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Abstract  Aerobic life is characterized by a steady formation of reactive oxygen 
species and free radicals, which is almost entirely counteracted by endogenous pri-
mary and secondary antioxidant systems. Maintenance of these systems is then 
imperative to ensure a continuous defense to cells and to avoid conditions known as 
oxidative stress. Apart from antioxidant vitamins, many compounds from the plant 
kingdom are now considered very helpful to maintain a proper cell redox balance. 
Among them, betalain pigments have received recent attention. Betanin (betanidin-
5-O-b glucoside) is the main betacyanin from red beet. Redox potential, ability to 
interact with lipid structures and bioavailability in humans make this molecule a 
potential natural antioxidant with protective effects in vivo. This review summarizes 
the peroxyl radical-scavenging activity of the molecule and of its aglycone betani-
din, as observed in a few chemical or biological models.

6.1 � Introduction

It is now acknowledged that cell and tissue wellbeing relies on an appropriate cell 
redox status. Indeed, a million years of evolution led aerobic organisms to produce 
free radicals and oxidants (reactive oxygen species [ROS]), as well as to exploit an 
effective antioxidant machinery to control redox-sensitive signaling pathways 
responsible for a variety of processes including, among others, cell differentiation 
and proliferation, inflammation, apoptosis and aging itself (Hancock 2009; Dröge 
2002; Matsuzawa and Ichijo 2008; Giles 2006; Wu et al. 2006; Giorgio et al. 2007; 
Valko et al. 2007; Lee and Griendling 2008; Pan et al. 2009).
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While ROS production in a finely controlled fashion is required to maintain the 
natural oxidative homeostasis, uncontrolled generation and/or aggression by envi-
ronmental oxidants, toxicants and heavy metals can modify the balance between 
pro- and antioxidative processes, resulting in the condition known as “oxidative 
stress”, initiating biochemical events resulting in pathological conditions (Ma 2010; 
Martin and Barrett 2002).

Cells are endowed with primary antioxidant defenses, i.e. enzymes such as 
superoxide dismutase, catalase and glutathione peroxidase, that remove ROS before 
they may attack cell components, and various repair systems needed to cope with 
damaged molecules, including low molecular weight antioxidants such as glutathi-
one and vitamins E, C, A and carotenoids. By these means, cells protect all com-
partments, thus preventing damage to nucleic acids, proteins and membrane lipids.

Because endogenous antioxidants are continuously consumed, the organism 
should be helped to keep their optimal level to avoid oxidative damage. This can be 
accomplished by introducing new reducing molecules to replace the consumed 
ones. Numerous epidemiological studies (Willett et  al. 1995; Kushi et  al. 1995) 
point out the importance of diets based on herbs, fruits, grains, and vegetables in 
reducing the incidence of chronic and degenerative diseases such as cancer and 
cardiovascular disease, the etio-pathogenesis of which is strongly supported by oxi-
dative stress (Lin 1995; Cao et al. 1997). Indeed plants are the main source of dietary 
antioxidants. Apart from the antioxidant vitamins, a vast array of phytochemicals, 
from bioflavonoids to phytosterols and terpenoids, with potential antioxidative 
activity and/or ability to modulate redox-sensitive signaling pathways, have been 
isolated. Recently, the radical-scavenging activity and antioxidant capacity of beta-
lains have been the object of research in our as well as in other laboratories (Kanner 
et al. 2001; Escribano et al. 1998; Butera et al. 2002; Livrea and Tesoriere 2004; 
Gliszczynska-Swiglo et al. 2006; Czapski et al. 2009).

Betalain pigments, secondary metabolites of plants of the Caryophyllales order, 
share the chemical structure of betalamic acid and include two classes of com-
pounds, i.e. the yellow betaxanthins and red betacyanins, according to the structure 
bound to betalamic acid. When the latter is conjugated with amino acids or corre-
sponding amines (including dopamine), betaxanthins arise. Betacyanins are deriva-
tives of betanidin, the conjugate of betalamic acid with cyclo-DOPA, with additional 
substitutions through varying glycosylation and acylation patterns at C5 or C6 posi-
tions. Betanin (5-O-glucose betanidin) and vulgaxanthin I (glutamine–betaxanthin) 
are the main pigments found in raw red beet (Fig. 6.1). On the other hand, in accor-
dance with studies showing that vulgaxanthin I is poorly stable under a number of 
physical and chemical conditions (Herbach et al. 2006), vulgaxanthin did not appear 
detectable in the steamed red beet, nor in other beet preparations such as juice and 
jam (Tesoriere et al. 2008).

When treating with the potential health-promoting effects of dietary compounds, 
it is important to consider their bioavailability, i.e. how much of the active molecule 
is absorbed, its eventual transformation at the level of the digestive tract and, finally, 
the distribution to tissues and cells. Factors such as the chemistry of the molecule, 
the nature of co-ingested compounds as well as the complexity of the food matrix 
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

may largely affect bioavailability. Studies in humans reporting kinetics of absorp-
tion and extent of plasma concentration and urinary excretion (Kanner et al. 2001; 
Tesoriere et al. 2004a; Frank et al. 2005) provided evidence that discrete amounts of 
betanin can reach the circulation and distribute in low-density lipoproteins (LDL) 
(Tesoriere et al. 2004a) and red blood cells (Tesoriere et al. 2005), where the mole-
cule presumably was involved in antioxidant protection. On this basis, investigating 
the activity of betanin as a lipid antioxidant and providing kinetic parameters of the 
activity has been a stimulating challenge for our group (Tesoriere et al. 2009). To 
this purpose chemical lipid systems such as methanolic solutions of methyl linoleate 
and soybean phosphatidylcholine liposomes have been used. In other studies, the 
antioxidant activity of betanin has been evaluated in more complex biological lipid 
matrixes such as LDL (Tesoriere et al. 2003; Allegra et al. 2007).

6.2 � Oxidation of Lipids

Oxidation of membrane unsaturated lipids is believed to contribute to human ageing 
and disease by disrupting the structure and the packaging of the lipid components 
and, ultimately, by preventing membrane function. Beside causing local disruption, 
this process may also affect intracellular signaling, since reactive end-products of 
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Fig. 6.1  Chemical structure of betalamic acid, vulgaxanthin I and main betacyanin derivatives
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lipid peroxidation such as unsaturated aldehydes may easily migrate from mem-
branes, causing intracellular injury and remarkable modifications of the oxidative 
homeostatic signaling (Uchida 2007; Echtay et al. 2003). Due to the importance of 
maintaining membrane integrity, numerous bioactive substances present in foods 
have been explored as potential lipid antioxidants.

Peroxidation of polyunsaturated lipids (PUFA) is characterized by radical chain 
reactions, where a single initiating free radical (R.) may cause the peroxidation of a 
large number of lipids (LH). In the presence of appropriate initiators, the process 
takes place according to a mechanism exemplified in

Initiation

• •
2

• • •

R O ROO

ROO LH ROO L

+ →

+ → +

Propagation

• •
2

kp• •

L O LOO

LOO LH LOOH L

+ →

+ → +

Termination

→• kt2 LOO non - radical products

where L., LOO., and LOOH are the alkyl and alkylperoxyl radicals and hydroperox-
ide generated, and kp and kt are the rate constants for propagation and termination 
of the radical chain, respectively. Classical chain-breaking antioxidants, such as 
vitamin E, inhibit the peroxidation process by scavenging the chain-carrying 
lipoperoxyl radicals, thus preventing the radical attack of other lipids and produc-
tion of hydroperoxides. The effectiveness of these antioxidants is determined by the 
rate at which they actually scavenge lipoperoxyl radicals, comparable with the rate 
at which the radicals are produced, as well as by the number of radicals scavenged 
per mole of antioxidant. In the presence of a chain-breaking antioxidant, lipid per-
oxidation is stopped as long as the antioxidant is totally consumed, a time interval 
known as the inhibition period or lag time. Due to the primary importance of vita-
min E (a-tocopherol) in protecting membrane lipids (Fukuzawa 2008), the com-
parison between kinetic parameters measured for natural antioxidants and those of 
vitamin E may provide an indication of the compound’s effectiveness.

The oxidation of methyl linoleate (LAME) under controlled conditions is the 
simplest way to study the oxidation of polyunsaturated lipids, and it has widely 
been adopted to carry out kinetic studies with antioxidants. Since the linoleic acid 
has two double bonds, peroxidation occurs at the bis-allylic hydrogens and generates 
stoichiometric amounts of conjugated dienes (CD) lipid hydroperoxides that can be 
measured spectrophotometrically (Pryor and Castle 1984). Methanolic LAME solutions 
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

are oxidized by radicals thermally generated from a lipophilic azo-initiator such as 
AMVN (2,2¢-azobis (2,4-dimethylvaleronitrile)) (Niki 1990) to ensure a linear pro-
duction of lipoperoxides propagating chain reactions. Analysis of the peroxidation 
curve generated by monitoring the formation of CD hydroperoxides at time inter-
vals permits the calculation of kinetic parameters for the reaction of lipoperoxyl 
radicals with antioxidants. The propagation rate, R

p
, is measured as the amount of 

CD lipid hydroperoxides formed per second, either in the absence (control) or in the 
presence of antioxidant. The rate of chain initiation, R

i
, is measured by the inhibi-

tion period (t
inh

) produced by a known amount of a-tocopherol, following the 
equation

	 =i inhR n[IH] / t 	 (6.1)

where IH is the concentration of a-tocopherol, and n, the stoichiometric factor that 
represents the peroxyl radicals scavenged by each molecule of antioxidant, is 
assumed to be 2 (Burton and Ingold 1981).

In the curve of peroxidation in the presence of antioxidant, the inhibition period, 
t
inh

, is measured as the time interval between the addition of free radical initiator and 
the point of intersection of the tangents to the tracts of the curve representing the 
inhibition and propagation phases. When inhibition periods are measured, the inhi-
bition rate constant, K

inh
, in solution of peroxidizing LAME is calculated as

	
=inh p inh inhK K [LH] / R ,t 	 (6.2)

where [LH] is the concentration of the lipid; and k
p
, the absolute rate constant for the 

oxidation of LAME at 50°C, is to be assumed 230 M−1 s−1 (Yamamoto et al. 1982). 
The inhibition rate, R

inh
, that is the rate of production of lipid hydroperoxides during 

the inhibition period, is calculated by the coordinates of the intercept of the extrapo-
lations of the parts of the curve representing the inhibition and propagation phases.

Soybean phosphatidylcholine (PC) unilamellar liposomes are a suitable mem-
brane-mimetic system to obtain quantitative data of the peroxyl radical-scavenging 
activity of antioxidants, due to the peculiar composition in unsaturated fatty acids, 
95% of which consist of linoleic acid. The use of a hydrophilic azo-initiator such as 
AAPH (2,2¢-azobis(2-amidinopropane) dihydrochloride) (Niki 1990) causes a lin-
ear hydroperoxide formation, thereby R

i
 can be evaluated by the classic inhibitor 

method according to Eq. 6.1.

6.3 � Antioxidant Activity of Betacyanins

Betacyanins are heterocyclic tyrosine-derived pigments. The phenol moiety and/
or  the cyclic amine group have been considered to confer reducing properties to 
this  class of compounds (Kanner et  al. 2001; Gliszczynska-Swiglo et  al. 2006; 
Gandia-Herrero et  al. 2010). In addition, because of their chemistry, including 
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M.A. Livrea and L. Tesoriere

charged portions and ionizable groups as well as lipophilic moieties, these molecules 
may behave as amphiphilic-like compounds at physiological pH. Kinetic measure-
ments of the peroxyl radical-scavenging activity of betanin and of its aglycone, 
betanidin, in organic solution and liposomes, and the identification of oxidized 
products, have recently provided mechanistic insights on the antioxidant properties 
of these compounds, consistent with the activity of the glucose-substituted mono-
phenol and ortho-diphenol moieties, respectively (Tesoriere et al. 2009). Though 
both pigments appear to be peroxyl radical scavengers, betanidin exhibits an effec-
tiveness higher than betanin.

	(a)	 Peroxyl radical-scavenging activity of betanin and betanidin in methanol
Betanin does not cause any delay of the oxidation of LAME in methanol solu-
tion, but only a decrease of the peroxidation rate that depends exponentially on 
the betanin amount (Fig. 6.2). This is typical of antioxidants known as retarders. 
These may react so slowly with chain-carrying lipoperoxyl radicals that termi-
nation also occurs by the bimolecular self-reaction of peroxyl radicals, which 
finally does not result in a well-defined inhibition period. The redox potential of 
betanin (0.4  V) (Butera et  al. 2002), would make the molecule an efficient 
reductant for lipid-derived peroxyl radicals (Buettner 1993). Nevertheless, 
kinetic solvent effects (Avila et al. 1995; Valgimigli et al. 1995), in particular 
polarity and hydrogen bond-accepting ability (HBA) of the solvent, may 
strongly affect the capacity of phenol antioxidants to transfer the hydroxylic 
H-atoms to radicals, because of preferential formation of a H-bonded complex 
between the reducing phenol-OH and a molecule of solvent (Barclay et  al. 
1999). Since methanol has a high HBA (Kamlet and Taft 1976), a strong inter-
ference could account for the very modest antioxidant effects of betanin in this 
solvent. In the absence of defined inhibition periods, Eq. 6.2 cannot be applied, 
then the K

inh
 for the reaction of betanin with peroxyl radicals in methanol cannot 

be determined. On the other hand, the hydrophilic nature of the pigment makes 
more apolar solvents inapplicable (Livrea and Tesoriere, unpublished data).

R² = 0,9215
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Fig. 6.2  Relationships 
between the propagation  
rate (Rp) and betanin 
concentrations in AMVN-
induced oxidation of methyl 
linoleate in methanol. 
aCD-hydroperoxide  
formation per second
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

The interference of protic solvents on the H-atom-donating ability of 
ortho-diphenols is lower than monophenolic compounds (Foti and Ruberto 
2001). Indeed, LAME autoxidation is very effectively inhibited by the betanin 
aglycone (betanidin) that acts as a classic chain-breaking antioxidant, with 
well-defined concentration-dependent inhibition periods, and total consump-
tion at the end of the inhibition phase. According to a chain-breaking mecha-
nism, the length of the inhibition period is determined by the number of radicals 
scavenged per each molecule of antioxidant (Niki 1996). Equations 6.1 and 6.2 
can be then applied to calculate the stoichiometric factor n and K

inh
 of betani-

din. The kinetic parameters characterizing the lipoperoxyl radical-scavenging 
activity of betanidin in methanol are reported in Table 6.1. Interestingly, K

inh
 of 

a-tocopherol (n = 2) was measured 6.4 × 105 M−1 s−1 under comparable condi-
tions (Tesoriere et al. 2009). Therefore, K

inh
 and stoichiometric factor of the 

reaction between betanidin and peroxyl radicals are of the same order as those 
of a-tocopherol.

The oxidation of phenol antioxidants by peroxyl radicals proceeds through 
H-atom abstraction and formation of the transient resonance-stabilized aryloxyl 
radical that can either undergo reactions of fast termination leading to formation 
of adducts, or quinones, or even self-termination reactions forming dimers or 
other products (Barclay 1993; Ingold 1969; Barclay et al. 1990). According to 
spectrophotometric and parallel high-performance liquid chromatography 
(HPLC) analysis, betanidin quinine, to an extent consistent with the consumed 
betanidin, was the only product generated during LAME peroxidation in metha-
nol (Tesoriere et al. 2009). The stoichiometry of the reaction between betanidin 
and peroxyl radicals suggests that, after H-atom transfer from the ortho-diphenol 
moiety, the intermediate radical undergoes termination reactions with lipoper-
oxyl radicals leading to the stable betanidin quinone (Fig. 6.3, pathway A).

Other studies reported on the antioxidant activity of betanin and betanidin 
against peroxidation of linoleic acid in buffered detergent solution (Kanner et al. 
2001). In those experiments linoleate peroxidation was induced by cyt c, met-
myoglobin or lipoxygenase. Betanin acted slightly better than betanidin when cyt 
c or lipoxygenase were the oxidizing agents, and exhibited almost the same effect 
when metmyoglobin was the oxidant. Then, in aqueous micellar dispersions, the 
molecules were allowed to act in a nearly comparable manner. This appears to be 
in substantial agreement with recent observations, discussed below.

	(b)	 Peroxyl radical-scavenging activity of betanin and betanidin in liposomes.
Liposomes are convenient biomimetic models to study the activity of natural 
antioxidants. The oxidation kinetics of water-dispersed unilamellar soybean 
PC liposomes exposed to the hydrophilic azo-initiator AAPH can be followed 
by the time-course of formation of lipid hydroperoxides either in the absence or 
in the presence of antioxidants (Niki 1990). Both betanin and betanidin exhibit 
a net chain-breaking antioxidant activity in the etherogeneous aqueous-soybean 
phosphatidylcholine vesicular system (Fig.  6.4). The stoichiometric factors 
reported in Table 6.1 are calculated from the length of the relevant inhibition 
periods in accordance to Eq. 6.1.
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

With respect to the organic solution, an increase of the antioxidant effectiveness 
of betanin in the aqueous/lipid system may be expected for a number of reasons. 
Since the reaction medium is buffered at pH 7.4, the molecule is in a deprotonated 
state favoring hydrogen atom and/or electron donation (Gliszczynska-Swiglo et al. 
2006; Gandia-Herrero et  al. 2010). In addition, the HBA of water is lower than 
methanol (Kamlet and Taft 1976), thus the influence of the solvent on the H-atom-
donating activity is less pronounced. Furthermore, partition between the water and 
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lipid phase is to be considered a major factor determining the activity of antioxidant 
phytochemicals in membranes and lipid bilayers, with compounds partitioned more 
in the water phase showing less effectiveness (Rice-Evans et al. 1996; Shirai et al. 
2001; Zou et al. 2005). According to other findings, betanin can partition in the lipid 
core of dipalmitoyl-phosphatidylcholine vesicles (Turco-Liveri et  al. 2007). All 
these observations suggest that, despite the hydrophilic sugar substituent, location 
of the aromatic cyclo-DOPA in the membrane would allow its reducing phenol 
hydroxyl to easily interact with lipoperoxyl radicals floating from the membrane 
interior.

Partition and location of betanidin in liposomal phospholipids are not known. In 
comparison with betanin, the absence of the hydrophilic sugar substituent might finally 
enhance partition in lipid bilayers. Then, in addition to the antioxidant chemistry of its 
ortho-diphenol moiety, accessibility of lipoperoxyl radicals to the reducing hydroxyl 
groups could account for the effectiveness of betanidin in the liposomal model.

K
p
, the rate constant for the propagation of the radical chain of phosphatidylcho-

line, is not known, which prevents application of Eq. 6.2 to evaluate the absolute 
inhibition constant of betanin and betanidin in the lipid bilayer. However, an esti-
mate of the antioxidant activity of the pigments in liposomes can be obtained by 
relating the value of R

inh
 measured in the presence of either betanin or betanidin and 

of a-tocopherol. Taking into account Eqs. 6.1 and 6.2, R
inh

 can be expressed by

	
=inh p i inhR K [LH] R /n K [IH] 	 (6.3)

Therefore, when comparable amounts of antioxidant and a-tocopherol are used, 
the ratio R

inh[betacyanin]
/R

inh[a-tocopherol]
 will represent nK

inh[a-tocopherol]
/nK

inh[betacyanin]
. Then, 

the effectiveness of betanin and betanidin can be calculated, which were 53% and 
84%, respectively, of the effectiveness of a-tocopherol. The kinetic parameters of 
the inhibition of AAPH-induced peroxidation of unilamellar liposomes are sum-
marized in Table 6.1.

In the liposomal system, the oxidation of betanidin resulted in stoichiometric 
amounts of dopachrome, as the oxidation product of the cyclo-DOPA moiety, and the 
chromophore betalamic acid, the yield of which was lower than the parent compound, 
which was explained by molecular degradation (Tesoriere et al. 2009). Then, in the 
heterogeneous water/lipid vesicular system, the betanidin radical generated after 
H-atom abstraction by lipoperoxyl radicals undergoes nucleophilic attack of water to 
the C adjacent to the indolic nitrogen, before being oxidized by a second lipoperoxyl 
radical, with final release of dopachrome and betalamic acid (Fig. 6.3, pathway B).

Betalamic acid, again to an extent not consistent with the amount of the parent 
compound, was found as a product from betanin during liposomal oxidation 
(Tesoriere et al. 2009), indicating that, similarly to betanidin, the intermediate beta-
nin radical generated after reaction of its phenol moiety undergoes solvolytic split-
ting of the aldimine bond (Fig. 6.5). On the basis of spectrophotometric evidence, 
unidentified product(s) from the reaction has/have been considered as derivatives of 
the cyclo-DOPA 5-O-b-d-glucoside radical (CGD·), possibly highly conjugated 
structures of adducts from self-termination reactions (Tesoriere et al. 2009).
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

The investigations reported above, showing that betanidin is a lipoperoxyl radi-
cal-scavenger better than betanin both in solution and lipid bilayers, confirm the 
importance of peculiar structural features conferring antiradical capacity to beta-
lains. A recent systematic study assessed the reducing activity, as Trolox equiva-
lence antioxidant capacity (TEAC) of 15 betalains with increasingly complex 
chemistry, from 1-ethylamine betaxanthin to betanin (Gandia-Herrero et al. 2010). 
The data support the existence of a strong “intrinsic” antiradical activity, possibly 
linked to the electron resonance system supported by both nitrogen atoms, which is 
common to all betalains. The presence of a mono/diphenol moiety in resonance 
with the betalamic acid moiety, plus a second cycle fused in an indoline manner, as 
in betacyanins, implies a significant enhancement of the radical-scavenging capac-
ity (Gandia-Herrero et al. 2010). The formation of betanidin quinone or dopach-
rome from the oxidation of betanidin in methanol or liposomes, respectively 
(Tesoriere et al. 2009), while confirming the importance of the phenol hydroxyls, 
may rule out that the cyclic nitrogen is involved in the antioxidant mechanism of the 
molecule in the model systems considered.

6.4 � Inhibition of Low-Density Lipoprotein Oxidation 
by Betanin

Free radical-induced oxidation of low-density lipoproteins (LDL) proceeds by a 
chain mechanism generating phosphatidylcholine hydroperoxides and choles-
teryl ester hydroperoxides as the major primary products (Esterbauer et al. 1992). 

Fig. 6.5  Time course of CD-hydroperoxides formation (filled symbols) during the AAPH-induced 
soybean PC liposome oxidation in the absence (control) or in the presence of betacyanins and 
consumption of the pigments (open symbols) (Tesoriere et al. 2009)
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These reactions, and the consequent internalization of oxidized LDL (ox-LDL) in 
macrophages, are considered key events in the progression and eventual develop-
ment of atherosclerosis (Steinbrecher et al. 1987; Steinberg et al. 1989; Heinecke 
1998). LDL are endowed with several lipophilic antioxidants, the most abundant 
being a-tocopherol (Esterbauer et  al. 1992); however oxidants from endogenous 
and/or exogenous sources can reduce the defense, which makes the particle prone to 
oxidize, thus becoming an agent of damage. Under these circumstances, dietary 
bioavailable antioxidants that may interact with and/or partition in LDL and be 
involved in LDL protection has continuously been explored.

The oxidation of human LDL by transition metal ions such as iron or copper has 
been a model for generating knowledge of the kinetics of LDL oxidation (Esterbauer 
et al. 1992), and has widely been considered for assessing intrinsic activity of natu-
ral antioxidants. The biological relevance of such a model has been questioned, 
however. In more recent studies, oxidation of LDL in vivo has been suggested to 
depend on the activity of myeloperoxidase (MPO) (Daugherty et al. 1994; Heller 
et al. 2000), a heme-enzyme that utilizes hydrogen peroxide and a variety of co-
substrates to generate reactive enzyme intermediates, namely compound I and com-
pound II (Heinecke 1998; Daugherty et al. 1994; Klebanoff 1980). MPO activity 
also depends on the metabolism of nitric oxide (NO) forming nitrite, the final oxida-
tion product of NO metabolism, a substrate for the enzyme (Burner et  al. 2000; 
Eiserich et al. 1998; van der Vliet et al. 1997; Sampson et al. 1998). Nitrogen diox-
ide radical ( )•

2NO , the one-electron oxidation product of nitrite by MPO compound 
I, has been proposed as the reactive species to start massive oxidation of the LDL 
lipids (Byun et al. 1999; Kostyuk et al. 2003). Both these models have been used to 
assess whether the sensitivity of human LDL to oxidation could be altered by beta-
nin (Tesoriere et al. 2003; Allegra et al. 2007).

The production of lipid hydroperoxides in LDL exposed to oxidative challenge 
does not start before all LDL antioxidants are consumed in the sequence from the 
most active (a-tocopherol) to the least active (b-carotene) (lag phase). After the lag 
period, peroxidation begins to accelerate and formation of CD hydroperoxides can 
be measured (propagation phase), until all lipid is oxidized. Betanin can incorporate 
in human LDL in vivo and in vitro (Tesoriere et al. 2004a, 2003). In ex vivo experi-
ments, betanin-enriched LDL were isolated after spiking human plasma with pure 
betanin, then the resistance of these particles to copper-induced oxidation was mea-
sured in comparison with LDL obtained from the same plasma that did not undergo 
the spiking procedure (Tesoriere et  al. 2003). Betanin-enriched LDL showed a 
significant elongation of the time preceding lipid oxidation, during which betanin 
was totally consumed (Fig. 6.6). Behaving as a lipoperoxyl radical scavenger, beta-
nin affects the chain process of the copper-induced LDL lipid oxidation. In this 
system, vitamin E consumption is unaltered in the presence of betanin, whereas 
consumption of b-carotene is delayed. Betanin starts declining only after vitamin E 
depletion, and is totally consumed before b-carotene. While indicating the higher 
effectiveness of vitamin E in protecting LDL lipids and all LDL antioxidants, these 
findings show that betanin acts as a lipoperoxyl radical-scavenger better than b-car-
otene in the copper-oxidized LDL model.
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

As for the other model, betanin effectively inhibited the production of lipid 
hydroperoxides in human LDL submitted to a MPO/nitrite-induced oxidation 
(Allegra et al. 2007). In this system, the time-course of lipid oxidation follows the 
same phases as the copper-oxidised LDL, followed by the formation of lipid 
hydroperoxides. It was imperative from a number of kinetic measurements that the 
betalain can block the process at various levels, that betanin not only acts as a scav-
enger of the initiator radical nitrogen dioxide, but can also act as a lipoperoxyl radi-
cal scavenger. In addition, unidentified products from the oxidation of betanin by 
MPO/nitrite further inhibit LDL oxidation as effectively as the parent compound 
(Allegra et al. 2007), thus extending the antioxidative protection of LDL beyond the 
time in which betanin is consumed. It should be mentioned that other studies showed 
that betanin is a reducing substrate for the intermediates—compound I/II of the 
peroxidative MPO cycle (Allegra et al. 2005), an action potentially pro-oxidant in 
this LDL model. This however appears to be counteracted by the activity of betanin 
and possibly by its oxidized products through scavenging of NO

2
. Figure 6.7 depicts 

the catalytic cycle of MPO/nitrite and suggests sites of action of betanin.

6.5 � Interactions of Betanin and Betanidin with Vitamin E

In living organisms, antioxidants do not function individually, rather, they function 
cooperatively or even in synergism with each other. Since a-tocopherol is the main 
lipid antioxidant in membranes, exploring interactions between dietary antioxidants 
and a-tocopherol is considered important to envisage eventual effects and possibly 
mechanism of action of these molecules in vivo. For instance, either synergistic or 
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Fig. 6.6  Time course of the consumption of vitamin E (triangle), b-carotene (circle) and betanin 
(square) during the copper-induced oxidation of control (filled symbols) or betanin-enriched (open 
symbols) LDL. LDL oxidation is followed by the formation of CD hydroperoxides at 234 nm 
(Tesoriere et al. 2003)
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additive effects or co-antioxidant action have been reported between polyphenol 
phytochemicals and a-tocopherol (Zou et  al. 2005; Jia et  al. 1998; Pedrielli and 
Skibsted 2002). In soybean PC liposomes, at a 1:1 betacyanin:a-tocopherol ratio, 
either betanin or betanidin cannot extend the inhibition period beyond the sum of 
the individual inhibition periods, providing evidence of merely additive effects 
(Tesoriere et al. 2009). On the other hand, even in a model of copper-oxidized LDL, 
the time-course of vitamin E consumption, either in the absence or in the presence 
of betanin, suggests an independent antioxidant activity of the two molecules 
(Tesoriere et al. 2003). The redox potential of betanin is lower than a-tocopherol 
(0.5 mV) (Buettner 1993), which would allow reduction of the a-tocopheroxyl radi-
cal at the membrane surface (Fukuzawa 2008), provided favorable site-specific 
interactions (Barclay 1993). The absence of cooperative effects may be the expres-
sion of the partition of betanin in either the lipid bilayer or LDL and of its activity 
in scavenging lipoperoxyl radicals.

6.6 � Peroxyl Radical-Scavenging Activity of Vulgaxanthin I

Antioxidative effects of vulgaxanthin I were evaluated in an oxidation model of 
LAME in the presence of AMVN (Tesoriere et  al. 2008). The amount of lipid 
hydroperoxides formed after a 30-min incubation was taken as a reference end-point, 
and the inhibition by vulgaxanthin I was expressed in terms of IC

50
, that is, the amount 

of pigment required for a 50% inhibition. Under these conditions, vulgaxanthin I 
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Fig. 6.7  Proposed mechanisms of antioxidant activity of betanin on myeloperoxidase-induced 
LDL oxidation. a scavenger of NO

2
., b lipoperoxyl radical scavenger, c reductant for compound I 
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6  Lipoperoxyl Radical Scavenging and Antioxidative Effects…

showed an IC
50

 of 0.75 mM, of the same order as betanin and a-tocopherol taken as 
a comparison, 1 mM and 0.56 mM, respectively.

6.7 � Conclusions

The unanimously recognized dual and complex role of radical species and oxidants 
in the cell functioning and in pathology points to the necessity to get better knowl-
edge of what the so-called antioxidant compounds may really do, since scavenging 
of reactive species and interactions with cell constituents involved in maintaining 
the redox homeostasis may significantly interfere with cell signal transduction. 
These new concepts have recently led to consider the role of antioxidant vitamins 
even as modulators of redox-regulated cell signaling, and must be used to investi-
gate and interpret effects, including eventual adverse effects, of phytochemicals 
with redox properties at a molecular level (Leonarduzzi et al. 2010).

Phenolic hydroxyls have been repeatedly proven as efficient reducers of pro-
oxidant/oxygen radicals under a wide range of conditions (Valgimigli et al. 1995; 
Barclay et al. 1999). In accordance, the higher the number of hydroxyl groups, the 
higher the antioxidant activity of polyphenol phytochemicals such as flavonoids, 
has been shown (Rice-Evans et  al. 1996). The betacyanin pigments, betanin and 
betanidin, exhibit an antioxidant effectiveness linked to the presence of the glucose-
substituted phenol moiety of betanin and to the ortho-diphenol moiety of its agly-
cone, the latter being a much more efficient reductant in both organic solvent and 
liposomal lipid bilayers. These findings may be of an even greater interest since the 
calculated constants characterizing the activity in solution and in liposomes have 
appeared of the same order as those of a-tocopherol (Tesoriere et  al. 2009), the 
major lipid antioxidant in our body (Niki 1996). More importantly, betanin also 
shows antioxidant activity in a biologically relevant LDL oxidation model (Allegra 
et al. 2007).

Information on chemistry, reactivity in as many as possible different systems, 
particularly biological environments, and interactions with physiological antioxi-
dants, are first steps to characterize dietary antioxidants. Activity in cell cultures and 
investigation of cell redox changes and specific signaling may further enhance our 
knowledge and allow hypotheses on potential health effects. However none of these 
studies make sense until it is proven that the compound of interest can really reach 
body sites and the observed in vitro actions may be accomplished in vivo. Studies 
in this direction have shown that betanidin, being a highly unstable molecule 
(Gandia-Herrero et al. 2007; Stintzing and Carle 2004), was not found after a simu-
lated digestion of betanin-containing foods, including beet root, though the agly-
cone could have been generated by pancreatic amylase (Tesoriere et al. 2008). These 
observations make its eventual systemic activity in vivo hard to determine. Beneficial 
effects could be considered at the gastrointestinal level, however (Halliwell et al. 
2005). Betanin, instead, has been shown to be bioavailable in humans, after inges-
tion of either cactus pear fruits or red beet (Kanner et al. 2001; Tesoriere et al. 2004a, 
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2005; Frank et al. 2005), reaching plasma concentrations sufficient to promote its 
incorporation in LDL and red blood cells (Tesoriere et al. 2004a, 2005). It is in light 
of these findings that the chemistry of the peroxyl radical-scavenging activity of 
betanin, and relevant parameters, deserve to be considered. It is suggested that beta-
nin, and foods rich in betanin, such as beetroot and the fruits of the Opuntia cactus, 
may be of nutraceutical interest and contribute to maintain the natural redox homeo-
stasis and possibly prevent disease states. With focus on the latter point, a small 
clinical trial carried out with eight healthy volunteers who consumed cactus pear 
fruit pulp for 15 days demonstrated a remarkable positive effect on the body’s redox 
status that was reasonably attributed to betalains, and not to the fruit vitamin C 
(Tesoriere et al. 2004b). As a final note, current studies in the authors’ laboratory 
show that betanin is transported through human CaCo-2 cell monolayers with an 
apparent permeability coefficient that rules out paracellular transport and suggests 
that dietary betanin can be absorbed quite effectively during its intestinal transit 
(data to be published). While these data appear to confirm the observations in 
humans (Kanner et al. 2001; Tesoriere et al. 2004a, 2005; Frank et al. 2005), the 
actual amounts recovered in vivo, quite lower than suggested by in vitro experi-
ments, would indicate metabolism and/or bacterial degradation of the molecule in 
gut, which should be investigated.
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