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Abstract

We have recently presented a collision-model-based framework to tackle non-Markovian
quantum dynamics (Ciccarello et al 2012 arXiv:1207.6554). As a distinctive feature, memory
is introduced in a dynamical way by adding extra inter-ancillary collisions to a standard
(memoryless) collision model. In this paper, we focus on the case where such intra-bath
collisions are described by incoherent partial swap operations. After briefly reviewing the
model, we show how to include temperature as an additional parameter by relaxing the
assumption that each bath ancilla is initially in a pure state. We also calculate explicitly the
dynamical map entailed by the master equation in the paradigmatic instance of a
Jaynes–Cummings system–ancilla coupling.

PACS numbers: 03.65.Yz, 03.67.–a, 42.50.Lc

1. Introduction

The theoretical settling of open system dynamics ranks among
the hottest problems in modern quantum mechanics [1–3].
By definition, an open system is one in contact with an
external environment and thus the dynamical map describing
its time evolution is non-unitary. On a rather general basis,
a physically grounded dynamical map is required to be
completely positive and trace preserving (CPT). In the
case where the environment is memoryless, a Markovian
dynamics occurs that, demonstrably, is always governed by
a so-called Lindblad-type master equation (ME) [1–3]. Any
Lindblad ME, in turn, corresponds to an unconditionally
CPT dynamics. However in the general case, environments
are intrinsically non-Markovian (NM) and in several known
scenarios a Markovian-based approach is fully inadequate [4].
Unlike the Markovian case, however, a general systematic
framework to tackle NM processes has not been developed
to date [5]. Rather, a number of variegated approaches
have been proposed. Usually, a major drawback of these is
that the corresponding MEs can violate the CPT condition
in some regimes [6–8]. Typically, this stems from the
phenomenological assumptions and approximations that one
needs to somehow make in order to derive a ME [9].

A further recurrent drawback is that some MEs, such as those
in [10, 11], focus on a regime that is too weak a perturbation
of pure Markovianity. As a result, their capability to capture
genuinely NM features can be severely limited [12].

Recently, we proposed an innovative collision-model-
based approach to tackle NM dynamics [13]. Collision models
(CMs) were first envisaged by Boltzmann as an interesting
way to describe the irreversible dynamics of a system in
contact with a large environment, or bath, in terms of
successive ‘collisions’ with its small subparts (ancillas). In
more recent years, mostly they were successfully applied to
study quantum open systems [14–19]. In a standard CM,
the bath is modeled as a large collection of non-interacting
identical ancillas. S (the system under study) ‘collides’
with each of these one at a time. It can be shown that
such a process gives rise to an irreversible dynamics for
S exactly described by a Lindblad-type ME [17, 18]. This
is because S is not allowed to interact more than once
with a given ancilla. The bath thus cannot keep track of
the system’s past history. A major reason why CMs are
attractive is that they are suited to work out exact MEs
basically without any approximations (hence ruling out the
possibility to violate the CPT condition). Only the passage to
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the continuous limit is needed [13, 17–19]. This is in contrast
to standard microscopic system-reservoir models [1], where
even to derive Markovian MEs, drastic assumptions (such
as the Born–Markov approximation) are in fact unavoidable.
Very recently, Rybar et al [19] introduced a NM CM able
to simulate any indivisible single-qubit channel. In their
framework, memory is introduced by simply allowing for
correlated initial bath states (aside from this, the model is
identical to memoryless CMs).

In our model [13], instead, the initial reservoir state is
fully uncorrelated (just like in a standard Markovian CM)
but ancillas can undergo pairwise collisions. This enables
the transmission of quantum information across the bath in
such a way that the initial state of a given ancilla before
colliding with the system is affected by the past history of S.
Moreover, this mechanism endows the reservoir with memory
in a dynamical way: the ability to remember is associated with
physical parameters entering the system–bath interaction,
which is what one would intuitively expect. In [13], we have
proposed to describe each inter-ancillary (AA) collision as a
partial swapping operation. This is indeed a natural choice
to account for intra-bath information transfer. Moreover, it is
defined in terms of the swap unitary operator, which allows
to considerably simplify calculations. A possible choice is
what we call an incoherent swap, i.e. a map whose Kraus
operators are proportional to the identity and swap operators,
respectively [13]. Using this, which is non-unitary but CPT,
we have demonstrated that one can work out an exact ME
interpolating between a fully Markovian regime and a strongly
NM one. Importantly, such ME entails a dynamics which is
unconditionally CPT [13]. Furthermore, it does not depend
on either the system–ancilla (SA) coupling form or the
dimensionality of the particles.

In this short paper, we consider the aforementioned
incoherent swap CM and present some related developments
with a twofold goal. First, our theory in [13] was restricted to
the case where the initial bath state is pure. However, any open
system model is expected to feature temperature among its
parameters. This is usually taken into account by considering
the reservoir initially in a thermal, thus in general mixed,
state. In this respect, we show that assuming an initial pure
state is not restrictive provided that one redefines the ancillas
as initially entangled bipartite systems where only one of
the two can interact with S (an approach that in the theory
of quantum channels [20] corresponds to the Stinespring
dialation mechanism). Our second aim is to illustrate the
explicit form of the solution of our ME in a paradigmatic
case. We choose the situation where the SA coupling is of the
Jaynes–Cummings (JC) form. This, indeed, routinely occurs
in quantum optics and is often used as an illustrative example
of various proposed approaches to NM dynamics.

This paper is organized as follows. In section 2, we
briefly review the theory leading to the discussed ME for
incoherent swap intra-bath collisions. In section 3, we show
how to include temperature in our framework. In section 4, we
consider an SA interaction having the form of a JC coupling
and explicitly work out the dynamical map entailed by our
ME. Finally, in section 5, we draw our conclusions.

2. Review of the collision model for an incoherent

partial swap

Our model comprises a system S, initially in state ⇢0, and a
bath consisting of a collection of ancillas labeled i = 1, 2, . . ..
The initial overall state is �0 = ⇢0⇢B0, where ⇢B0 is the bath
initial state given by

⇢B0=|
0

iB h
0

| , (1)

where |
0

iB=|0i1 |0i2 . . .. As mentioned, in our model AA
collisions are interspersed with SA ones. In the beginning, S
collides with ancilla 1. In standard (Markovian) CMs, S � 2
collision would then follow, then S � 3 and so on. This way,
each ancilla would still be in the initial state |0i h0| before
colliding with S, thus fully ‘unaware’ of previous collisions.
In contrast, in our model we assume that an extra AA collision
between 1 and 2 occurs after S � 1 but before S � 2. Thereby,
prior to its interaction with S, ancilla 2 will now be in a
perturbed state in which information over past history of S
is imprinted. The process proceeds by mere iteration: once
S � 2 collision is over, a 2–3 interaction follows, then S � 3,
3–4, etc.

Each collision, either SA or AA, is described by a CPT
quantum map affecting the degrees of freedom of the two
involved particles. Specifically, the map for an SA collision
involving the i th ancilla is defined as the unitary coupling
USi�=e�iĤSi tc� eiĤSi tc , where tc and ĤSi are, respectively,
the collision time and interaction Hamiltonian (we set h̄ = 1
throughout). Instead, the AA collision involving the ancilla i
to the j th one is defined in terms of the CPT map

Si j�=(1 � ps)�+ps Ŝi j� Ŝi j , (2)

where ps is the swap probability, while Ŝi j is the well-known
swap operator [21] exchanging the states of i and j as
Ŝi j |'ii | i j =| ii |'i j . The steps of our discrete process are
defined in a such way that the nth step terminates when
both (n � 1) � n and S–n collisions are over (but step n = 1
ending after S � 1 collision). Hence, at the nth step the overall
state is given by �n = �

USn �Sn,n�1 � · · ·�US2�S2,1�US1
�
�0

(henceforth the symbol ‘�’ which describes super-operator
composition will be omitted). Let ⇢n = TrB(�n) be the
nth-step state of S (the partial trace is over all the ancillas).
Using the properties of the swap operator Ŝi,i+1e�iĤSi tc Ŝi,i+1=
e�iĤS,i+1tc and Ŝi j |

0

iB⌘|
0

iB, one can easily show [13] that ⇢n

can be expanded in terms of all previous-step states of S only.
In the continuous limit, where due to tc ' 0 and n � 1 the step
number is replaced by the continuous time t = ntc, such an
expansion for ⇢n can be shown to give rise to a corresponding
integro-differential ME. This reads

d⇢
dt

= 0

Z t

0
dt 0e�0t 0

E(t 0)
@⇢(t�t 0)
@(t � t 0)

+ e�0t dE(t)
dt

⇢0 (3)

with the CPT map E(t) defined as

E(t) ⇢=
X
⌫

nh⌫| e�iĤSn t |0in ⇢
⇣

nh⌫| e�iĤSn t |0in

⌘†
, (4)

where each Kraus operator nh⌫| e�iĤSn t |0in is independent of
n since so is the form of ĤSn and the ancillas are all identical
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({|⌫i} is a basis for the single-ancilla Hilbert space). The map
E(t) is in general strongly NM since, evidently, it effectively
describes the continuous coherent interaction of S with a
single ancilla. Indeed, our model interpolates between two
extreme regimes depending on the value of 0. When 0 = 0,
which can be shown to correspond to ps = 1 in the discrete
model, swapping is perfect and as is immediate to see from
equation (3) the solution reads ⇢(t)=E(t)⇢0. In such a case,
then, equation (4) coincides with the process dynamical map
3(t) (this is defined through ⇢(t) =3(t)⇢0). In the opposite
limit 0 ! 1, instead, it can be proven [13] that 3(t)=eĖ(0)t

with equation (3) reducing to the Lindblad form ⇢̇=Ė(0)⇢,
where Ė(0) is a Lindlabian superoperator. Such a limiting case
indeed corresponds in the discrete picture to ps = 0, i.e. AA
collisions do not occur at all (see equation (2)) and a standard
fully Markovian CM is retrieved.

The general expression for 3(t) can be worked out as
follows. Clearly, 3(t) obeys equation (3) under the formal
replacement ⇢ !3. By taking the Laplace transform (LT) of
such an equation, this is easily solved as [13]

3̃(s) = Ẽ(s +0)

I �0 Ẽ(s +0)
, (5)

where 3̃(s) and Ẽ(s) are the LTs of 3(t) and E(t),
respectively. Expanding equation (5) in powers of 0 gives

3̃(s)=P1
k=1

h
Ẽ(s+0)

ik
0k�1, whose inverse LT is

3(t)=L�1[3̃(s)](t) =
1X

k=1

0k�1 L�1[Ẽk(s+0)](t) . (6)

The basic properties of LT allow to immediately calculate the
inverse LT on the right-hand side as

L�1[Ẽk(s +0)]=e�0t
Z t

0
dt1

Z t1

0
dt2 . . .Z tk�2

0
dtk�1 E(tk�1)E(tk�2 � tk�1) ···E(t � t1). (7)

We have thus expressed 3(t) as a weighted series of multiple
auto-convolutions of the CPT map E(t). Being a composition
of CPT maps, each convolution (the integrand in equation (7))
is CPT itself. Also, it is multiplied by a positive coefficient
(see equations (6) and (7)), which yields complete positivity
of map 3(t). Moreover, it is easily checked [13] that
regardless of 0 and E(t), Tr [3(t)⇢0]=1. The map 3(t) is
thus always CPT.

3. Including temperature

As mentioned in the introduction, the natural way to account
for temperature T is to replace the bath initial state (1) with a
product of single-ancilla thermal states as

⇢B0=
O

i

⇢i0=
O

i

e�� Ĥi

Tr
⇣

e�� Ĥi

⌘ , (8)

where � = 1/(K T ) (K is the Boltzmann constant) and Ĥi

is the single-ancilla free Hamiltonian (whose operator form

is independent of i). For d-dimensional ancillas, let {|ii }
( = 0, . . . , d � 1) be the orthonormal set of eigenstates of Ĥi

such that Ĥi |ii =" |ii . Then, the i th-ancilla thermal state
⇢i0 is, in general, a mixture of {|iih|} according to

⇢i0=
d�1X
k=0

e��"

Z
|iih|, (9)

where Z =Pd�1
=0 e��" is the partition function. Clearly, for

� ! 1, namely zero temperature, state (8) reduces to a
product of pure states such as equation (1). For non-zero
temperatures, the ancillary initial state can be ‘purified’ [21]
as follows. In general, given a single-particle mixture
describing the state of a particle A, one can define a further
fictitious particle B in such a way that A–B are in a pure
global state | iAB and ⇢A=TrB(| iABh |). Following this
scheme, we thus replace in our model each d-dimensional
ancilla with a pair of identical d-dimensional ancillas such
that only one of the two can interact with S (d is an arbitrary
integer). We now use indices i1 and i2 to label the ancillas
really interacting with S and the corresponding fictitious ones,
respectively. Each i1th ancilla is initially in state ⇢i10 as given
by equation (9). Correspondingly, the joint system comprising
i1 and the associated auxiliary ancilla i2 is taken to be initially
in the pure state

| 0ii1i2
=

d�1X
=0

r
e��"

Z
|ii1

|ii2
(10)

which evidently fulfills ⇢i10=Tri2(| 0ih 0|).
In the derivation of equation (3) no assumption on either

the dimensionality of the ancillas or the features of ĤSi is
necessary. Therefore, the map E(t) now reads

E(t)⇢=
X
⌫1⌫2

h⌫1⌫2| e�iĤSi1 t | 0i ⇢
⇣
h⌫1⌫2| e�iĤSi1 t | 0i

⌘†
,

(11)
where {|⌫1i}i1 ({|⌫2i}i2 ) is a basis for i1 (i2). Using that ĤSi1

does not affect i2, we end up with

E(t)⇢=
X


e��"

Z

(X
⌫1

h⌫1| e�iĤSi1 t |i ⇢
⇣
h⌫1| e�iĤSi1 t |i

⌘†
)

,

(12)
where our notation emphasizes that the resulting map is a
convex combination of maps defined in terms of initial pure
single-ancilla states {|i}. We conclude that ME equation (3)
holds at finite temperature as well, provided that the map E(t)
in equation (12) is considered. Note that equation (12) also
shows that E(t) can now be regarded as the map describing the
reduced unitary dynamics associated with the time-evolution
operator e�iĤSi1 t and the initial S–i1 state given by the tensor
product of ⇢ with equation (9). Hence, it is still true that for
0 = 0 S effectively behaves as if it is continuously interacting
with a single ancilla.

4. Dynamical map for Jaynes–Cummings coupling

We assume that S is a qubit [21], i.e. a two-level system,
and the SA coupling has the form of an XY isotropic
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interaction corresponding to a JC model when S and A are
on resonance [22]. Each ancilla is modeled as a bosonic mode
initially in the vacuum state, but because of conservation
of the total number of excitations it behaves as an effective
qubit as well. Let then {|0iS(i), |1iS(i)} be a basis for S (the
i th ancilla). The SA Hamiltonian reads ĤSi =�(�̂+ Ŝi�+H.c.),
where � is a coupling rate while �̂+=�̂ †

�=|1iSh0| and Ŝi+=
Ŝ†

i�=|1ii h0| are the usual spin-1/2 ladder operators. The most
general initial state of S reads ⇢0=(1�p) |0iSh0|+p |1iSh1|+
(r |0iSh1|+H.c.), where 06 p 6 1 and |r |2 6 p(1 � p). An
amplitude damping channel (ADC) [21] transforms ⇢0

into

A(⌘)⇢0 = [1 � ⌘2 p] |0iSh0| + ⌘2 p |1iSh1|
+ [⌘r |0iSh1| + H.c.], (13)

where 06 ⌘ 6 1. Through a standard calculation, when the
ancillas are initially all in |0i the map in equation (4) is
given by E(t)=A[cos(�t)]. ADCs fulfill the composition
property A(⌘1)A(⌘2) =A(⌘1⌘2). Using this in combination
with equations (6) and (7) and introducing the rescaled time
⌧ =�t , the dynamical map can be expressed in matrix form
as

3(⌧ )⇢0=
✓

1 ��2(⌧ )p �1(⌧ )r
�1(⌧ )r⇤ �2(⌧ )p

◆
(14)

with

�`(⌧ ) = e�0̄⌧
1X

k=1

0̄k�1
Z ⌧

0
d⌧1

Z ⌧1

0
d⌧2 · · ·

Z ⌧k�2

0
d⌧k�1 cos(⌧k�1)

` cos(⌧k�2�⌧k�1)
` ···cos(⌧�⌧1)

`,

(15)

where 0̄=0/�. Hence, functions �1(⌧ ) and �2(⌧ ) fully
specify the dynamical map. We define the LT of a cosine
power as c̃`(s)=L[cos(⌧ )`]. Given that equation (15) is
formally analogous to equation (6) with due replacements,
in line with equation (5) the LT of �`(⌧ ) is evidently
given by

�̃`(s)=L[�`(⌧ )]= c̃`(s+0̄)

1 � 0̄c̃`(s+0̄)
. (16)

Now, by using c̃1(s)=s/(s2+1) along with c̃2(s)=(s2+2)/

[s(s2+4)] and anti-transforming, we find that

�1(⌧ ) = e� 0̄⌧
2

24 0̄ sinh
⇣

1
2

p
0̄2�4 ⌧

⌘
p
0̄2�4

+ cosh
✓

1
2

p
0̄2�4 ⌧

◆35 , (17)

�2(⌧ )=
3X

i=1

Ai ei↵i ⌧ , (18)

where

↵1 =
⇣
0̄� 3

p
0̄3 + 3� + 90̄

⌘2
� 12

3
3
p
0̄3 + 3� + 90̄

,

↵2 = ↵⇤
3 = 1

6

 
i
�p

3 + i
� 3
p
0̄3 + 3� + 90̄

�
�
1 + i

p
3
� �
0̄2 � 12

�
3
p
0̄3 + 3� + 90̄

� 40̄

!
,

A1 = 20̄↵1 +↵2
1 + 0̄2 + 2

↵2
1 + |↵2|2 � 2↵1Re(↵2)

,

A2 = A⇤
3 = i

�
20̄↵2 +↵2

2 + 0̄2 + 2
�

2(↵1�↵2)Im(↵2)

with �=
p

60̄4 � 390̄2 + 192. We have checked that �1(⌧ )
and �2(⌧ ), as given by equations (17) and (18), fulfill the
conditions 06 �2(⌧ )6 1 and �1(⌧ )

2 6 �2(⌧ ) regardless of 0
and ⌧ . This confirms that map (14) is unconditionally CPT in
accordance with our general theory.

5. Conclusions

In conclusion, we have briefly reviewed a CM-based
framework to tackle NM dynamics. The model differs from
standard Markovian CMs in that extra AA collisions are
added between next SA interactions. Here, we have focused
on the case where each ancilla–ancilla collision is described
by an incoherent partial swap. The corresponding dynamics
is exactly described by an unconditionally CPT ME. We
have complemented the related theory with two further
developments. First, we have shown that the case where
the bath is initially in a thermal state, instead of a pure
one, is in fact already encompassed in the theory provided
that one suitably redefines each ancilla as a bipartite system
(initially entangled). Next, we have illustrated for the first
time a paradigmatic instance where the solution of the ME
can be calculated explicitly in a compact form. We have
chosen the case where the SA interaction is described by a JC
coupling.
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