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Abstract A microscopic master equation describing the dynamics of two qubits coupled via a nonlinear mediator
is constructed supposing that the two qubits, as well as the nonlinear mode, interact, each with its own independent
bosonic bath. Generally speaking the master equation derived in this way represents a more appropriate tool for
studying the dynamics of open quantum systems. Indeed we show that it is more complex than the phenomenological
master equation, constructed simply adding ad hoc dissipative terms.

Keywords Open quantum systems · Master equations · Dissipation · Decoherence · Entanglement

1 Introduction

In recent decades, due to the rapid development of experimental techniques, many schemes aimed at the controlled
generation and manipulation of multipartite quantum states have been experimentally realized and theoretically
analyzed [1–9]. In this context, Josephson junction-based architectures are among the best candidates due to their
scalability and to the possibility of controlling in situ their dynamics by tuning external control parameters. Generally
speaking, these Josephson junction-based two-level systems (qubits) can be directly coupled exploiting their mutual
inductance or capacitance or via an auxiliary device playing the role of an entanglement mediator. The coherent
coupling between two superconducting qubits has been realized, for example, exploiting their interaction with a
monochromatic radiation field (described as a linear resonator) or by a superconducting quantum interference device
(SQUID)-based mediator, which also makes it possible to measure the final state of the system in situ. In this case,
the SQUID-based mediator is characterized by a nonlinearity that, as indicated in a recent paper [10], results in a
strong enhancement of the entanglement established between the two qubits almost up to its maximal value. Within
this context it is necessary to investigate the robustness of the theoretical entanglement generation scheme against
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losses that, generally speaking, corrupt the unitary scheme. To this end, the starting point is the construction of
a microscopic master equation. It has indeed been demonstrated [11,12] that simply adopting phenomenological
master equations can be inappropriate for describing the dynamics of systems especially when structured reservoirs
are considered.

In this paper we consider a system of two qubits coupled via a nonlinear resonator supposing that each of them
interacts with a bosonic reservoir. Our aim is to construct the microscopic master equation by which the entanglement
dynamics of the two-qubit system can be appropriately investigated. The paper is structured as follows. The physical
system and its Hamiltonian are described in Sect. 2. The microscopic master equation is presented in Sect. 3, whereas
the dynamics of the system of the two qubits is investigated in Sect. 4. A few concluding remarks are given in
Sect. 5.

2 The physical system and its Hamiltonian

Denoting by HQ1 the Hamiltonian of the first qubit, HQ2 the Hamiltonian of the second qubit, HR the Hamiltonian
of the nonilinear resonator, and HQ−R the qubit–resonator interaction Hamiltonian, the Hamiltonian HS describing
the tripartite physical system under scrutiny (assuming h̄ = 1) is as follows:

HS = HQ1 + HQ2 + HR + HQ−R

=
2∑

i=1

ωi

2
σ (i)z + ω

(
a†a + 1

2

)
+ α(a2 + a†2)+

2∑

i=1

βi (a + a†)(σ
(i)
+ + σ

(i)
− ), (1)

where ωi is the free frequency of the ith qubit (i = 1, 2), ω the frequency of the bosonic mode, σ (i)z the standard
Pauli operator, and a and a† the annihilation and creation bosonic operators, respectively. The parameter α in
Eq. (1) measures the strength of the nonlinearity of the bosonic mode, while βi is the coupling constant between
the ith qubit and the mediator.

It is well known that, in order to derive a microscopic master equation, the first step is to diagonalize the
Hamiltonian of the system, explicitly finding its eigenvalues and eigenvectors [13, p. 133]. To this end we look for
transformations that linearize the Hamiltonian (1). Let us consider operator A defined as

A = 1

2

(
aS + a† D

)
, (2)

with

S =
√
�̃

�
+

√
�

�̃
, D =

√
�̃

�
−

√
�

�̃
, (3)

and �̃2 = �2 +4α�, where� = (ω−2α) (with α < ω/2). It is immediate to verify that, by definition, [A, A†] = 1
[14, p. 489]. Exploiting the new annihilation and creation operators A and A†, the Hamiltonian HR describing the
nonlinear mediator can be cast in the form

H̃R = �̃

(
A† A + 1

2

)
. (4)

To make our approach physically consistent, we confine our analysis to the case −ω/2 < α < ω/2, thereby
ensuring that the condition �̃2 > 0 is satisfied.

Moreover, expressing the Hamiltonian describing the interaction between each qubit and the nonlinear bus in
terms of the new operators A and A†, we obtain
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H̃Q−R =
2∑

i=1

Ki (A + A†)(σ
(i)
+ + σ

(i)
− ), (5)

with Ki = βi

√
�̃/�. Let us suppose that Ki � �̃. Under this condition it is legitimate to perform the well-known

rotating wave approximation (RWA) obtaining

H̃Q−R =
2∑

i=1

Ki (Aσ
(i)
+ + A†σ

(i)
− ). (6)

Thus, choosing ω1 = ω2 = �̃, β1 = β2 ≡ β and taking into account also the interaction of each subsystem
(the two qubits and the nonlinear bus) with its own reservoir, it is possible to write the total Hamiltonian of the
closed system as follows:

H = H̃S + HB + HS−B

= �̃

2

2∑

i=1

σ (i)z + �̃A† A + K
2∑

i=1

(Aσ (i)+ + A†σ
(i)
− )

+
2∑

i=1

∑

k

ω
(i)
k b†(i)

k b(i)k +
∑

j

ω j c
†
j c j +

2∑

i=1

∑

k

ε
(i)
k σ (i)x (b(i)k + b†(i)

k )

+(A + A†)
∑

j

(c j + c†
j ). (7)

2.1 Eigenstates and eigenvalues of HS

In the representation of the operators A and A†,

H̃S = �̃

2

2∑

i=1

σ (i)z + �̃A† A + K
2∑

i=1

(Aσ (i)+ + A†σ
(i)
− )

has the well-known form of the Hamiltonian describing two two-level systems resonantly interacting with a linear
bosonic mode. It is thus easy to find its eigenstates and eigenvalues in each invariant Hilbert subspace of the excitation
number operator n̂ = 1

2 (σ
1
z + σ 2

z )+ A† A + 1. In particular, we find that the eigensolutions of the Hamiltonian H̃S

of a tripartite qubit-mediator system, schematically illustrated in Fig. 1, can be written down as follows:

– Subspace with n = 0 excitations

E0 = −�̃ |ψ0〉 = |0 − −〉; (8)

– Subspace with n = 1 excitations

E (−)1 = −√
2K |ψ−

1 〉 =
√

2

2
|1 − −〉 − 1

2
|0 + −〉 − 1

2
|0 − +〉,

E (0)1 = 0 |ψ0
1 〉 = − 1√

2
|0 + −〉 + 1√

2
|0 − +〉, (9)

E (+)1 = √
2K |ψ+

1 〉 =
√

2

2
|1 − −〉 + 1

2
|0 + −〉 + 1

2
|0 − +〉;

– Subspace with n ≥ 2 excitations
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Fig. 1 Schematic
illustration of eigenstates of
tripartite qubit-mediator
system; states are ordered
for increasing energies from
bottom to top; degenerate
states appear at same height

ψ0

ψ1
(-)

ψ1
(+)

ψ1
(0)

ψn
(-)

ψn
(+)

...

ψn
(0a) ψn

(0b)

E (−)n = �̃(n − 1)− K
√

2(2n − 1),

|ψ−
n 〉 =

√
n

2(2n − 1)
|n − −〉,

−1

2
(|n − 1,+−〉 + |n − 1,−+〉)+

√
n − 1

2(2n − 1)
|n − 2,++〉,

E (0)n = �̃(n − 1), (10)

|ψ0a
n 〉 = −

√
n − 1

2n − 1
|n − −〉 +

√
n

2n − 1
|n − 2,++〉,

|ψ0b
n 〉 = − 1√

2
|n − 1,+−〉 + 1√

2
|n − 1,−+〉,

E (+)n = �̃(n − 1)+ K
√

2(2n − 1),

|ψ+
n 〉 =

√
n

2(2n − 1)
|n − −〉,

+1

2
(|n − 1,+−〉 + |n − 1,−+〉)+

√
n − 1

2(2n − 1)
|n − 2,++〉.

3 System master equation

Once the eigensolutions of the free Hamiltonian of the system are known, the general approach [13, p. 133] to
derive the master equation requires as a second step the construction of the dissipative jump operators describing
transitions between the eigenstates of the system, taking into account possible degeneracies of the Bohr transition
frequencies. More specifically, if the complete Hamiltonian of the open quantum system is written as

H = HS + HB + Hint, (11)

where HS is the free Hamiltonian of the system, HB the Hamiltonian of the bath, and

Hint =
∑

α

Sα ⊗ Bα, (12)

where Sα acts on the system Hilbert space whereas Bα acts on the bath Hilbert space, then one can decompose Sα
as follows:
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Sα =
∑

ω

Sα(ω), (13)

with

Sα(ω) =
∑

E−E ′=ω

∏
(E ′)Sα

∏
(E), (14)

where
∏
(E) is the projection operator onto the eigenspace belonging to the eigenvalue E and ω the set of all

possible transition frequencies. In correspondence to each Sα(ω) it is possible to construct a “Lindblad” term in the
microscopic master equation given by [13, p. 136]

γα(ω)(Sα(ω)ρS†
α(ω)− 1

2
{S†
α(ω)Sα(ω), ρ}) (15)

having assumed that the reservoirs are uncorrelated and where the symbol {X,Y } = XY +Y X is the anticommutator
between generic operators X and Y . In Eq. (15) the decay rates γα(ω) can be expressed in terms of appropriate
environment correlation functions and thus depend on the statistical properties of its spectrum. At the moment, we
make no assumptions concerning this point, reserving the possibility to define the spectral properties of the three
baths when we solve the dynamics of the system starting from a given initial condition.

We now apply this formalism to our case constructing the proper Lindblad terms for each Bohr transition
frequency. Let us concentrate, for example, on the details of the construction of the Lindblad term corresponding to
the transition frequency ω = �̃, describing jumps between the subspace with n excitations and that characterized
by n − 1 excitations. Taking into account the spectrum of H̃S , as previously given, it is possible to convince oneself
that, setting SF = A, SS1 = σ

(1)
x , and SS2 = σ

(2)
x , we have

SF (�̃) = |ψ0
1 〉〈ψ0b

2 |

+
∑

n≥3

2

√
n(n − 1)(n − 2)

(2n − 1)(2n − 3)
|ψ0a

n−1〉〈ψ0a
n | + √

n − 1|ψ0b
n−1〉〈ψ0b

n |, (16)

SS1(�̃) = − 1√
2
|ψ0〉〈ψ0

1 | + 1√
3
|ψ0

1 〉〈ψ0a
2 |

+
∑

n≥3

2

√
n − 2

2(2n − 3)
|ψ0a

n−1〉〈ψ0b
n | +

√
n

2(2n − 1)
|ψ0b

n−1〉〈ψ0a
n |, (17)

and, finally,

SS2(�̃) = 1√
2
|ψ0〉〈ψ0

1 | − 1√
3
|ψ0

1 〉〈ψ0a
2 | (18)

+
∑

n≥3

2

√
n − 2

2(2n − 3)
|ψ0a

n−1〉〈ψ0b
n | +

√
n

2(2n − 1)
|ψ0b

n−1〉〈ψ0a
n |.

Let us observe that in particular SS1(�̃) = −SS2(�̃). Writing for Si (�̃) (i = F, S1, S2) the appropriate Lindblad
term, as Eq. (15) requires, and repeating the same procedure for each Bohr transition frequency, we finally get the
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master equation governing the dissipative dynamics of our open quantum system. In particular, it is possible to
demonstrate that the master equation of the system assumes the following form:

ρ̇ = −i[HS, ρ]
+

∑

�=±
�1�

(
|ψ0〉〈ψ�1 |ρ|ψ�1 〉〈ψ0| − 1

2
|ψ�1 〉〈ψ�1 |ρ − 1

2
ρ|ψ�1 〉〈ψ�1 |

)
(19)

+
∑

n≥2;�,�′=±
�n,��′

(
|ψ�′n−1〉〈ψ�n |ρ|ψ�n 〉〈ψ�′n−1| − 1

2
|ψ�n 〉〈ψ�n |ρ − 1

2
ρ|ψ�n 〉〈ψ�n |

)

+
∑

n≥2;�=±
�n,a�

(
|ψ�n−1〉〈ψ0a

n |ρ|ψ0a
n 〉〈ψ�n−1| − 1

2
|ψ0a

n 〉〈ψ0a
n |ρ − 1

2
ρ|ψ0a

n 〉〈ψ0a
n |

)

+
∑

n≥2;�=±
�n,b�

(
|ψ�n−1〉〈ψ0b

n |ρ|ψ0b
n 〉〈ψ�n−1| − 1

2
|ψ0b

n 〉〈ψ0b
n |ρ − 1

2
ρ|ψ0b

n 〉〈ψ0b
n |

)

+
∑

n≥2;�=±
�n,ab�(|ψ�n−1〉〈ψ0b

n |ρ|ψ0a
n 〉〈ψ�n−1| + |ψ�n−1〉〈ψ0a

n |ρ|ψ0b
n 〉〈ψ�n−1|

−1

2
(|ψ0a

n 〉〈ψ0b
n |ρ + ρ|ψ0a

n 〉〈ψ0b
n | + |ψ0b

n 〉〈ψ0a
n |ρ + ρ|ψ0b

n 〉〈ψ0a
n |))

+
∑

n≥2;�=±
�n,�a

(
|ψ0a

n−1〉〈ψ�n |ρ|ψ�n 〉〈ψ0a
n−1| − 1

2
|ψ�n 〉〈ψ�n |ρ − 1

2
ρ|ψ�n 〉〈ψ�n |

)

+
∑

n≥2;�=±
�n,�b

(
|ψ0b

n−1〉〈ψ�n |ρ|ψ�n 〉〈ψ0b
n−1| − 1

2
|ψ�n 〉〈ψ�n |ρ − 1

2
ρ|ψ�n 〉〈ψ�n |

)

+
∑

n≥2;�=±
�n,�ab

(
|ψ0a

n−1〉〈ψ�n |ρ|ψ�n 〉〈ψ0b
n−1| + |ψ0b

n−1〉〈ψ�n |ρ|ψ�n 〉〈ψ0a
n−1|

)

+DF (�̃)+ DS(�̃),

where

DF (�̃) = γF (�̃)

{
|ψ0

1 〉〈ψ0b
2 |ρ|ψ0b

2 〉〈ψ0
1 |

+
∑

n≥3

[
2

√
n(n − 1)(n − 2)

(2n − 1)(2n − 3)
(|ψ0

1 〉〈ψ0b
2 |ρ|ψ0a

n 〉〈ψ0a
n−1| + |ψ0a

n−1〉〈ψ0a
n |ρ|ψ0b

2 〉〈ψ0
1 |)

+√
n − 1(|ψ0

1 〉〈ψ0b
2 |ρ|ψ0b

n 〉〈ψ0b
n−1| + |ψ0b

n−1〉〈ψ0b
n |ρ|ψ0b

2 〉〈ψ0
1 |)

]

+
∑

n,n′≥3

[
4

√
n(n − 1)(n − 2)

(2n − 1)(2n − 3)

√
n′(n′ − 1)(n′ − 2)

(2n′ − 1)(2n′ − 3)
|ψ0a

n−1〉〈ψ0a
n |ρ|ψ ′0a

n 〉〈ψ0a
n′−1|

+2
√

n′ − 1

√
n(n − 1)(n − 2)

(2n − 1)(2n − 3)
|ψ0a

n−1〉〈ψ0a
n |ρ|ψ ′0b

n 〉〈ψ0b
n′−1|

+2
√

n − 1

√
n′(n′ − 1)(n′ − 2)

(2n′ − 1)(2n′ − 3)
|ψ0b

n−1〉〈ψ0b
n |ρ|ψ ′0a

n 〉〈ψ0a
n′−1|

+√
(n − 1)(n′ − 1)|ψ0b

n−1〉〈ψ0b
n |ρ|ψ ′0b

n 〉〈ψ0b
n′−1|

]

−1

2

[
|ψ0b

2 〉〈ψ0b
2 |ρ + ρ|ψ0b

2 〉〈ψ0b
2 | (20)
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+
∑

n≥3

(
4

n(n − 1)(n − 2)

(2n − 1)(2n − 3)
|ψ0a

n 〉〈ψ0a
n |ρ + ρ|ψ0a

n 〉〈ψ0a
n | + (n − 1)|ψ0b

n 〉〈ψ0b
n |ρ + ρ|ψ0b

n 〉〈ψ0b
n |

)]⎫
⎬

⎭

and

DS(�̃) = [
γS1(�̃)+ γS2(�̃)

]{1

2
|ψ0〉〈ψ0

1 |ρ|ψ0
1 〉〈ψ0|

− 1√
6
|ψ0〉〈ψ0

1 |ρ|ψ0a
2 〉〈ψ0

1 | − 1√
6
|ψ0

1 〉〈ψ0a
2 |ρ|ψ0

1 〉〈ψ0|

+1

3
|ψ0

1 〉〈ψ0a
2 |ρ|ψ0a

2 〉〈ψ0
1 | +

∑

n≥3

(
− 1

2

√
n − 2

2n − 3
|ψ0a

n−1〉〈ψ0b
n |ρ|ψ0

1 〉〈ψ0|

−1

2

√
n

2n − 1
|ψ0b

n−1〉〈ψ0a
n |ρ|ψ0

1 〉〈ψ0|

+
√

n − 2

6(2n − 3)
|ψ0a

n−1〉〈ψ0b
n |ρ|ψ0a

2 〉〈ψ0
1 | +

√
n

6(2n − 1)
|ψ0b

n−1〉〈ψ0a
n |ρ|ψ0a

2 〉〈ψ0
1 |

−1

2

√
n − 2

2n − 3
|ψ0〉〈ψ0

1 |ρ|ψ0b
n 〉〈ψ0a

n−1| − 1

2

√
n

2n − 1
|ψ0〉〈ψ0

1 |ρ|ψ0a
n 〉〈ψ0b

n−1|

+
√

n − 2

6(2n − 3)
|ψ0

1 〉〈ψ0a
2 |ρ|ψ0b

n 〉〈ψ0a
n−1| +

√
n

6(2n − 1)
|ψ0

1 〉〈ψ0a
2 |ρ|ψ0a

n 〉〈ψ0b
n−1|

)

+
∑

n,n′≥3

(√
n − 2

2(2n − 3)

√
n′ − 2

2(2n′ − 3)
|ψ0a

n−1〉〈ψ0b
n |ρ|ψ0b

n′ 〉〈ψ0a
n′−1|

+
√

n − 2

2(2n − 3)

√
n′

2(2n′ − 1)
|ψ0a

n−1〉〈ψ0b
n |ρ|ψ0a

n′ 〉〈ψ0b
n′−1|

+
√

n

2(2n − 1)

√
n′ − 2

2(2n′ − 3)
|ψ0b

n−1〉〈ψ0a
n |ρ|ψ0b

n′ 〉〈ψ0a
n′−1|

+
√

n

2(2n − 1)

√
n′

2(2n′ − 1)
|ψ0b

n−1〉〈ψ0a
n |ρ|ψ0a

n′ 〉〈ψ0b
n′−1|

)

−1

2

[
1

2
|ψ0

1 〉〈ψ0
1 |ρ + 1

2
ρ|ψ0

1 〉〈ψ0
1 | + 1

3
|ψ0a

2 〉〈ψ0a
2 |ρ + 1

3
ρ|ψ0a

2 〉〈ψ0a
2 |

+
∑

n ≥ 3

(
n − 2

2(2n − 3)
(|ψ0b

n 〉〈ψ0b
n |ρ + ρ|ψ0b

n 〉〈ψ0b
n |)

+ n

2(2n − 1)

(
|ψ0a

n 〉〈ψ0a
n |ρ + ρ|ψ0a

n 〉〈ψ0a
n |

))]}
. (21)

The coefficients � appearing in Eq. (19) are appropriate combinations of the decay rates γi (ω) and, for our
convenience, are explicitly given in the appendix.

4 System dynamics

Exploiting the knowledge of the system master equation, as derived in the previous section, we can now analyze
its dynamics starting, for example, from the initial condition |ψ0〉 = |0 + −〉, where the nonlinear mode is in its
vacuum state (|0〉), the qubit 1 is in its upper level (|+〉), and the other qubit is in its ground state (|−〉). Taking into
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Fig. 2 Time evolution (time in units of �−1) of the population
of the states |++〉 (up) and |−−〉 (down), calculated choosing
γ=0.01� and K = 0.1�. The state is represented by the density
operator ρ, obtained by a numerical solution of Eq. (19)

Fig. 3 Time evolution (time in units of �−1) of the population
of the states |+−〉 (up) and |−+〉 (down), calculated choosing
γ=0.01� and K = 0.1�. The state is represented by the density
operator ρ, obtained by a numerical solution of Eq. (19)

account that the master equation was constructed starting from H̃S instead of HS , we must first express the initial
state of the mediator in terms of the eigenstates of the operator A defined in Eq. (2). To this end, we can exploit the
unitary operator

U = e
z
2 (a

2−a†2), (22)

with z = 1
2 ln(�̃/�) (z ∈ R), observing that

A = UaU †. (23)

In view of Eq. (23), indeed, indicating by |ñ〉 the eigenstates of the transformed number operator A† A, we can write
|n〉 = U †|ñ〉. Thus we can express the initial state of the mediator as follows:

|0〉 =
∞∑

m

P1/2
m |2̃m〉, (24)

with

Pm = (1 − z2)1/2
2m!

22m(m!)2 z2m, (25)

where we have used the action of the squeezing operator in Eq. (22) on the vacuum state [15]. In what follows we
suppose that the parameter α describing the strength of the nonlinearity of the bosonic mode is fixed to the value
α = 0.1ω. In such a condition it is possible to prove that |0〉 ≈ P1/2

0 |̃0〉 + P1/2
1 |̃2〉. In other words, the initial state

of the tripartite system is |ψ0〉 ≈ w0|0̃ + −〉 + w1|2̃ + −〉, with w0 =
√

P0
P0+P1

and w1 =
√

1 − w2
0 or, expressed

in terms of eigenstates of H̃S ,
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Fig. 4 Time evolution
(time in units of �−1) of the
function concurrence in Eq.
(27), calculated choosing
γ=0.01� and K = 0.1�.
The state is represented by
the density operator ρ,
obtained by a numerical
solution of Eq. (19)

200 400 600 800 1000

0.05

0.10

0.15

0.20

0.25

0.30

0.35

t

C

|ψ0〉 ≈ w0

2

[
−|ψ−1

1 〉 + |ψ1
1 〉 − √

2|ψ0
1 〉

]

+w1

2

[
|ψ1

3 〉 − √
2|ψ0b

3 〉 − |ψ−1
3 〉

]
. (26)

After very long calculations, it is thus possible to derive the time evolution of the initial state, starting from
Eq. (19). In particular, we have numerically solved the dynamics of the system supposing that the three baths are
at zero temperature and are characterized by the same flat spectrum that in turn implies setting γF (ω) = γS1(ω) =
γS2(ω) = γ .

Here we confine ourselves to the analysis of the bipartite qubit1–qubit2 subsystem by looking at the time evolution
of the populations and of the entanglement established between them via their common interaction with the mediator.
As a measure of the entanglement we choose the well-known concurrence function C, which is well suited for a
system of two qubits; in our case this coincides with

C = 2 max{0, |ρ++,−−| − √
ρ+−,+−ρ−+,−+, |ρ+−,−+| − √

ρ++,++ρ−−,−−}, (27)

where ρi j,kl is the matrix element 〈i j |ρ|kl〉 (i, j, k, l ≡ +,−) of the reduced density matrix describing the dynamics
of the qubit–qubit system.

As expected, Figs. 2 and 3 illustrate the excitation exchanges between the two qubits mediated by the presence
of the nonlinear mode. The bipartite system, initially prepared in the state |+−〉, decays toward its own ground state
|−−〉 due to the presence of the external environment. The oscillations between the populations of states |+−〉 and
|−+〉 are mirrored in the oscillations of the entanglement established between the two qubits. Such oscillations can
be quantified by the concurrence of the two qubits, as shown in Fig. 4.

5 Conclusions

In this paper we focused our attention on the construction of a microscopic master equation describing the dis-
sipative dynamics of system of two qubits in interaction via their common coupling with a nonlinear mediator.
We showed that the construction of the microscopic master equation is more involved than simply adding ad hoc
terms in the dissipative part of the evolution equation. Exploiting this master equation, we analyzed the system
dynamics demonstrating that, for decoherence times in agreement with recent experimental findings, the coherent
coupling established between the two qubits survives in the presence of dissipation. However, the behavior of the
concurrence is what one would intuitively expect. For this reason, the question of whether it is really worthwhile
to use the microscopic model instead of the phenomenological one for the specific system under consideration
remains an open problem. The search for initial conditions leading to discrepancies between the microscopic and
the phenomenological models will be the object of our future research.
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6 Appendix

In this section we give the explicit dependence of the coefficient � appearing in the system master equation as a
function of the decay rates γi (i = F, S1, S2):
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