1:1 ratio by ente-
roendocrine L cells, most of which are located in the dis-
1415 The chief stimulus for

intestinal secretion of GLP-1 and GLP-2 is the ingestion

tal ileum and colon.

of nutrients, including glucose, fatty acids and dietary
fibre.'® GLP-1 and GLP-2 are secreted in a biphasic pat-
tern, with an early peak followed by a longer second
phase after ingestion of nutrients.'® It is likely that the
early phase of GLP-1 and GLP-2 secretion is due to the
stimulation of L cells by various neural and endocrine
factors, in contrast with the second or late phase, which
is caused by direct stimulation of intestinal L cells by
digested nutrients.'” '’ After ingestion of nutrients,
plasma levels of GLP-1 and GLP-2 increase 2- to 5-fold,
depending on the size and nutrient composition of the
meal.'” ?* The peptides diffuse across the subepithelial
lamina propria to activate afferent nerves and/or enter
the circulation; thus they may act as paracrine agents as
well as endocrine hormones (Figure 2).21

The mechanisms by which nutrients induce the release
of peptides from the enteroendocrine cells have not been
tully elucidated. One mechanism that has been described
involves enteroendocrine cell activation to release GLP-1
and is mediated by cellular uptake and intracellular
metabolism of glucose. This triggers peptide exocytosis
via ATP-sensitive potassium-channel closure, depolarisa-
tion and calcium-channel activation, similar to insulin
secretion.?> However, little is known about the cellular
mechanisms responsible for GLP-2 secretion. Because
they are both secreted in parallel from the intestinal L
cells,” GLP-1 and GLP-2 secretion mechanisms are con-
sidered analogous.

Nutrient ingestion is the primary stimulus for secre-
tion, but because L cells are located distally, the initial
rapid rise is mediated indirectly through a neuro/endo-
crine pathway. In the rodent model, it appears that glu-
insulinotropic  polypeptide (GIP) is
implicated in the secretion of GLP-1, as well as the vagus
nerve, because vagotomy totally abrogated this effect.”’
Acetylcholine has also been identified as a key neuro-
transmitter mediating the proximal-distal loop,** suggest-

cose-dependent

ing that secretion in rodents is mediated through the
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Figure 1 | Main products of proglucagon posttranslational processing. GLP-1, glucagon-like peptide 1; GLP-2, glucagon-
like peptide 2; GRPP, glicentin-related pancreatic polypeptide; IP1, intervening peptide 1, MPGF, major proglucagon
fragment. Partial processing is indicated by dashed arrows. Adapted with permission from reference.®

actions of GIP on cholinergic fibres of the vagus nerve.'
Gastrin-releasing peptide has been identified as a potent
secretagogue of GLP-1 from the L cell.>> *® After direct
secretion stimulated by nutrients, especially fats, on the
L cells, other peptides and hormones that influence
GLP-1 secretion have been identified, including intestinal
somatostatin, gamma-aminobutyric acid, and - and f-
adrenergic agonists."* Leptin, a cytokine derived from
adipocytes, also has been implicated in GLP-1 secre-
tion."*

Degradation

After their release, GLP-1 and GLP-2 are quickly
degraded through cleavage of N-terminal histidine and
alanine by the ubiquitously expressed proteolytic enzyme
dipeptidyl peptidase-IV (DPP-IV), resulting in the gener-
ation of biologically inactive GLP-1(9-36 amide) or GLP-
1(9-37) and GLP-2(3-33) respectively.”’30 GLP-1 is very
susceptible to degradation via DPP-IV.* Porcine studies
have shown that a significant amount of GLP-1 leaves the
intestines as inactive metabolite and non-amidated GLP-
1(9-37),>" 3% such that <25% of GLP-1 is believed to
leave in an intact, active form.” In human plasma, DPP-
IV activity results in an apparent half-life for intact GLP-

20

1 of 1-2 min.*”> In contrast, GLP-2 is less susceptible to
DPP-1V degradation, with all of the newly released GLP-
2 leaving the gut as the active form.”” ** Intact GLP-2
has an apparent plasma half-life of 7 min in humans.>
Once in the plasma, the kidney provides the major route
of clearance for both GLP-1 and GLP-2.*® Patients with
chronic renal insufficiency have elevated levels of circulat-
ing GLP-1 compared with healthy subjects.’”

Prolongation of half-life

To date, there are two different successful strategies in
mitigating the issue with the short half-life of GLP-1 and
GLP-2. The first is the use of mimetics of GLP-1 and
GLP-2 that are resistant to inactivation by DPP-IV, thus
prolonging and enhancing the effect of the hormone.
Liraglutide (Victoza; Novo Nordisk) and teduglutide
(GATTEX; NPS Pharmaceuticals, Bedminster, NJ, USA)
are examples. Liraglutide is a GLP-1 analogue with an
additional 16-carbon fatty acid and a small amino acid—
based spacer that confers reversible binding of the ago-
nist to albumin and increases resistance to DPP-IV activ-
ity, providing liraglutide with a half-life of approximately
13 h. Teduglutide was developed by replacing alanine
with glycine in position 2 of GLP-2, providing a

Aliment Pharmacol Ther 2013; 37: 18-36
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Figure 2 | Direct and indirect effects of nutrients on
secretion of GLP-1 and GLP-2. Ach, acetylcholine; CNS,
central nervous system; GIP, glucose-dependent
insulinotropic polypeptide; GLP-1, glucagon-like peptide
1; GLP-2, glucagon-like peptide 2. Entry of nutrients into
the proximal small intestines initiates an early peak of
secretion mediated through the vagus nerve. The
afferent component of this neural loop is activated by
ingested nutrients either directly or through release of
an enteroendocrine hormone, such as GIP from the K
cells. Vagal efferent fibres then stimulate the distal L
cells through a pathway that likely involves both ACh
and GRP within the enteric nervous system. Further
aboral movement of the nutrients down the lumen of
the small intestine stimulates a second, later peak of
GLP-1 and GLP-2 secretion through direct effects on L
cells. Adapted with permission from reference.?*
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molecule with a half-life of 3-4 h.*® The second strategy
involves inhibition of DPP-IV, prolonging the effect of
endogenously secreted GLP-1 and GLP-2 with drugs like
vildagliptin (Galvus; Novartis Pharmaceuticals, East Han-
over, NJ, USA) and sitagliptin (Januvia; Merck & Co.,,
Whitehouse Station, NJ, USA).

Role of GLP receptors

Like glucagon, the actions of GLP-1 and GLP-2 are medi-
ated through class 2 G-protein—coupled receptors. These
receptors are distinct and specific for either GLP-1 or GLP-
2, despite sharing the conserved properties of their class.*

GLP-1 receptor (GLP-1R). In the early 1990s, comple-
mentary DNAs (¢cDNA) of rat and human GLP-1R were

Aliment Pharmacol Ther 2013; 37: 18-36
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cloned and sequenced from their respective pancreatic
islet ¢cDNA libraries. The human GLP-1R gene was
found to span 40 kb; it has been mapped to chromo-
some 6 and band p21.1 and consists of at least 7 exons.*
GLP-1R typically couples via a stimulatory G protein to
adenylate cyclase.*” *!

The GLP-1R is expressed in the pancreatic islets,
brain, enteric nervous tissue, heart, kidney, small and
large intestine and stomach.*>*’ In the brain, the GLP-
IR has been identified in regions that control feeding
behaviour, such as the brainstem and the hypothala-
mus.** *® It has also been found in the nodose ganglion
of the vagus nerve and has presynaptic peripheral action
in the small and large intestine in addition to direct non-
neural effects in peripheral tissue.*” *°>° This suggests
that GLP-1 affects human physiology through interaction
with centres in the brain, afferent neural pathways and
peripheral direct and neural mechanisms.

GLP-2 receptor (GLP-2R). The GLP-2R has been cloned
from the stomach, small bowel and hypothalamus ¢cDNA
libraries.”” > The GLP-2R gene has been localised to
human chromosome 17p13.3.%” Unlike the widely expressed
GLP-1R, GLP-2R expression is restricted to the GI tract and
the CNS, with limited expression in the lung, cervix and

39, 51, 52

vagal afferents,” although cardiac expression in rats

reported recently.”> Multiple experimental

approaches have localised the GLP-2R to regions within the

has been

rodent CNS, including the hippocampus, hypothalamus
and nucleus of the solitary tract in the mouse.”® ° It is cur-
rently unknown whether analogous expression of GLP-2R
is found in the brain of nonrodent species.

The exact cellular localisation of the GLP-2R in the
gut in early studies had been a source of controversy.
GLP-2R has been reported in enteroendocrine cells,”?
and subepithelial myofibroblasts.>”
GLP-2R is
expressed exclusively in neurons and myofibroblasts and

enteric neurons™®
However, in the murine GI tract, the
is not present at the mucosal level.”® It is now generally
accepted that the above three cell types express GLP-2R
in the intestine.

In mice, GLP-2R-mRNA has been demonstrated with
high levels of expression in the bowel,”" and recently the
GLP-2R protein has been demonstrated throughout the
GI tract, with higher expression in the gastric fundus
and colon.”® The relatively high prevalence of the GLP-
2R in the gut might explain why, to date, GLP-2—medi-
ated effects have been observed almost exclusively in the
GI tract.”
spread than GLP-2R expression.

GLP-1R expression appears to be more wide-
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Because the GLP-2R is expressed in the subepithelial
myofibroblasts® and in the enteric nervous system as
well as human enteroendocrine cells, and not on the
crypt cells or enterocytes themselves, it has been pro-
posed that the GLP-2 exerts its actions on the mucosa
via intermediate effectors derived from GLP-2R—express-
ing cells.”" Different studies have provided mechanistic
data illustrating several pathways of GLP-2 action and
suggest that keratinocyte growth factor and endothelial
nitric oxide (NO) synthase are mediators involved in
GLP-2-induced colonic growth and intestinal blood

57, 60: 61 and that insulin-like growth factors,®>** the
1 65> 66

flow
ErbB networ and vasoactive intestinal peptide
(VIP)*” are the key mediators in the trophic actions of
GLP-2. Neural VIP, NO and reduction of the acetylcho-
line release from enteric nerves have been reported to be
involved in the inhibitory motor effects induced by GLP-
2 in different regions of the mouse GI tract.’® % ¢
Determining how GLP-2 produces its biological effects,
which mediators are involved and how these mediators

interact is an area of intense research.”® 7!

Functional ontogeny
The ontogeny of the proglucagon-derived axis is incom-
pletely understood, although there is evidence from both
animal and human models that it plays an important
role in intestinal development. The GLP-1/GLP-2 recep-
tor axis is expressed and functional in the developing
intestine of rats. An investigation in foetal and neonatal
rat gut showed that comparatively high levels of GLP-2R
messenger RNA transcripts in the foetal and neonatal
intestine declined to adult levels by postnatal day 21.”
Studies in infants with intestinal dysfunction due to
resection show that GLP-2 levels are correlated with
residual intestinal length and nutrient absorptive capac-
ity; high postprandial GLP-2 levels appeared to be pre-
dictive of the ability to wean the infants from total
parenteral nutrition (TPN).”” Studies in premature
human neonates show that they have significantly higher
fasting levels of both GLP-1 and GLP-2 compared with
either older infants or adults. Feeding increases these lev-
els further,”
peptides in normal human intestinal development and

consistent with a role for the proglucagon
function.

GLUCAGON-LIKE PEPTIDE 1

GLP-1 is a 3l-amino acid peptide whose sequence is
highly conserved among mammals and maintains some
conserved amino acids in common with GLP-2 and glu-
cagon (Figure 3).”> 7° It circulates in two equally potent

22

Glucagon [HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

GLP-1 HAEGTFTSDVSSYLEGQAAKEF |AWLVKGRG

GLP-2 HADGSFSDEMNT ILDNLAARDF INWL | QTK | TD

Figure 3 | Similarities and differences between amino
acid sequences of glucagon, GLP-1 and GLP-2. A,
alanine; C, cysteine; D, aspartic acid; E, glutamic acid;
F, phenylalanine; G, glycine; GLP-1, glucagon-like
peptide 1; GLP-2, glucagon-like peptide 2; H, histidine; I,
isoleucine; K, lysine; L, leucine; M, methionine; N,
asparagine; P, proline; Q, gutamine; R, arginine; S,
serine; T, threonine; V, valine; W, tryptophan; Y,
tyrosine. Amino acids common to all three peptides are
shown in bold. Amino acids common to glucagon and
GLP-1 are shown in green; those common to GLP-1 and
GLP-2 are shown in blue; those common to glucagon
and GLP-2 are shown in red. Adapted with permission
from reference.””

forms, GLP-1(7-36 amide) and GLP-1(7-37), although

the amidated form is more abundant after eating.”” ”®

Physiological effects
GLP-1 has multiple actions (Figure 4), of which one of the
most important is its activity as an incretin hormone,
which regulates blood glucose levels by amplifying post-
prandial insulin synthesis and secretion.”” It also stimulates
somatostatin release and inhibits glucagon secretion.*

GLP-1 is also known as an anorexigenic peptide,
which increases satiety. In animal models, GLP-1 inhib-
ited food and drink intake upon intracerebroventricular
injection via direct modulation of the brain centres that
control food intake, such as the nucleus tractus soli-
tarii.*® ' Following intravenous (IV) infusion in
humans, GLP-1 inhibited food and fluid intake in nor-
mal and obese individuals®*®%; this effect appeared to be
mediated through its incretin properties and/or inhibi-
tion of gastric emptying.®> %

GLP-1 also affects other aspects of GI physiology. In
addition to slowing gastric emptying in both healthy and
obese individuals,®”> 88 GLP-1 is a mediator of the ileal

brake,®® reduces gut motility47, 50, 90-92

and inhibits gas-
tric acid secretion.’® ®> **°® The rate of gastric empty-
ing is negatively correlated with circulating levels of
GLP-1 and is positively correlated with the normalisation
of glycaemia.*> "> %
GLP-1

fasted healthy volunteers,

99-101

increases gastric accommodation. In

peripherally administered

Aliment Pharmacol Ther 2013; 37: 18-36
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GLP-1 Actions

Pancreas

1 Insulin synthesis and secretion
| Glucagon secretion
1 Somatostatin secretion

1 Expression of genes that modify S-cell function

1 B-cell proliteration and neogenesis
1 B-cell survival

CNS

| Food intake

! Satiety

?Neuronatal cell proliferation and neogenesis
?Neuronal cell survival

! Learning and memory

Stomach and Intestine

Liver/Fat/Muscle

Heart

| Gastric emptying
| Bowel motility

1 Glycogen
| Bowel motility

Structural function
Cardioprotection

Figure 4 | Documented effects of GLP-1 and analogues. CNS, central nervous system; GLP-1, glucagon-like peptide 1.

Adapted with permission from reference.

synthetic GLP-1 dose-dependently increased fundic
relaxation and compliance of the proximal stomach®
with a significant reduction of feeling of hunger. This
may further support the concept that GLP-1 reduces
food intake independent of a direct interaction with

hypothalamic satiety centres.*® % &

Direct gastric effects. The mechanism through which
GLP-1 mediates inhibition of gastric emptying and gut
motility is not fully understood but likely involves vagal

... 48, 50, 87
nerve activation

and direct actions on the gut
wall.*® * Some studies have documented that the inhibi-
tory effect on gastric emptying is lost in rats after vagal
deafferentation® and in humans after truncal vagot-
omy.”” Although in vitro studies have shown that in
human or rat gastric muscular strips GLP-1 did not
affect the smooth muscle contractility of the proximal
stomach (fundus and corpus),95 » 192 more recent analysis
has demonstrated the ability of GLP-1 to directly relax
the mouse stomach, in particular the antral region, in

which the GLP-1R is more clearly expressed.”*

Enteric neuronal effects. The peripheral direct actions
could be more important than previously appreciated. In
support of a role of the enteric nervous system in mediat-
ing GLP-1 action, immunohistochemical and functional
evidence obtained in mouse small and large intestines has
demonstrated GLP-1R expression in the enteric neurons,
some of which are coexpressing NO synthase or choline
acetyl transferase,”® and the peptide’s ability to modulate
negatively, through NO release, the excitatory cholinergic
neurotransmission. Therefore, GLP-1 inhibitory effects on

Aliment Pharmacol Ther 2013; 37: 18-36
© 2012 Blackwell Publishing Ltd

GI motility appear to be mediated by NO release from

. 2 1
enteric neurons.sg’ 88, 92, 95, 100

p-cell effects. GLP-1 is also able to modulate pancreatic
p-cell proliferation, and there is evidence that GLP-1
increases pancreatic fi-cell mass. This effect may occur
by enhancing proliferation and inhibiting apoptosis of 8
cells and by stimulating differentiation of stem cells in
the ductal epithelium.'®> '** Similar proliferative, antia-
poptotic and neogenic effects have been found on neuro-
nal cells. In experimental models of diabetes, GLP-1
expanded the f-cell mass, which is usually reduced;
increased resistance to ff-cell injury and reduced elevated
glucose in the fasting and fed state.'®'*” This feature,
in combination with the control of systemic glucose dis-
tribution during hyperglycaemia, thereby increasing
hepatic glycogen storage, has marked GLP-1 as a poten-

tial agent for the treatment of diabetes.'®®

Clinical use of GLP-1

Because of its incretin property, the potential benefits of
GLP-1 in the treatment of type 2 diabetes have been
amply demonstrated.'® """ In humans, the half-life of
biologically active native GLP-1 in circulation is 2 min,
requiring continuous infusion or multiple injections to
achieve clinical effect.”® To overcome this limitation,
DPP-IV inhibitors and DPP-IV-resistant analogues or
agonists of GLP-1R have been investigated.''> '"?

Several DPP-IV inhibitors (incretin enhancers) have
been developed and four have been approved for use in
Europe (saxagliptin, sitagliptin, vildagliptin and linagliptin).
Saxagliptin, sitagliptin and linagliptin are also available
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in the United States. These agents typically reduce DPP-
IV activity by more than 80%, resulting in postprandial
increases in GLP-1 and thereby increasing the incretin
activities of GLP-1.""* However, the safety of long-term
inhibition of such a ubiquitous enzyme with numerous
substrates remains a theoretical concern.'**

Two GLP-1 analogues [incretin mimetics; i.e. exenatide
(Byetta; Amylin Pharmaceuticals, San Diego, CA, USA) and
liraglutide] are commercially available and are used in type
2 diabetes treatment, all of which have activities similar to
native GLP-1.""> 11

The incretin effects of the analogues are similar to
those of GLP-1, including glucose-dependent stimulation
of insulin, enhanced postprandial stimulation of insulin,
regulation of glucose secretion in hypoglycaemia and hy-
perglycaemia, increased secretion of proinsulin, increase
in the pancreatic islet f-cell mass, stimulation of differ-
entiation of precursor cells into f cells, inhibition of /-
cell apoptosis, slowed gastric emptying, suppression of
appetite, induction of satiety and weight loss.''* 7711
In addition, a recent study suggests that exenatide can
directly inhibit intestinal synthesis of certain lipropro-
teins independent of its satiety-promoting effects, sug-
gesting that it may also act to lessen hyperlipidaemia in
diabetic patients.'*

In phase III trials involving patients with type 2 diabe-
tes, both exenatide and liraglutide, alone or in combina-
tion with other antidiabetic agents, significantly reduced
haemoglobin A;. levels compared with the placebo or
comparator groups (Figure 5)."'* In the United States, ex-
enatide and liraglutide are each indicated as an adjunct to
diet and exercise to improve glycaemic control in adults
with type 2 diabetes mellitus.'*" '** A case series sug-
gested the ability of exenatide to improve nutritional status
and GI symptoms in patients with SBS, possibly through a
slowing of gastric emptying and small bowel transit, allow-
ing improved nutrient absorption.'*® However, confirma-
tion in a controlled study is lacking at present.

In clinical practice, GLP-1 analogues are applied pri-
marily in the treatment of type 2 diabetes, where they are
administered to improve glycaemic control in patients
who are insufficiently controlled on oral antidiabetic
agents, or in patients who are susceptible to hypoglyca-
emia. In addition, the weight loss associated with longer
term use of GLP-1 analogues may also improve glycaemic
control and convey additional metabolic benefits.

Safety and tolerability of GLP-1 and incretin mimetics
Gastrointestinal adverse effects, especially nausea, are
the most common adverse events with exenatide or
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Figure 5 | Clinical effects of GLP-1 analogues on HbA,,
fasting glucose concentrations and body weight. GLP-1,
glucagon-like peptide 1; HbA,, glycosylated
haemoglobin. Results are from phase Il or Ill studies on
exanatide, exanatide LAR and liraglutide. Significant
differences to placebo or respective comparator; if no
comparator is shown, results are depicted as placebo-
subtracted differences. Bars are mean and SE. Adapted
with permission from reference.”*

liraglutide."'> ''® We speculate that the GLP-1-associ-
ated decrease in gastric emptying might be responsible
for the nausea commonly seen with these agents.

GLP-1 analogues have been associated with several
116, 1247129 (aple 1), especially the devel-
opment of pancreatitis with exenatide and liraglu-

safety concerns

tide.'*> '*” 12 This is of particular concern because the
risk of pancreatitis is increased in individuals with type 2

Aliment Pharmacol Ther 2013; 37: 18-36
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diabetes who are obese or treated with a sulfonylurea
compared with the nondiabetic population.”® Further-
more, diabetes is associated with a risk for microvascular
complications, and GLP-1R is expressed in the heart and
in areas of the CNS that regulate cardiovascular func-
tion."”" Animal studies suggest that administration of
GLP-1
stances.”> '** Some positive effects of GLP-1 have been

may be cardioprotective in some circum-
reported in patients with heart disease; GLP-1 improved
endothelial dysfunction in type 2 diabetes patients with

established coronary artery disease.'**

GLUCAGON-LIKE PEPTIDE 2

GLP-2 is highly conserved across different mammalian
species135 ; both GLP-2(1-33) and its metabolite GLP-2(3-33)
circulate in the plasma of fasting rats and humans.’> **
GLP-2(3-33) is known to be a weak agonist for the GLP-
2R in pharmacological concentrations but is also able to
act as a competitive antagonist of the GLP-2R in
rodents.”** > Whether GLP-2(3-33) acts as a specific
GLP-2R antagonist has not yet been defined, and the
synthesis and use of GLP-2R antagonists would be useful
to better identify the role of endogenous GLP-2.

Physiological effects

GLP-2 was first discovered as an intestinotrophic factor
in 1996'%% today, it is recognised as a hormone that
influences multiple functions specifically in the GI tract.
Unlike GLP-1, GLP-2 is not an incretin because of a
limited effect on insulin, glucose homeostasis and gluca-
gon."”® The main biological effects of GLP-2 are related
to the regulation of energy absorption and maintenance
of mucosal morphology, function and integrity of the
intestine.”*> **"*! However, in considering the actions
of GLP-2, it is important to note that this peptide has

Table 1| Safety issues with clinical use of GLP-1
analogues and GLP-2 analogue’" "% 129 204 205

GLP-1 Analogues GLP-2 Analogue

Pancreatitis Carcinogenesis
(theoretical)—in cancer
sensitised mouse models

Hypoglycaemia when combined
with sulfonylurea

Renal impairment (exenatide)

Hypersensitivity reactions—
anaphylaxis and angioedema

Thyroid C-cell tumours in animals

GLP, glucagon-like peptide.
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been found to exhibit different actions in different spe-
cies (i.e. rodents, pigs and humans), as noted in the fol-
lowing discussions.

Intestinotrophic effects. A key beneficial effect of GLP-2
on the gut is its ability to increase intestinal growth
owing to the enhancement of crypt cell proliferation and
inhibition of apoptosis, resulting in expansion of villus
height."*> > 1% GLP-2 appears to act through intesti-
nal IGF-I to induce intestinal growth and crypt cell pro-
liferation  (Figure 6).°> However, the mechanisms
through which GLP-2 affects the epithelium in an IGF-I
dependent manner have not been fully explained. Studies
in murine intestinal subepithelial myofibroblasts suggest
that the phosphatidylinositol 3 kinase/Akt pathway may
be implicated in the stimulatory effects of GLP-2.'*
These findings provide further evidence that IGF-I pro-
duced by intestinal subepithelial myofibroblast cells play
a key role in the intestinotrophic effects of GLP-2.

A number of studies have demonstrated that exoge-
nously administered GLP-2 is trophic for the small intes-
tine and, to a lesser extent, the colon > !> ' 143

Epithelial Subepithelial
cells myofibroblasts
L cell _l O
/ ) aLp2 j
IGF-1
Cryptcell =F=—

Figure 6 | Schematic representation of interactions
between GLP-2 and IGF-I in the regulation of intestinal
growth. After secretion by the intestinal L cell into the
circulation, GLP-2 activates the G protein coupled GLP-
2 receptor in the subepithelial myofibroblast cells,
which subtend the epithelium as a syncytium. This
leads to release of IGF-I, which then acts in a paracrine
fashion on the tyrosine kinase IGF-IR expressed in the
proliferative compartment of the crypt.%? Reprinted
with permission from reference.®?
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Administration of exogenous GLP-2 to rats during and
after massive bowel resection augmented adaptive growth
in the residual small intestine without compromising
endogenous GLP-2 production and secretion.'** Sus-
tained administration of GLP-2 is necessary for intestinal
adaptation, and benefits are lost when exogenous GLP-2
is discontinued.'*> '

Endogenous GLP-2 also plays a role in the adaptive
intestinal growth that occurs in rodents in response to
oral refeeding after a period of nutrient deprivation, as
shown by using GLP-2(3-33) or GLP-2R knockout
mice.* > ¥ The association between GLP-2 and intes-
tinal growth/adaptation is most evident in a variety of
pathologic conditions, including postresection intestinal
adaptation,'*® '*® coeliac disease,'*’ parenteral nutrition-
induced intestinal atrophy'*® and IBD."""

Evidence that GLP-2 could induce an adaptive
response alone, without endogenous enteral nutrients,
was provided by a study carried out in parentally fed rats
with SBS.'”* In this study, rats given TPN plus GLP-2
treatment demonstrated significantly greater changes on
measures of intestinal adaptation, including increases in
bowel weight, villus height, intestinal mucosal surface
area and crypt cell proliferation and reduced intestinal
permeability and body weight loss, compared with
resected animals given TPN alone.'*?

Similar trophic and functional responses to exogenous
GLP-2 administration are seen in adult patients in whom
the terminal ileum and colon have been resected."”> '**
Adaptive responses are impaired in these individuals,
who have limited meal-stimulated GLP-2 secretion due
to removal of GLP-2—secreting L cells. Treatment with
GLP-2 improves intestinal function and nutritional status
in these patients.'”>'*> Among infants with nutrient
malabsorption following intestinal surgery, postprandial
GLP-2 levels correlated closely with length of remnant
intestine and nutrient absorptive capacity.”?

Mucosal integrity. GLP-2 maintains mucosal integrity by
enhancing intestinal barrier function and decreasing
transcellular and paracellular epithelial permeability.'*®
GLP-2 enhances barrier function within the setting of
experimental food allergy, stress, or diabetes, reducing
the uptake of antigen, the secretory response and the
number of inflammatory cells."”” "> The effects of GLP-2
in increasing barrier function have been confirmed in
non-obese diabetic and ob/ob obese murine mod-
els.””” °° Administration of a prebiotic to ob/ob mice
induces GLP-2-dependent upregulation of the tight junc-

tion proteins zonulin-1 and occludin.'®

26

In addition, GLP-2 acts in pathophysiological states as
an anti-inflammatory agent, reducing intestinal mucosal
inflammatory cytokine production.®” This effect has been
demonstrated in rat models of ileitis and colitis. GLP-2
treatment, given either immediately or after inflamma-
tion, significantly reduced body weight loss, mucosal
inflammation indices, inflammatory cytokine levels and
inducible NO synthase expression. These effects were
likely mediated by activity of VIP, which is produced by
the enteric nervous system and known to act as an anti-
inflammatory agent, because coadministration of a selec-
tive antagonist for VIP blocked the actions of GLP-2.
Notably, the anti-inflammatory activity of GLP-2 was
not associated with an increase in the rate of crypt cell
proliferation. Instead, crypt cell proliferation and apopto-
sis within crypts in inflamed tissues were reduced.®’
These findings support a potential additional neural
mechanism of action for GLP-2, with therapeutic impli-
cations distinct from its role in promoting crypt cell pro-
liferation.

Energy absorption. GLP-2 exerts numerous other actions
within the GI tract to promote energy absorption. It
increases the uptake of luminal nutrients, including sug-
ars and lipids,'®"'** by augmenting the activity and the
4, 165, 166 and by

enhancing the expression of different enzymes involved

expression of nutrient transporters

in digestion.'” '*” The major clinical benefit shown to
date in adult patients is an increase in fluid and electro-
lyte absorption.153’ 154 In clinical studies, administration
of GLP-2 or the degradation-resistant analogue teduglu-
tide has been shown to slightly improve intestinal
absorption, as indicated by increases in faecal wet weight
(i.e. the measure of fluids and faeces excreted in bowel
or ostomy output) and other indices of nutritional status
(i.e. absorption of energy, macronutrients and electro-
lytes) in patients with SBS, even though differences were
small and many did not achieve statistical signifi-
cance 153 154

GLP-2 also increases mesenteric blood flow, thus pro-
viding another mechanism to facilitate digestion and
absorption of nutrients.®” ®" 1% 1 GLP-2 has also

170

been shown to inhibit gastric acid hypersecretion' "™ and

. . . . 1
intestinal chloride secretion.'*®

Gastric motility. The effects of GLP-2 on GI motility
remain controversial. In animal models, GLP-2 has been
demonstrated to reduce antral motility in pigs'”
decrease gastric fundic tone in mice, leading to an

and

increase of stomach capacity.®® Results regarding the
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ability of GLP-2 to suppress gastric motility in humans
are conflicting, with GLP-2 either having no influ-

encelGS, 172

or slowing gastric emptying.">> ' The dis-
crepancies in results may be due to the differences in
methodologies used to assess emptying or due to the
type of test meal administered (low-calorie liquid meal
vs. high-calorie solid meal). The effects of GLP-2 on gas-
tric emptying and fundus tone indicate that GLP-2 could
influence feeding behaviour.}”* However, it is noted that
the satiety effect is much more potent with GLP-1.

In mice, GLP-2 inhibits intestinal transit in vivo,'””
and it reduces spontaneous or electrically evoked cholin-
ergic contractions of the small and large intestine in vi-
tro.”® ® The peptide modulation of GI motility may be

171

due to CNS mechanisms, but involvement of the

enteric nervous system also has been clearly shown

through in vitro studies.”® *®

CNS mechanisms. GLP-2 may influence food intake also
because intracerebroventricular administration of GLP-2
reduces food intake in rodents.”” '”* In rats, the satiety
response to GLP-2 appeared dependent on a certain tone
of central GLP-1Rs because pharmacologic antagonism
of GLP-1 receptors by prior administration of exendin-
(9-39) abolishes GLP-2-induced anorexia.!”* On the
contrary, studies in mice have pointed to the opposite,
finding that blocking central GLP-1Rs with exendin-9
increased GLP-2-induced anorexia.”*

Further studies focusing on the role of central GLP-
2Rs in appetite regulation are clearly needed. To date,
studies in humans have not demonstrated a decrease in
food intake after peripheral GLP-2 administration,'”> '7¢
even if recent data have shown that intraperitoneal injec-
tions of GLP-2 reduces food intake in mice, suggesting a
role for GLP-2 in the short-term regulation of the inges-
tive behaviour.!”” In addition, there is a distinct lack of
literature on GLP-2R expression in the nonrodent brain.

CNS effects. Few studies have been conducted to eluci-
date the roles of GLP-2 in the CNS, and an in-depth
understanding of the complex neurobiology of preprog-
lucagon-derived peptides in general is lacking.'”® Consis-
tent with a general cytoprotective effect of GLP-2 within
the GI mucosa, few studies have suggested that activa-
tion of GLP-2Rs can protect neurons from excitotoxic
damage.”> '"* % More specifically, GLP-2 has been
reported to reduce glutamate-induced cell death in cul-
tured hippocampal cells,” enhance survival of primary
rat enteric neurons, and to stimulate the proliferation of
rat astrocytes.'”” '®" Antidepressant-like effects of GLP-2

Aliment Pharmacol Ther 2013; 37: 18-36
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that occur via monoamine pathways have also been
noted in mice, but this has yet to be confirmed.'® There
are no data available as to whether an analogous expres-
sion of GLP-2R is found in the brain of nonrodent spe-
cies. In addition, the function of GLP-2R activation in
the brain, if it exists at all, is as yet unclear.

Clinical use of GLP-2

To date, the management of SBS or other types of intes-
tinal failure focuses primarily on supplementation of
nutrients, fluid and electrolytes. This is often accom-
plished via IV therapy. In the most favourable cases, IV
nutrition or fluids are only required transiently while
intestinal adaptation takes place, which allows a return
to oral feeding. In patients with insufficient adaptation,
long-term parenteral nutrition, or in few selected and eli-
gible patients, intestinal transplantation, are often the
only options. Hence, a major unmet need exists for
treating patients with intestinal failure.

There has been much interest in GLP-2 as a target for
SBS-associated intestinal failure. Preclinical studies in
animal models of SBS have shown beneficial effects of
GLP-2, consisting of increased body weight, restored
absorptive capacity of the bowel, improved adaptive
growth of the residual bowel, increased villus and muco-
sal height and improved mucosal antioxidant capac-
ity.'"®>" 1% Administration of GLP-2 improved nutrient
absorption and nutritional status in SBS patients with
colectomy, who have normal GLP-2 fasting levels but do
not show a postprandial physiologic increase of the pep-
tide.">® However, the clinical use of GLP-2 is limited by
a short half-life in circulation (6-7 min); consequently,
several DPP-IV-resistant GLP-2 analogues are in devel-
opment, including teduglutide, ZP1848, ZP1846 and
FE203799.

Moreover, exogenous GLP-2 analogues (teduglutide)
or DDP-IV inhibitors that increase concentrations of
endogenous GLP-2 may be beneficial in treating other
gut-related diseases, such as mucosal damage resulting
from radiation, chemotherapy and nonsteroidal anti-
inflammatory drug (NSAID) usage (Table 2). % 1867189
Although teduglutide may have therapeutic benefits at
different stages of intestinal disease, the greatest therapeu-
tic efficacy has been observed when the peptide is given
before the induction of gut injury.'®* ' In mice with
radiation-induced mucositis, for example, teduglutide
increased intestinal weight, crypt size, villus height and
crypt stem-cell survival when given before irradiation.'®®
NSAID-induced
enteritis, teduglutide improved histological evidence of

However, in experimental murine

27



P. Janssen et al.

Table 2 | Physiological and therapeutic effects of GLP-2 and GLP-2 analogues in the setting of Gl disease: preclinical

studies

Disease model Species

Effect(s)

Total parenteral nutrition Rat

Piglet

Rat
Mouse

Acute necrotising pancreatitis
Food allergy

Burn injury Rat

Irradiation Mouse
Inflammatory bowel disease

- Dextran-induced colitis Mouse

- NSAID-induced enteritis Mouse

- Antigen-induced Gl inflammation Rat

Mouse

- Chemotherapy-induced mucosal damage

Stress Mouse

Decreased villus shortening and mucosal thinning
Increased mucosal surface area and weight of bowel
Increased body weight

Increased barrier function

Decreased mucosal proteolysis and apoptosis
Increased bowel mass

Increased intestinal blood volume

Increased portal vein flow rate

Stimulated NOS production and activity
Maintenance of intestinal structure

Maintenance of digestive and absorptive capacities
Decreased intestinal permeability

Decreased uptake of antigen

Diminished hypersensitivity reaction in bowel
Reduced burn-induced loss of bowel mass
Decreased immunosuppression

Decreased apoptosis in small bowel

Improved survival

Increased colon area

Decreased cytokine expression
Decreased lesion number
Decreased intestinal permeability
Reduced inflammatory response
Reduced mucosal damage
Decreased expression of TNF-a and IFN-y
Decreased diarrhoea

Reduced inflammation

Improved survival

Decreased weight loss

Reduced bacteraemia

Attenuated epithelial injury
Improved intestinal barrier function

Gl, gastrointestinal; GLP-2, glucagon-like peptide 2; IFN-y, interferon gamma; NSAID, nonsteroidal anti-inflammatory drugs; NOS,

nitric oxide synthase; TNF-o, tumour necrosis factor alpha.

Adapted with permission from reference.*

the disease with a decrease in neutrophil infiltration,
whether administered before, concomitant with, or after
indomethacin.'®” Consistent with the general mucosal cy-
toprotective actions of the peptide, findings from a pilot
study suggested the potential effectiveness of teduglutide
for inducing remission and mucosal healing in patients
with active moderate to severe Crohn’s disease.'”’
Teduglutide [h(Gly-2)GLP-2, ALX-0600] substitutes
glycine in place of alanine in the key second position of
the peptide, resulting in resistance to DPP-IV degradation
and a longer biological half-life. Teduglutide is currently
in the late stages of clinical development by NPS Pharma-

154, 191

ceuticals, and its first indication is expected to be as

an orphan drug for treatment of SBS. In an open-label 21-

28

day study in 16 patients with SBS, teduglutide doses rang-
ing between 0.03 and 0.15 mg/kg/d subcutaneous (SC)
decreased faecal wet weight and faecal energy excretion
and increased wet weight absorption, urine weight and
urinary sodium excretion.'* These effects were reversed
over a 3-week posttreatment follow-up period. The
changes in excretion and absorption were associated with
increased villus height, crypt depth and mitotic index in
the jejunum, and no changes in these mucosal prolifera-
tion indices in the colon. In a pivotal phase III study, 83
SBS patients received placebo, teduglutide 0.05 mg/kg/d
or teduglutide 0.1 mg/kg/d SC for 24 weeks. The 0.05-
mg/kg/d group was superior to placebo in achieving a
>20% reduction in parenteral fluid volume need and in

Aliment Pharmacol Ther 2013; 37: 18-36
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obtaining a graded response score (a response evaluation
taking into account magnitude and duration of reductions
in parenteral fluid need).'”" Response of similar magni-
tude in the 0.1-mg/kg/d group did not reach statistical sig-
nificance, probably because of higher baseline values in
this group. Oral fluid intake was significantly decreased in
the 0.1-mg/kg/d group, and

statistically ~significant

increases in body weight occurred in the two teduglutide
dose groups compared with placebo.'”’

ZP1848 and ZP1846 are GLP-2 mimetics developed by
Zealand Pharma to enhance intestinal repair and attenu-
ate inflammation (Zealand Pharma A/S, Copenhagen,
Denmark). More specifically, ZP1848 is a GLP-2R agonist
that is currently in clinical development for the treatment
of Crohn’s disease.'”> ZP1846 is a GLP-2 peptide ana-
logue, modified by Zealand’s proprietary SIP technology.
Preclinical pharmacologic studies showed that ZP1846
consistently stimulated growth of the small intestinal

1 . .
93 and decreased the incidence and sever-

194

mucosa in mice
ity of chemotherapy-induced diarrhoea in rats.

FE 203799 is a GLP-2 analogue in the early stages of
development by Ferring Pharmaceuticals (San Diego,
CA, USA). In rats, it has a low clearance rate resulting
in a long half-life when administered subcutaneously
(12 = 701 min)."'*”

Safety and tolerability of GLP-2 and GLP-2 analogues
and agonists
In human studies, GLP-2 and GLP-2 analogues and agon-
ists have been generally well- tolerated, with the incidence
of adverse effects similar to that of placebo-treated sub-
jects.">* ! Because GLP-2Rs are found predominantly in
the GI tract,”® °! > to date GLP-2-associated GI adverse
effects have been observed in clinical trials."** "' In an
interim report of an ongoing 2-year open-label study with
teduglutide in 76 SBS patients with intestinal failure, treat-
ment was well-tolerated, with the major adverse events
being gastrointestinal (22%, mainly abdominal pain, dis-
tension, nausea, vomiting).'”® No neutralising antibodies
have been reported in published clinical trials.'>* ' ¢
The potential for carcinogenesis or promoting the
growth of subclinical malignancies is a concern with use
of GLP-2 or its analogues.® The proliferative actions of
GLP-2 in the GI tract has been demonstrated to occur in a
regulated manner in normal tissue.''” '** '*> Findings
that GLP-2R mRNA is present in human intestinal carci-
noid tumours suggest that GLP-2 has the potential to
stimulate the proliferation of neoplastic tissue.” >" '*7
However, there has been no evidence of dysplasia or

malignancy reported with the use of GLP-2 in humans."”'
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Indeed, a recent report suggests that human colon cancer
has less expression of GLP-2R protein than the surround-
ing noncancerous tissue.'”® However, in preclinical mod-
els in which a known carcinogen was first used to induce a
malignancy, GLP-2 may promote tumourigenesis.'” "'
In studies in which a known GI carcinogen was given first
to stimulate malignant changes, GLP-2 enhanced the
growth of polyps and tumours; administration of a long-
acting GLP-2 analogue (Gly2-GLP-2) or GLP-2 itself pro-
moted the growth of dimethylhydrazine-induced colonic
polyps—tubular adenomas confined to the colonic
mucosa—in mice.”’”® Although the neoplasms were not
cancerous, malignant transformation may occur in
time.* 2*° Studies have shown that colon carcinogenesis
in azoxymethane-treated mice was increased by chronic
treatment with GLP-2, but decreased with a GLP-2R
antagonist."” The effects of GLP-2 administration was
studied in human colon cancer cell lines stably transfected
with the GLP-2 receptor and in nude mice harbouring xe-
nografts of these tumour cells.”*! In colon cancer cell lines,
GLP-2 administration did not attenuate cytotoxicity
induced by chemotherapy, indomethacin, LY294002 or
cycloheximide. Daily administration of GLP-2 did not
alter tumour cell growth in the nude mice.*”' In APC
(Min/+) mice, daily administration of GLP-2 increased
growth of normal gut mucosa, but did not increase the
occurrence or size of colonic polyps.*’!

A recent report documented an increase in dysplasia
with GLP-2 in two novel models of inflammation-associ-
ated colon cancer. In rats fed the carcinogen 2-Amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine and a high-fat
diet, 2 of 9 (22%) rats receiving hGly*-GLP-2 developed
intestinal cancer compared with 0 of 7 (0%) control rats.
In the other set of experiments, mice with chronic dex-
tran sodium-sulphate induced colitis were administered
azoxymethane to promote development of colon cancer.
Among mice that received control injections, 56% exhib-
ited high-grade dysplasia or colon cancer compared with
64% of mice that received hGly*-GLP-2 and 46% of mice
that received a GLP-2 antagonist.*’> Studies in mice with
conditional deletion of the intestinal growth factor 1-
receptor (IGF-1R) that the proliferative
response and intestinal epithelial adaptation seen with
GLP-2 were dependent on the presence of the IGF-1R.
GLP-2 induced crypt-cell proliferation and growth of the
crypt-villus axis were reduced in the IGF-1-deficient
mice compared with control mice.*”’

Although there have been no safety signals of malig-
nancy in the clinical trials for teduglutide,'” it remains

indicated

unclear what impact such analogues will have in the long
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term. Close vigilance may be prudent in patients receiv-
ing GLP-2 and GLP-2 analogues and agonists until more
is known.

SUMMARY

Although derived from the same proglucagon, GLP-1
and GLP-2 have distinctly different biological activity
profiles. GLP-1, an incretin, has many actions in various
tissues, the most important being its role as a regulator
of blood glucose levels by amplifying postprandial insulin
secretion. Furthermore, it has proliferative, cytoprotective
and neogenic effects on pancreatic f§ cells and neuronal
cells, regulating glucagon secretion and increasing pan-
creatic ff-cell mass. GLP-1 also helps to ensure efficient
assimilation of nutrients via effects on food intake and
gastric emptying. In contrast, GLP-2 is an intestino-
trophic hormone, regulating energy absorption via effects
on nutrient intake, nutrient absorption and mucosal per-
meability. A main beneficial effect of GLP-2 on the gut
is its ability to increase intestinal growth because of the
enhancement of crypt cell proliferation and inhibition of
apoptosis, resulting in expansion of villus height. GLP-2
analogues have been shown to increase fluid and electro-
lyte absorption in adult patients with intestinal disorders
affecting mucosal absorption. These different and distinct
biological actions of GLP-1 and GLP-2 have broad
potential implications in the treatment of diabetes and
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