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1. Introduction

Natural systems are characterized by two factors: (i) non-linear
interactions among their parts and (ii) external perturbations, both
deterministic and random, coming from the environment (Spag-
nolo et al., 2004; Huppert et al., 2005; Ebeling and Spagnolo, 2005;
Provata et al., 2008; Spagnolo and Dubkov, 2008; Valenti et al.,
2008). It is worth noting that natural systems, because of these
characteristics, are complex systems (Grenfell et al., 1998;
Zimmer, 1999; Bjørnstad and Grenfell, 2001; Spagnolo et al.,
2002, 2003, 2005; La Barbera and Spagnolo, 2002; Spagnolo and La
Barbera, 2002; Caruso et al., 2005; Chichigina et al., 2005;
Fiasconaro et al., 2006; Valenti et al., 2006; Chichigina, 2008).
Therefore, the study of a marine ecosystem has to be performed by
considering the perturbations, not only deterministic but also
random, due to the fluctuations of the environmental variables.
This implies the necessity of including in the model a term which
describes the continuous interaction between the ecosystem
and environment. In particular, physical variables, such as

temperature, salinity and velocity field, are affected by random
perturbations and can be therefore treated as noise sources. This
causes the phytoplankton behaviour to be subject to a stochastic
dynamics, and allows to expect that a stochastic approach should
reproduce the distributions of phytoplankton biomass better than
deterministic models. On this basis, noise effects have to be
included to better analyze the dynamics of a marine system such as
that studied in this work.

The growth of phytoplankton is limited by the concentration of
nutrients R and intensity of light I (Klausmeier and Litchman, 2001;
Klausmeier et al., 2007). In particular, the survivance of
phytoplankton is strictly connected with the presence of suffi-
ciently high nutrient concentration. It is worth stressing that
nutrients, which are in solution, diffuse from the bottom (seabed)
towards the top (water surface). Nutrient distributions along the
water column are therefore characterized by an increasing trend
from the sea surface to the benthic layer. As a consequence, the
positive gradient of nutrient concentration causes the maxima of
chlorophyll, which is contained in the phytoplankton cells, to be
localized in deep subsurface layers. This condition constitutes one
of the most striking feature of the nutrient poor waters in ocean
ecosystems and freshwater lakes (Anderson, 1969; Cullen, 1982;
Abbott et al., 1984; Tittel et al., 2003). Conversely, the light
penetrates through the surface of the water and has an
exponentially decreasing trend along the water column. This
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characteristic makes the deep layers unfavourable for the
photosynthesis, determining, as a consequence, adverse life
conditions for phytoplankton. In particular, light is a crucial
parameter for the localization of the deep chlorophyll maximum
(DCM), as revealed by the significant correlation found between
the depth of DCM and light intensity over the Mediterranean basin
in summer (Brunet et al., unpublished data). The dynamics,
competition and structuring of phytoplankton populations have
been investigated in a series of theoretical studies based on model
systems (Radach and Maier-Reimer, 1975; Varela et al., 1992;
Huisman and Weissing, 1995; Klausmeier and Litchman, 2001;
Diehl, 2002; Hodges and Rudnick, 2004; Beckmann and Hense,
2007; Klausmeier et al., 2007; Mei et al., 2009; Bougaran et al.,
2010). In a few recent investigations it was observed that in the
presence of an upper mixed layer either surface or deep maxima
can be observed indifferently under almost the same conditions
(Venrick, 1993; Holm-Hansen and Hewes, 2004; Ryabov et al.,
2010). In view of analyzing an ecological system, as a preliminary
step it is necessary to define the correct values of the parameters
and the role that they play on the dynamics of the populations,
specifically when the coexistence of different species in the same
community is considered (Norberg, 2004). The responses of the
species to environmental solicitations strongly depend on the
biological and physical parameters. Among these, a relevant role is
played by the phytoplankton velocity which is strictly connected
with the microorganism size, one of the main functional traits for
phytoplankton diversity. Other parameters that influence the
balance of a marine ecosystem are, for example, growth rates and
nutrient uptake (Fogg, 1991; Prézelin et al., 1991). In this paper we
deal with data obtained in a hydrologically stable area of the
Mediterranean Sea, where the environmental light and nutrients,
specifically phosphorus, contribute to determine life conditions.
The Mediterranean basin is characterized by oligotrophic condi-
tions and it has been suggested that there is a decreasing trend over
time in chlorophyll concentration. This has been associated with
increased nutrient limitation resulting from reduced vertical
mixing due to a more stable stratification of the basin, in line
with the general warming of the Mediterranean (Barale et al.,
2008). Here we consider the Strait of Sicily, which is known to
govern the exchanges between the eastern and western basins and
is characterized by active mesoscale dynamics (Lermusiaux and
Robinson, 2001), strongly influencing the ecology of phytoplank-
ton communities. Moreover, the Strait of Sicily is a biologically rich
area of the Mediterranean Sea with a key role in terms of fisheries
(Lafuente et al., 2002; Cuttitta et al., 2003). The anchovy growth
(along with phytoplankton biomass) in the Sicilian Channel
resulted to be mainly explained by changes in the chlorophyll
concentration, used as a phytoplankton biomass indicator
(Basilone et al., 2004). Our study is performed using a stochastic
model obtained by modifying a deterministic reaction-diffusion-
taxis model. Specifically, the analysis focuses on the spatio-
temporal dynamics of the phytoplankton biomass, and provides
the time evolution of biomass concentration along the water
column. Finally, the results are compared with experimental data
collected in two different sites of the Strait of Sicily.

2. Materials and methods

2.1. Environmental data

The experimental data were collected in the period 12th to 24th
August 2006 in the Sicily Channel area (Fig. 1) during the
MedSudMed-06 Oceanographic Survey onboard the R/V Urania.
Hydrological data were obtained using a SBE911 plus CTD probe
(Sea-Bird Inc.); chlorophyll a fluorescence data (chl a, mg/l) were
contemporary acquired by means of the Chelsea Aqua 3 sensor. In

the Libyan area the CTD stations were located on a grid of 12 � 12
nautical miles. Moreover, CTD data have been collected along a
transect between the Sicilian and the Libyan coasts. In the present
work, two stations out of the whole data set were considered. The
selected stations were located on the south of Malta (site L1105)
and on the Libyan continental shelf (site L1129b). The collected
data were quality-checked and processed following the MODB
instructions (Brankart, 1994) using Seasoft software. The post-
processing procedure generated a text file for each station where
the values of the oceanographic parameters were estimated with a
1 m step. Hydrological conditions remained constant for the entire
sampling period and were representative of the oligotrophic
Mediterranean Sea in summer. Nitrate, nitrite, silicate and
phosphate concentrations were not determined.

2.2. Phytoplanktonic data

Depending on size the phytoplankton species can be divide into
two main fraction:

� <3 mm picophytoplankton, formed by groups, Prochlorococcus,
Synechococcus and picoeukaryotes (Olson et al., 1993; Brunet et
al., 2008). This size of phytoplankton accounts for about 80% of
the total chl a on average (Brunet et al., 2006), ranging from 40%
to 90% (69% in the DCM) (Brunet et al., 2007).
� >3 mm nano- and micro-phytoplankton, characterized by a

lower correlation with nutrients and salinity respect to
picophytoplankton. This is connected with the fact that the
contribution of picophytoplankton in the DCM is higher than in
the surface layer (Brunet et al., 2006). This larger size fraction of
phytoplankton amounts to 20% of the total chl a on average and is
uniformly distributed along the water column.

The high pigment diversity of the smaller phytoplankton in the DCM
and its elevated contribution to the total chl a indicated a strong
degree of adaptation to the quantity and quality of light available
(Dimier et al., 2007, 2009b; Brunet et al., 2008). This is not true for the
larger phytoplankton, which is represented mainly by diatoms or

Fig. 1. Locations of the CTD stations where the experimental data were collected.
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Haptophytes. Picoeukaryotes, which belong to the smaller size class,
present peculiar eco-physiological properties (Raven et al., 2005;
Dimier et al., 2007; Worden and Not, 2008), such as low sinking, high
growth rate and low nutrient uptake. Their small size leads to a low
package effect, which contributes to the light-saturated rate of
photosynthesis that can be achieved at relatively low irradiances
(Raven, 1998; Brunet et al., 2003; Raven et al., 2005; Finkel and Irwin,
2005). Due to their peculiarities and relevant role in ecosystem
functioning, they constitute a key-group to be considered within a
model of population dynamics. In Sicily Channel (Casotti et al., 2003;
Brunet et al., 2006, 2007), picophytoplankton is numerically
dominated by the Prochlorococcus fraction. In this area the number
of Prochlorococcus cells is constant in the first 20 m, and is
characterized in the DCM by an average value of 5.2 � 104 cell ml�1.
Average picoeukaryote concentration in the DCM is
0.6 � 0.4 � 103 cell ml�1, and the mean value of chl a per cell ranges
between 10 and 660 fg chl a cell �1 along the water column, with a
significant exponential increase with depth (see Fig. 2) (Brunet et al.,
2007). The concentration of chl a (fg cell�1) per cell in picoeukaryotes
was highly variable among different water masses, with significantly
higher values in the DCM respect to the surface, as a result of
photoacclimation to decreased light irradiances (Brunet et al., 2003,
2008; Dimier et al., 2007, 2009b).

3. Experimental results

Data obtained from the cruises in two different sites of the Strait
of Sicily both for temperature and chl a concentration are shown in
Fig. 3. In site L1129b, the behaviour of the temperature along the
water column indicates the presence of a mixed layer (from the
surface to 28 m depth) characterized by a high value of
temperature. Below the thermocline (28 m depth) the temperature

decreases up to 80 m, becoming uniform below this depth
(Fig. 3a). The site L1105 shows a mixed layer over the first
24 m of depth, and a sharp decrease of temperature from 24 to
75 m (Fig. 3c). Experimental data for chl a concentration show a
non-monotonic behaviour, as a function of the depth, character-
ized by the presence of DCM in both sites (see Fig. 3b and d).

Fig. 2. Mean vertical profile of chl a per picoeukaryote cell (fg cell�1). Error bars are

standard deviation. Equation and r2 for the fit are reported on the plots.

source: Courtesy of Brunet et al. (2007).
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Fig. 3. Profiles of temperature (panels a and c) and chl a concentration (panels b and d) measured in sites L1129b and L1105. The black lines have been obtained by connecting

the experimental points corresponding to samples distanced of 1 m along the water column. The total number of samples measured in the two sites is n = 176 for L1129b and

n = 563 for L1105.
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Specifically, fluorescence profiles show a similar behaviour in the
two sites, with chl a concentration ranging between 0.010 and
0.17 mg chl a l�1. Differences between the two sites are observed in
the depth, shape and width of the DCM.

4. The model

In this study we analyze the spatio-temporal dynamics of a
picophytoplankton community, limited by nutrient and light in a
vertical poorly mixed water column. The mechanism, responsible
for the phytoplankton dynamics, is schematically shown in Fig. 4.
The mathematical tool used to simulate the phytoplankton
dynamics is an advection-reaction-diffusion model. In particular,
we investigate the distribution of the picophytoplankton along the
water column, with light intensity decreasing and nutrient
concentration increasing with depth. Analysis and numerical
elaborations are divided in two phases:

� Phase 1. By using a model based on two differential equations, the
distribution of picophytoplankton biomass b is obtained along
the poorly mixed water column as a function of the time and
depth, and simultaneously the distribution of nutrient concen-
tration R, which limits the growth of phytoplankton, is
calculated. The results obtained are compared with the
experimental data collected in the two different sites of the
Strait of Sicily.
� Phase 2. In order to match better the results for b and R to the

experimental data, the random fluctuations of the environmental
variables are taken into account. In particular, a stochastic model
is obtained from the deterministic one by inserting into the
equations terms of multiplicative Gaussian noise.

4.1. The deterministic model

Here we introduce the model consisting of a system of
differential equations, with partial derivatives in time and space
(depth). The model allows to obtain the dynamics of the

phytoplankton biomass b(z, t) and nutrient concentration R(z, t).
The light intensity I(z, t) is given by a function varying, along the
water column, with the depth and biomass concentration. The
behaviour of the phytoplankton biomass, along the water column,
is the results of three processes: growth, loss, and movement. The
phytoplankton growth rate depends on I and R (Klausmeier and
Litchman, 2001; Klausmeier et al., 2007; Mei et al., 2009; Bougaran
et al., 2010; Ryabov et al., 2010). The limitation in phytoplankton
growth is described by the Monod kinetics (Turpin, 1988). The
gross phytoplankton growth rate per capita is given by min {fI(I),
fR(R)}, where fI(I) and fR(R) are obtained by the Michaelis–Menten
formulas

f IðIÞ ¼ rI

I þ KI
; (1)

f RðRÞ ¼ rR

R þ KR
: (2)

In Eqs. (1) and (2), r is the maximum growth rate, while KI and KR

are the half-saturation constants for light intensity and nutrient
concentration, respectively. Varying KR and KI allows to model, for
instance, a species which is better adapted to the light (smaller
values of KI) or nutrient (smaller values of KR). More specifically, we
consider a species with small KI and large KR that corresponds to
good life conditions at large depth. These constants depend on the
metabolism of the specific microorganism considered.

The biomass loss, connected with respiration, death, and
grazing, occurs at a rate m (Klausmeier and Litchman, 2001;
Huisman et al., 2006; Ryabov et al., 2010). The gross per capita
growth rate is defined as

gðz; tÞ ¼ minð f RðRðz; tÞÞ; f IðIðz; tÞÞÞ: (3)

Turbulence, responsible for passive movement of the phytoplank-
ton, is modelled by eddy diffusion. Specifically, we describe
turbulence assuming that the vertical diffusion coefficient is
uniform with the depth and characterized by a low value
(Db = DR = 0.5). This choice is motivated by the fact that in sites
L1129b and L1105 the phytoplankton peaks, located at 87 m and
111 m, respectively, are quite far from the thermocline (see Fig. 3).

Fig. 4. Scheme of the mechanism responsible for the phytoplankton dynamics (modified from original figure by A. Ryabov). (a) Image of Micromonas NOUM17. (Courtesy of

Augustin Engman, Rory Welsh, and Alexandra Worden.)
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Therefore, phytoplankton should go up (or down) if the biological
conditions are more suitable for growth above (below) than below
(above). Finally, no migration should occur if the biomass
concentrations are the same at different depths. These assumptions
about growth, loss, and movement, allow to obtain the following
differential equation for the dynamics of biomass concentration b

(Klausmeier and Litchman, 2001; Huisman et al., 2006):

@bðz; tÞ
@t

¼ gðz; tÞbðz; tÞ � mbðz; tÞ þ Db
@2

bðz; tÞ
@z2

� v
@bðz; tÞ

@z
: (4)

The positive phytoplankton velocity v, due to active movement, is
oriented downward (sinking), in the direction of positive z.
Phytoplankton does not enter or leave the water column. This is
set by using no-flux boundary conditions at z = 0 and z = zb:

Db
@b

@z
� vb

� �����
z¼0

¼ Db
@b

@z
� vb

� �����
z¼zb

¼ 0: (5)

Eddy diffusion is responsible for mixing of the nutrient
concentration along the water column, with diffusion coefficient
DR. The nutrient consumed by the phytoplankton is also obtained
from recycled dead phytoplanktonic microorganisms. The
dynamics of nutrient concentration can be therefore modelled
as follows:

@Rðz; tÞ
@t

¼ � bðz; tÞ
Y

gðz; tÞ þ DR
@2

Rðz; tÞ
@z2

þ em bðz; tÞ
Y

; (6)

Here Y is the phytoplankton produced biomass per unit of
consumed nutrient, and e is the nutrient recycle coefficient. Since
the nutrient is not supplied by the sea surface but comes from the
seabed, its concentration is set to the constant value Rin in the
sediment and, as a consequence, to the value R(zb) in the bottom of
the water column. In fact the nutrient diffuses across the
sediment–water interface with a rate proportional to the
concentration difference between the solid phase (seabed) and
the deepest water layer (bottom of the water column). Accordingly,
the boundary conditions are given by:

@R

@z

����
z¼0

¼ 0;
@R

@z

����
z¼zb

¼ hðRin � RðzbÞÞ; (7)

where h is the permeability of the interface. Finally, taking into
account Lambert–Beer’s law (Shigesada and Okubo, 1981; Kirk,
1994), the light intensity is characterized by an exponential
decrease modelled as follows:

IðzÞ ¼ Iinexp �
Z z

0
abðZÞ þ abg

� �
dZ

� �
; (8)

where a and abg are phytoplankton biomass and background
attenuation coefficients, respectively. Eqs. (4)–(8) form the
biophysical model used in our study.

4.2. Results of the deterministic model

The time evolution of the system is studied by analyzing the
spatio-temporal dynamics of biomass and nutrient concentrations.
In particular, by using a numerical method, implemented by a
program in Cþþ language and based on an explicit finite difference
scheme, Eqs. (4)–(8) are solved. The increment of the spatial
variable is set to 0.5 m. In view of reproducing the spatial
distributions observed in the real data for the phytoplankton
biomass (see Fig. 3), we choose the values of the environmental
and biological parameters to satisfy the monostability condition
corresponding to the presence of a deep chlorophyll maximum
(Klausmeier and Litchman, 2001; Huisman et al., 2006; Ryabov et
al., 2010). The numerical values assigned to the parameters are
shown in Table 1. Specifically, the values of the biological
parameters r, KI, KR, v, have been chosen to reproduce the
behaviour of picoeukaryotes. We note that, in systems character-
ized by a constant value of the diffusion coefficient, the stationary
state does not depend on the initial conditions, according to
previous studies (Klausmeier and Litchman, 2001; Ryabov et al.,
2010). In order to obtain the steady spatial distribution, we
integrated numerically our equations over a time interval long
enough to observe the stationary solution. As initial conditions we
consider that the phytoplankton biomass is concentrated in the
layer where the maximum of the experimental chlorophyll
distribution is observed. On the other side the nutrient concentra-
tion is approximately constant from the water surface to the DCM,
and increases linearly below this point up to the seabed.

Preliminary analysis (data not shown) revealed that the
stationary solution is characterized by DCMs which are shallower
as the nutrient supply increases, and deeper for enhanced light
radiation. In general, large values of Iin (incident light intensity at
the water surface) lead to stationary conditions characterized by
DCM, while large values of Rin (nutrient concentration in the
sediment) determine an upper chlorophyll maximum (UCM).
Finally, for intermediate values of Iin and Rin the chlorophyll
maximum can be localized close to the surface or at different
depths, depending on the values of the other parameters (Ryabov
et al., 2010).

In our study the values of the light intensity resulted to be quite
high in both sites, since sampling occurred during summer (August
2006). In this period the light intensity at the water surface is larger
than 1300 mmol photons m�2 s�1. Moreover the sinking velocity is
set to the value typical for picophytoplankton, v ¼ 0:1 m day�1

Table 1
Parameters used in the model. The values of the biological and environmental parameters are those typical of picophytoplankton and summer period in Mediterranean Sea,

respectively.

Symbol Interpretation Units Site L1129b Site L1105

Iin Incident light intensity mmol photon m�2 s�1 1404.44 1383.19

abg Background turbidity m�1 0.045 0.045

a Absorption coefficient of phytoplankton m2 cell�1 6 � 10�10 6 � 10�10

zb Depth of the water column m 186 575

Db = DR Vertical turbulent diffusivity cm2/s 0.5 0.5

r Maximum specific growth rate h�1 0.08 0.08

KI Half-saturation constant of light-limited growth mmol photon m�2 s�1 20 20

KR Half-saturation constant of nutrient-limited growth mmol nutrient m�3 0.0425 0.0425

m Specific loss rate h�1 0.01 0.01

1/Y Nutrient content of phytoplankton mmol nutrient cell�1 1 � 10�9 1 � 10�9

e Nutrient recycling coefficient 0.5 0.5

v Buoyancy velocity m h�1 �0.0042 �0.0042

Rin Nutrient concentration at zb mmol nutrient m�3 26.0 36.0

h Sediment–water column permeability m�1 0.01 0.01

G. Denaro et al. / Ecological Complexity 13 (2013) 21–34 25
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(Huisman et al., 2006). The diffusion coefficient is fixed at the value
Db = 0.5 cm2/s, which corresponds to the condition of poorly mixed
waters. By solving Eqs. (4)–(8) we obtain the biomass concentra-
tion expressed in cells/m3 along the water column. Depths of the
water column used in the model were set according to the
measured depths in the corresponding marine sites. Moreover the
light intensities, Iin, are fixed using data available on the NASA web
site.1 Finally, nutrient concentrations at the seabed were set at
values such as to obtain, for each site, a peak of biomass
concentration at the same position of the peak experimentally
observed. All the other parameters are the same in both sites. The
growth rate obtained from Eq. (3) agrees with the values measured
by other authors (Dimier et al., 2009a).

We note that our numerical results were obtained using a
maximum simulation time tmax = 105 h. Simulations (here not
reported) performed within the deterministic approach show that
the stationary regime is reached at t � 3 �104 h. This indicates
that, to reach the steady state, it is sufficient to solve the equations
of our model with a maximum time tmax = 4 �104 h. By this way,
we get the stationary profiles, both for biomass concentration and
light intensity, shown in Fig. 5. Here we can note the presence of a
biomass peak as found in the experimental data, and the typical
exponential behaviour of the light intensity. To compare the
theoretical results with the experimental data, we exploit the
curve of Fig. 2 to convert the cell concentrations, obtained from
the model and expressed in cell/m3, into chl a concentrations
expressed in mg/l. We recall that about 43% of the total quantity of
chl a (Huisman et al., 2006; Brunet et al., 2006) is due to nano- and
micro-phytoplankton (20% of the total chl a on average), and
Synechococcus (23% of the total chl a on average), quite uniformly
distributed along the water column. Since our model accounts for
the dynamics of picoeukaryotes, to compare the numerical results

with the experimental data, we consider the 43% of the total
biomass and divide it by depth, obtaining for each site the value
Dbchl a, which represents a constant concentration due to other
phytoplankton species present in the water column. Finally along
the water column we add the theoretical concentration with
Dbchl a and obtain, for the distributions of chl a concentration, the
stationary theoretical profiles consistent with those of the
experimental data. The results are shown in Fig. 6. Here we
can observe that in both sites the deep chlorophyll maxima
obtained from the model are located at the same depth of those
observed experimentally. However, the shape of the theoretical
chl a distributions is quite different from the experimental
profiles. Finally, we note that in site L1105 the magnitude of the
theoretical DCM is significantly different from that observed in
real data.

4.3. The stochastic model

In the previous section we used a deterministic model to fit the
experimental distributions of chl a concentration. The results
obtained reproduce partially the characteristics of the experimen-
tal profiles. In order to get a good agreement between real data and
theoretical results, we recall that the sea is a complex system. This
implies, as discussed in Section 1, the presence of non-linear
interactions among its parts (Spagnolo et al., 2004; Huppert et al.,
2005; Ebeling and Spagnolo, 2005; Provata et al., 2008; Spagnolo
and Dubkov, 2008; Valenti et al., 2008) and a continuous
interaction between the ecosystem and environment. In particular,
the system dynamics is affected not only by deterministic forces
but also random perturbations coming from the environment. In
this context environmental variables, due to their random
fluctuations, can act as noise sources, causing phytoplankton to
be subject to a stochastic dynamics. Therefore, in order to perform
an analysis that takes account for real conditions of the ecosystem,
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Fig. 5. Stationary distributions of the biomass concentration and light intensity in sites L1129b (panels a and b) and L1105 (panels c and d) as a function of depth.

1 http://eosweb.larc.nasa.gov/sse/RETScreen/.
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L1129b and (b) L1105. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Average chl a concentration calculated (red line) for different values of sb by the stochastic model (Case 1, see Eqs. (5)–(9)) as a function of depth. Results are compared

with chl a distributions measured (green line) in site L1129b. The theoretical values were obtained averaging over 1000 numerical realizations. The values of the parameters

are those shown in Table 1. The noise intensities are: (a) sb = 0 (deterministic case), (b) sb = 0.10, (c) sb = 0.20, (d) sb = 0.22, (e) sb = 0.25 and (f) sb = 0.30. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)
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it is necessary to modify our model, including the noise effects. In
the following we analyze two different situations.

Case 1. The environmental noise affects only the biomass concen-
tration. Therefore, Eqs. (5)–(8) are maintained unaltered, while Eq.
(4) becomes

@b

@t
¼ gb � mb þ Db

@2
b

@z2
� v

@b

@z
þ b jbðz; tÞ (9)

Case 2. The environmental noise affects only the nutrient concen-
tration. In this case, Eqs. (4), (5), (7), (8) are maintained unaltered,
while Eq. (6) is replaced by

@R

@t
¼ ½me � g� b

Y
þ DR

@2
R

@z2
þ R jRðz; tÞ: (10)

In Eqs. (9) and (10), jb(z, t) and jR(z, t) are statically independent
white Gaussian noises with the usual properties hjb(z, t)i = 0, hjR(z,
t)i = 0, hjb(z, t)jb(z0, t0)i = sbd(z � z0)d(t � t0), hjR(z, t)jR(z0,
t0)i = sRd(z � z0)d(t � t0), where sb and sR are the noise intensities.

We note that the two noise sources are spatially uncorrelated that
is at the generic point z no effects is present due to random
fluctuations occurring in z0 6¼ z.

4.4. Results of the stochastic model

In this paragraph, we solve numerically, within the Ito scheme,
the equations of the stochastic model for different values of the
noise intensities, obtaining the distributions of the picophyto-
plankton concentration as an average over 1000 realizations. We
recall that the ecosystem is characterized by non-linear interac-
tions among its parts. Because of this feature the response of the
system to external solicitations is also non-linear. Therefore, one
cannot expect that the presence of a symmetric noise with zero
mean, i.e. Gaussian noise used in the model, produces in average
the same effect as a deterministic dynamics (Giuffrida et al., 2009).
On the other side, the use of a random function, i.e. noise source, to
simulate the spatio-temporal behaviour of the system, makes the
single realization unpredictable and unique, and therefore non-
representative of the real dynamics. As a consequence, one
possible choice to describe correctly the time evolution of the
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Fig. 8. Average chl a concentration calculated (red line) for different values of sb by the stochastic model (Case 1, see Eqs. (5)–(9)) as a function of depth. Results are compared

with chl a distributions measured (green line) in site L1105. The theoretical values were obtained averaging over 1000 numerical realizations. The values of the parameters are

those shown in Table 1. The noise intensities are: (a) sb = 0 (deterministic case), (b) sb = 0.05, (c) sb = 0.10, (d) sb = 0.15, (e) sb = 0.20 and (f) sb = 0.30. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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system is to calculate the average of several realizations. This
procedure, indeed, allows to take into account different ‘‘trajecto-
ries’’ obtained by the integration of the stochastic equations,
without focusing on a specific realization (Spagnolo et al., 2004).
According to the discussion of Section 4.2, we calculated the
solutions for a maximum simulation time tmax = 4 �104 h. In Figs. 7
and 8 we show the results for Case 1. Here we note that, in both
sites, for higher noise intensities the peaks of the two average chl a

distributions show: (i) a decrease of their magnitude and (ii) a
small displacement along the water column. For suitable values of
the noise intensity the peaks of the average chl a distributions
obtained from the model match very well the experimental data.
We note also that the two DCMs are located at 90 m (site L1129b)
and 106 m (site L1105) of depth (in Figs. 7d and 8d compare
theoretical (red line) and experimental (green line) profiles). A
quantitative comparison of each theoretical chl a distribution (red
line) with the corresponding experimental one (green line) was
carried out by performing x2 goodness-of-fit test. The results are
shown in Table 2, where x̃2 indicates the reduced chi-square.
Results of the x2 test show that the smallest difference between
theoretical and experimental chl a distributions is obtained for
sb = 0.22 in site L1129b and sb = 0.15 in site L1105. We also note
that the depths of the DCMs are almost the same as in the
deterministic case.

In order to better analyze this aspect, we study for both sites the
behaviour of the magnitude, depth, and width of the DCM as a
function of sb. The results, shown in Fig. 9, indicate that the depth
of the DCM is almost constant for sb � 0.4, increasing for higher
values of the noise intensity (see panels b and e of Fig. 9).
Conversely, the width of DCM is characterized by a non-monotonic
behaviour for increasing noise intensities. In particular, we note
that the width of the DCM exhibits a maximum in both sites (for
sb � 0.4 in site L1129b and sb � 0.3 in site L1105). For higher noise
intensities the width tends to zero for site L1129b, while a
minimum is present for site L1105 at sb � 0.5. However, for
sb > 0.4, the values of the DCM width are less significant, since the
chl a concentration along the water column and in particular in the
DCM decrease strongly, as can be checked in panels a and d. In

particular, random fluctuations cause the reduction of biomass
concentration and its displacement along the water column,
determining the extinction of the picophytoplankton in the
presence of higher intensities of noise. In this condition a clear
determination of the DCM becomes more difficult. As a conse-
quence, the values of depth and width for the DCM are less reliable.
This analysis shows that the stationary conditions of the system
depends strongly on the environmental fluctuations, which play a
critical role in determining the best life conditions for the
picophytoplankton species.

We complete the analysis of the stochastic dynamics, consid-
ering the noise source which affects directly the nutrient
concentration (Case 2). By numerically solving the corresponding
equations of motion (see Eqs. (4), (5), (7), (8), (10)) and averaging
over 1000 realizations, we obtain the average chl a distributions

Table 2
Results of x2, reduced chi-square ( x̃2) goodness-of-fit test for site L1129b (top

panel) and site L1105 (bottom panel) for different values of sb (stochastic

dynamics—Case 1). The number of samples along the water column is n = 176 for

site L1129b and n = 563 for site L1105.

Site L1129b

Rin sb x2 x̃2

26 0.00 4.43 0.0253

26 0.10 3.79 0.0216

26 0.20 3.45 0.0197

26 0.22 3.44 0.0196

26 0.25 3.46 0.0198

26 0.30 3.60 0.0206

Site L1105

Rin sb x2 x̃2

36 0.00 22.87 0.0407

36 0.05 22.72 0.0404

36 0.10 22.55 0.0401

36 0.15 22.50 0.0400

36 0.20 22.95 0.0408

36 0.30 27.14 0.0483

Fig. 9. Magnitude, depth, and width of the DCM as a function of sb obtained from the model for site L1129b (panels a–c) and site L1105 (panels d–f).
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shown in Figs. 10 and 11 . The results show that also for low noise
intensities (sR between 0.001 and 0.005), a decrease and a deeper
localization of the DCMs are present. The shape of the chl a peaks
exhibits, for both sites, a better agreement with the corresponding
experimental DCMs respect to the deterministic case. In particular,
for site L1129b the best value of the x2 test is obtained for
sR = 0.0020, while for site L1105 the best fitting results for
sR = 0.0015 (see Table 3). We note that in site L1129b the best
agreement between experimental and numerical distributions is
obtained, both in Cases 1 and 2, for values of the noise intensity, sb

and sR, higher than those of site L1105. This can be explained by
the fact that in site L1129b the DCM is localized at a depth
shallower than in site L1105 (88 m vs. 111 m), causing the
environmental variables to be subject to more intense random
fluctuations due to the closer sea surface. As a consequence, the chl

a peak in site L1129b (88 m) is more strongly affected by the
environmental noise than in site L1105 (111 m). To better
understand the dependence of the biomass concentration on the
random fluctuations of the nutrient, according to the procedure
followed for Case 1, we study for both sites the behaviour of the
depth, width, and magnitude of the DCM as a function of sR. The
results, shown in Fig. 12, indicate that the depth of the DCM
slightly increases in both sites as a function of the noise intensity
(see panels b and e of Fig. 12). We note also that a decrease of the

chl a concentration is observed in the DCMs of the two sites. This
decrease is more rapid in site L1105 (panel d), where a chl a

concentration 	0.025 is reached for sR 	 0.01. Analogously we
observe an increase, faster in site L1105, of the width of the DCM.
The spread of DCM and reduction of its magnitude are strictly
connected with each other. In fact, the decrease of chl a

concentration determines a flattening of the DCM with a
consequent increase of its width. In conclusion the results shown
in Fig. 12 indicate that the phytoplankton biomass tends to
disappear for sR 	 0.01, a value lower than those used in Case 1,
where no extinction occurs up to sb 	 0.7 (see panels a and d of
Fig. 9). This indicates that the stability of the nutrient
concentration is a critical factor in the dynamics of the ecosystem.
Indeed, random fluctuations of the nutrient concentration can
produce dramatic effects such as the collapse of phytoplankton
biomass considered in our model.

The previous analysis indicates that our model is able to
reproduce the phytoplankton distributions observed in real data,
without the model taking into account explicitly the environmen-
tal variables such as salinity and temperature. However, we
observe that, in Case 2, the spatio-temporal dynamics of nutrients
has been modelled by introducing noise sources which can be
interpreted as the effect of random fluctuations of environmental
variables, among which salinity and temperature.
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Fig. 10. Average chl a concentration calculated (red line) for different values of sR by the stochastic model (Case 2, see Eqs. (4), (5), (7), (8), (10)) as a function of depth. Results

are compared with chl a distributions measured (green line) in site L1129b. The theoretical values were obtained averaging over 1000 numerical realizations. The values of the

parameters are those shown in Table 1. The noise intensities are: (a) sR = 0 (deterministic case), (b) sR = 0.0010, (c) sR = 0.0015, (d) sR = 0.0020, (e) sR = 0.0025 and (f)

sR = 0.0050. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Average chl a concentration calculated (red line) for different values of sR by the stochastic model (Case 2, see Eqs. (4), (5), (7), (8), (10)) as a function of depth. Results

are compared with chl a distributions measured (green line) in site L1105. The theoretical values were obtained averaging over 1000 numerical realizations. The values of the

parameters are those shown in Table 1. The noise intensities are: (a) sR = 0 (deterministic case), (b) sR = 0.0010, (c) sR = 0.0015, (d) sR = 0.0020, (e) sR = 0.0025 and (f)

sR = 0.0050. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Magnitude, depth, and width of the DCM as a function of sR obtained from the model for site L1129b (panels a–c) and site L1105 (panels d–f).

G. Denaro et al. / Ecological Complexity 13 (2013) 21–34 31



Author's personal copy

5. Discussion and conclusions

In this work we presented a stochastic model, devised starting
from previous deterministic models (Litchmann and Klausmeier,
2001; Huisman et al., 2006), to study the spatio-temporal
dynamics of the phytoplankton biomass along water column in
two different sites of Sicily Channel. In our study, for fixed v, we
chose values of the vertical turbulent diffusivity Db which
determine the absence of intrinsic oscillations of the phytoplank-
ton concentration, maintaining the system far from the chaos. In
oligotrophic waters, typical of Mediterranean Sea, where the
surface mixed layer is depleted of nutrients, subsurface maxima of
chlorophyll concentration and phytoplankton biomass are often
found. Such deep chlorophyll maxima are permanent features in
large parts of the tropical and subtropical oceans (Venrick et al.,
1973; Cullen, 1982; Mann and Lazier, 1996; Longhurst, 1998;
Letelier et al., 2004). Furthermore, seasonal DCMs commonly
develop in temperate regions (Venrick, 1993; Longhurst, 1998)
and even in the polar oceans (Holm-Hansen and Hewes, 2004),
when nutrients are depleted in the surface layer with the onset of
the summer season. Here we extend recent phytoplankton models
(Klausmeier and Litchman, 2001; Huisman et al., 2002, 2004;
Fennel and Boss, 2003; Hodges and Rudnick, 2004) to show that
the phytoplankton distributions, due to random changes, can
exhibit fluctuations. Our work consists in the analysis and
subsequent modelling, based on stochastic equations, of data
from Sicily Channel, where the waters are prevalently oligotro-
phic, the climatic conditions are those typical of a temperate
region, and the DCMs show stable features for given conditions of
light and food resources. For values of depth ranging from 60 to
110 m the presence of a deep chlorophyll maximum indicates the
existence of favourable life conditions for the phytoplankton and
results in a good agreement with other experimental works,
where higher biomass concentration and greater diversity are
observed between 60 and 90 m. At the depths considered in this
work the light intensity is strongly reduced respect to the surface
value (1% of the surface irradiance at 75 m). However, the low light
intensity did not appear to limit the diversification of the
phytoplankton community (Brunet et al., 2008; Dimier et al.,
2009b). In fact, at depths ranging from 60 to 90 m a greater bio-
diversity is observed. This can be explained considering that, at
these values of depth, the high concentration of nutrients

determines the most favourable life conditions for many species
of phytoplankton (Reynolds, 1998). Differences in the composi-
tion of phytoplankton between the surface and the DCMs are
evident mainly for the smaller size class (less than 3 mm), which
exhibits greater bio-diversity at depths between 60 and 90 m. This
could be due to the fact that different species of phytoplankton
exhibit different responses to the limiting conditions. We recall
that in the marine sites analyzed in this work the incident light
intensity is characterized by high values (Iin > 1300
mmol photon m�2 s�1). Therefore, close to the surface the low
nutrient concentration represents a limiting condition for all the
phytoplankton species, so that the biomass concentration
increases with depth. However, for larger values of depth the
light intensity becomes a main limiting factor for some species,
such as Synechococcus, which show a low degree of adaptability
to smaller values of light intensity (Moore et al., 1995; Brunet et
al., 2008). This causes Prochlorococcus and picoeukaryotes, which
show a high degree of genetic plasticity (Bibby et al., 2003) and
tolerate lower light intensities (Moore et al., 1995, 1998; Dimier
et al., 2007), to exhibit a dominance in the deep chlorophyll
maximum (Brunet et al., 2007).

In our model, the values of the biological parameters are those
of the picoeukaryotes and the environmental parameters are set at
values typical of the oligotrophic waters during the warm period.
These values allow to obtain chl a distributions along the water
column in a good agreement with the experimental data and
provide limiting conditions typical of the south part of Mediterra-
nean Sea during the summer. Changes in the phytoplankton
composition, both qualitatively and quantitatively, are related to
the different depths considered, with light intensity and nutrient
availability being the most important factors. Picophytoplankton
demonstrated greater ability for photoacclimation than nano- and
micro-phytoplankton (Brunet et al., 2003, 2006, 2007, 2008;
Dimier et al., 2007, 2009b). In fact, a higher contribution of
picoeukaryotes to the phytoplankton biomass is observed,
specifically pelagophytes and prymnesiophytes, which were also
found to thrive elsewhere in cyclonic eddies (Olaizola et al., 1993;
Vaillancourt et al., 2003). This ability was also observed in culture
(Dimier et al., 2007, 2009a,b).

On the basis of our theoretical findings we can conclude that the
position of the deep chlorophyll maximum depends on the
parameter values used in the model. We used values of the
buoyancy velocity v and vertical turbulent diffusivity Db, for which
no oscillations occur. In this work we used the condition
Db = DR = 0.5 cm2/s, corresponding to poorly mixed waters along
the whole water column, which causes the phytoplankton peak to
have a width of few metres, as observed in the experimental data.
Moreover, we also considered in our model the presence of an
upper mixed layer, above the thermocline, characterized by a
higher value of the diffusion coefficients (Db = DR = 50 cm2/s),
keeping Db = DR = 0.5 cm2/s for greater depth (Ryabov et al., 2010).
The results (here not shown) did not evidence any variations in the
picophytoplankton distributions respect to the case of uniform
diffusion coefficients (Db = DR = 0.5 cm2/s) along the whole water
column. This can be explained noting that in the ecosystem
considered here the mixed layer, due to the depth of the
thermocline, is not enough thick to influence the DCMs of the
chlorophyll distributions.

In our ecosystem the position and stability of the chlorophyll
maximum, obtained from the model, depend not only on the
vertical turbulent diffusivity, but also on the nutrient concentra-
tion at the bottom Rin and the maximum specific growth rate r. We
also note that the values of Rin used in our model are compatible
with the nutrient concentrations measured along the water
column in several sites of the Mediterranean Sea (Ribera d’Alcalà
et al., 2003; Brunet et al., 2006, 2007).

Table 3
Results of x2, reduced chi-square ( x̃2) goodness-of-fit test for site L1129b (top

panel) and site L1105 (bottom panel) for different values of sR (stochastic

dynamics—Case 2). The number of samples along the water column is n = 176 for

site L1129b and n = 563 for site L1105.

Site L1129b

Rin sR x2 x̃2

26 0.0000 4.43 0.0253

26 0.0010 3.18 0.0182

26 0.0015 3.03 0.0173

26 0.0020 3.01 0.0172

26 0.0025 3.04 0.0174

26 0.0050 3.57 0.0204

Site L1105

Rin sR x2 x̃2

36 0.0000 22.87 0.0407

36 0.0010 17.98 0.0320

36 0.0015 17.86 0.0318

36 0.0020 18.35 0.0327

36 0.0025 19.18 0.0341

36 0.0050 25.47 0.0453
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Our numerical results were calculated by setting the maximum
specific growth rate r at a value consistent with experimental
observations. Specifically, this value has been chosen so that the
net per capita growth rate g(z, t), used in the model, is in a good
agreement with those experimentally observed for the picoeukar-
yotes (Jacquet et al., 2001; Timmermans et al., 2005; Dimier et al.,
2009a). We recall that the estimations of the chl a content per
picoeukaryote cell are highly variable, depending on the depth and
water properties (oligotrophic or eutrophic) examined. Moreover
these estimations reflect the taxonomic, ecological and physiolog-
ical diversity and the plasticity highlighted in previous studies
(Moon-Van Der Staay et al., 2000, 2001; Not et al., 2005;
Timmermans et al., 2005). In our model we took into account
this aspect. In particular, after obtaining the numerical results for
the phytoplankton concentration expressed in number of cells/m3,
we used the experimental findings given in (Brunet et al., 2007) to
convert the numerical results into chl a concentration expressed in
mg/l. Specifically, because of the peculiarities of our model, suitable
to describe the dynamics of the picoeukaryotes, we used the
conversion curves typical of these species and compared the
results with the experimental chl a concentrations sampled in two
different sites of the Mediterranean Sea (Channel of Sicily). From
the comparison we found that the values of chl a concentration
obtained numerically are in a good agreement not only with our
data but also with those measured by Brunet et al. (2007). In
addition, we note that our numerical results for the picoeukaryote
concentration expressed in number of cells/m3 match the
corresponding experimental data reported in Brunet et al. (2006,
2007).

More precisely, as a first step we used a deterministic model,
consisting of an auxiliary equation for the light intensity and two
differential equations, one for the dynamics of the phytoplankton
biomass, the other for the dynamics of the nutrients. The numerical
results showed a good qualitative agreement with the real data,
even if discrepancies were observed between the characteristics of
the chl a concentration profiles provided by the model and those
obtained from the real data.

To improve the agreement between numerical and experimen-
tal distributions, we modelled the random fluctuations of the
environmental variables, by adding a term of multiplicative
Gaussian noise in the differential equation for the phytoplankton
biomass. The results obtained indicate that the presence of random
fluctuations, acting directly on the phytoplankton biomass,
determines chl a stationary distributions more similar to the
experimental ones. In particular, we found that both the position
and magnitude of the DCMs agree very well with the experimental
findings. Afterwards, we modified the deterministic model
considering the role of a noise source which influences directly
the dynamics of the nutrients, by adding a term of multiplicative
Gaussian noise in the differential equation for the nutrients. In this
case we observed for suitable noise intensities (much lower than
those used in the equation for the phytoplankton biomass) a
further improvement of the numerical distributions of chl a

concentration respect to the experimental ones. In addition, we
found that higher noise intensities (comparable with those used in
the equation for the phytoplankton biomass), cause a rapid
extinction of the phytoplankton community. The results obtained
indicate that the proposed stochastic model is able to reproduce
patterns of real phytoplankton distributions when aquatic
ecosystems with poorly mixed waters are considered.
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