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Electrons on a spherical surface: Physical properties and hollow spherical clusters
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We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In
particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All
these properties are discussed analytically as functions of the number N of electrons. The trends obtained with
increasing N are compared with those of the corresponding properties experimentally measured or theoretically
evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display
similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant
distribution of magic numbers which follows a power law with critical exponent −0.5. We conclude that our
completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex
systems.
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I. INTRODUCTION

The fabrication of quasi-two-dimensional materials has
stimulated theoretical research on a mathematical model
describing an electron gas in two dimensions, which has been
dubbed 2D jellium. This model is constituted by a number N of
electrons constrained on a planar surface. Moreover, in order
to guarantee its overall electrical neutrality, the planar surface
is assumed to be rigid and uniformly positively charged. Such
a model has recently been adopted to discuss the properties of
high-density 2D jellium [1,2]. In this paper we wish to extend
the 2D jellium model to cover the case of N electrons on
a positively charged spherical surface and to discuss its basic
physical properties. At this stage we shall neglect for simplicity
all electron-electron interactions. A similar spherical model
(with reference to π electrons) has been proposed in the
past to explain the properties of magnetic shielding in neutral
fullerenes [3] and also in fullerene polarizability calculations
[4] and in the magnetic properties of capped nanoparticles of
nonmagnetic substances [5]. In addition theoretical models
of electron gas on a spherical surface have recently been
discussed with particular reference to the form of the exchange
and correlation energy [6,7].

Mathematically, the problem of quantizing the dynamics
of an electron constrained to a curved surface S is related to
that of embedding m-dimensional manifolds in n-dimensional
Euclidean spaces (n > m) [8–10]. The main features of the
theory can be summarized as follows.

(1) A system of curvilinear coordinates q1, q2 is established
on the curved surface, and a strong potential λV (q3) is
introduced in order to confine the electron to the immediate
neighborhood of S; λ defines the strength of the potential.

(2) The wave function of the electron is factorized in a
normal part ψn(q3) and in a tangential part ψt (q1,q2).

(3) The Schrödinger equation is separated into an equation
for ψn(q3) and one for ψt (q1,q2). The eigenvalue spectrum of
the ψn(q3) part is taken as nondegenerate, and only its lowest
eigenvalue is populated.

(4) The strong limit λ → ∞ for the potential is taken.

*emilio.fiordilino@unipa.it

(5) The Schrödinger equation for ψt (q1,q2) then takes the
form

ih̄
∂ψt

∂t
= − h̄2

2m
∇2ψt − Vsψt (1)

where ∇2 is the Laplacian in curvilinear coordinates (q1,q2)
and Vs is an effective potential,

Vs(q1,q2) = − h̄2

8m

(
k2

1 − k2
2

)
. (2)

In this expression k1 and k2 are the principal curvatures of S

at each point (q1,q2) on the surface. We note that Vs vanishes
for a spherical surface. Moreover gauge fields do not appear
in the equation for ψt (q1,q2) due to the assumption of a
nondegenerate spectrum for ψn(q3) [11,12].

This paper is organized as follows. In Sec. II we present the
main results of the theory of an electron gas constrained on a
spherical surface, and we define its chemical potentials along
with other physically relevant quantities, such as its ionization
energy and its static polarizability. In Sec. III we briefly review
some of the physical properties of hollow quasispherical
clusters of atoms which have been measured experimentally or
theoretically predicted by others using relatively sophisticated
models. In Sec. IV we compare the results of our model with
those reviewed is Sec. III. In Sec. V we present the conclusions
which we have been able to draw from the analysis of our
model.

II. ELECTRON GAS ON A SPHERICAL SURFACE

The allowed energy levels for an electron constrained to a
spherical surface of radius R are

E� = h̄2

2meR2
�(� + 1), (3)

where me is the mass of the electron and � is 0 or a positive
integer and each energy level (or shell) is (2� + 1)-fold
degenerate, corresponding to the 2� + 1 possible values of
m (−� − 1 � m � � + 1).

We now proceed to fill the lowest-lying levels of the
spherical shell with the N available electrons, taking into
account that a level with a given � can accommodate 2(2� + 1)
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electrons. Suppose that the last completely full shell has � = L.
Then the number NL of electrons with � � L is

NL = 2
L∑

�=0

(2� + 1) = 2(L + 1)2, (4)

where the factor 2 is motivated by Pauli’s principle require-
ment; in what follows we shall dub the numbers NL given by
Eq. (4) as magic numbers, and we shall qualify as noble the
configuration of the 2D jellium spherical particle. The total
energy of a noble configuration is thus

WL = h̄2

2meR2
2

L∑
�=0

�(� + 1)(2� + 1)

= h̄2

2meR2
L(L + 1)(L2 + 3L + 2), (5)

and its Fermi energy EF is

EF = h̄2

2meR2
L(L + 1). (6)

On the other hand, it is generally possible that some of the N

electrons must be accommodated in a shell (with � = L + 1)
beyond the last completely full shell. Suppose their number
is nL+1. Then the total energy of any of the lowest-energy
configurations of the N electrons is, in general,

WN = h̄2

2meR2
[L(L + 1)(L2 + 3L + 2)

+ nL+1(L + 1)(L + 2)], (7)

and its Fermi energy, the energy required to add one electron,
is

EF = h̄2

2meR2
[(1 − δnL+ 1,0)(L+ 1)(L+ 2) + δnL+ 1,0L(L+ 1)].

(8)

Thus EF , as a function of N , presents discontinuities at filled-
shell configurations (i.e., when nL+1 vanishes).

As is well known [13], EF is the chemical potential of the
electron gas, which is defined as ∂WN/∂N = WN − WN−1

since N is a discrete variable. It can be checked that this
is indeed the case using the expressions above. It should
also be noted that WN − WN−1 is also a contribution to the
ionization potential, the other contribution being the work
against the Coulomb force necessary to bring one electron
from the spherical surface to infinity.

We shall now consider more closely the background
positive surface charge. Since the negative electrons are
discrete, it is convenient, for accounting purposes, to discretize
also the positive charge, which we shall indicate here by
the term nuclear charge, whose value is Ze, with e being the
proton charge. In order to achieve overall electric neutrality,
the number of nuclear charges Z must be equal to that of the N

electrons in the system. We shall now assume that in our system
the number of nuclear charges is proportional to the surface
of the spherical shell, so that αZ = R2, where α = (4πσ )−1,
σ being the nuclear number density on the spherical surface,
which we also assume to be independent of R; in order to
emphasize the role the nuclear charge, we shall introduce
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FIG. 1. Energy WN,N in eV of the electron gas vs the number N

of electrons. The arrows mark the position of the magic numbers (see
text).

a second index in the total energy, which hereafter will be
denoted by WZ;N . Thus, in the case of neutral 2D jellium
system, we have

WN ;N = h̄2

2meαN
[L(L + 1)(L2 + 3L + 2)

+ nL+1(L + 1)(L + 2)] (9)

and

EF = h̄2

2meαN
[(1 − δnL+1,0)(L + 1)(L + 2)

+ δnL+1,0L(L + 1)]. (10)

For later use we shall need the quantity WN ;N−1; it is

WN ;N−1 = WN ;N − EF . (11)

WN ;N and EF are plotted in Figs. 1 and 2 as functions of
N ; in all plots of this paper the magic numbers (full shells)
are flagged by arrows on the horizontal axis. From Fig. 2 we
clearly see that magic numbers correspond to the minima of
the chemical potential and thus to stable configurations.

We emphasize that WN ;N in Eq. (9) is a function of N

different from WN in (7) due to the elimination of R in favor
of N . As a consequence, also

μ(N ) ≡ ∂WN ;N/∂N = WN ;N − WN−1;N−1 (12)

is a function of N different from EF and corresponds to another
chemical potential. In fact μ(N ) is the change in the energy
of the system due to the addition of an electron and of a
nuclear charge; thus we realize that its minima correspond
to stable configurations of the system. The quantities μ(N )
and ∂μ(N )/∂N are plotted numerically in Fig. 3, where the
peaks in ∂μ(N )/∂N indicate clearly the stable (closed-shell)
configurations of spherical 2D jellium for magic numbers.
Joining the peaks of ∂μ(N )/∂N by straight segments yields
the polygonal shown in Fig. 4.

At this stage of the discussion it is straightforward to
calculate the ionization potential of the surface; actually, in
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FIG. 2. The Fermi energy EF (N ) from Eq. (10) of the system
in eV vs the number N of electrons. EF (N ) is the energy of
the uppermost electron in the neutral system. The solid line is an
interpolation.

order to remove one electron from the 2D jellium surface to
infinity an energy is needed, which is the sum

Ip(N ) = (e2/R) + WN ;N−1 − WN ;N . (13)

Here we are assuming that the positive charge left behind on
the sphere is uniformly distributed over the surface of radius
R. The quantity Ip(N ) is plotted numerically in Fig. 5.

The model accounts also for the electric static polarizabil-
ity; in fact in the presence of a static electric field E directed
along the z axis of the polar coordinate system, the Hamiltonian
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FIG. 3. The chemical potential μ(N ) ≡ WN,N − WN−1,N−1 of the
system (stars) in eV vs the number N of electrons (the solid line is an
interpolation); μ(N ) is the change in energy of the system for when
one nuclear and one electron charge are added to the system, and it
is the first derivative of the total energy plotted in Fig. 1. Circles are
the second derivative of WN,N in eV.
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FIG. 4. The stability polygonal in eV; it is obtained by joining the
peaks of the bottom plot of Fig. 3.

is

Ĥ = h̄2

2meR2
L̂2 + h̄
0 cos θ, (14)

where 
0 = eER/h̄ and L̂2|�,m〉 = �(� + 1)|�,m〉.
Second-order perturbation theory yields a shift with respect

to the unperturbed energy levels in Eq. (3) given by

�E�,m = meR
2
2

0
�(� + 1) − 3m2

�(2� − 1)(� + 1)(2� + 3)
(� > 0,∀m),

(15)

�E0,0 = −meR
2
2

0

3
. (16)

Thus each shell is split into 2� + 1 levels, 2� of which (those
with m �= 0) are doublets. The electric polarizability of the
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FIG. 5. The ionization energy Ip of the system in eV vs the
number N of atoms; Ip is the energy required to extract one electron
from the surface.
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|�,m〉 state α�m is obtained from (15) and (16) and from

�E�,m = −α�m

E2
. (17)

Consider now a completely full shell with 0 < � � L and
(2� + 1)m sublevels, each containing two electrons. Then the
total polarizability of the shell is α� = ∑

m 2α�m for � �= 0 and

α� = meR
4

h̄2

e2�2

2�(� + 1) − 3/2
(0 < � � L), (18)

where we have used
∑

m m2 = �(� + 1)(2� + 1). Expression
(18) is convenient to evaluate numerically the core po-
larizability αcore = ∑

� α� + α�=0 of the system. The total
polarizability is evaluated as αcore + αvalence, where αvalence

is the contribution of the nL+1 electrons residing in the
incomplete shell � = L + 1. From (15)

αvalence = meR
4

h̄2 e2
∑
m

f (m)

× (L + 1)(L + 2) − 3m2

(L + 1)(2L + 1)(L + 2)(2L + 5)
, (19)

where f (m) is the occupancy of the m state within the valence
shell. This indicates that the total polarizability of spherical
2D jellium as a function of N is slightly different from the N2

behavior of αcore due to the contribution of the nL+1 electrons
residing in the incomplete shell � = L + 1. The contributions
αcore and αvalence as functions of N are evaluated numerically
and are represented in Figs. 6 and 7 along with the total
polarizability in Fig. 8. We have chosen to fill the 2L + 3 states
of the valence shell proceeding from |m| = L + 1 to m = 0
and thereafter repeating the procedure up to the exhaustion of
the nL+1 available electrons. It is worth noting that relevant
points of the three polarizabilities can be interpolated by
parabolas.
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FIG. 6. Polarizability of the core electrons of the 2D jellium in
Å3 vs the number N of atoms. The polarizability can be interpolated
by the parabola αcore = −0.055N 2.
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FIG. 7. Polarizability of the valence electrons of the 2D jellium
in Å3 vs the number N of atoms. The interpolating parabola αv =
−0.026N 2 is shown.

III. PHYSICAL PROPERTIES OF HOLLOW
QUASISPHERICAL MOLECULES AND CLUSTERS

OF ATOMS

In this part we shall review briefly a selection of exper-
imental and theoretical results on the physical properties of
hollow quasispherical aggregates of atoms which have been
published in recent years. The aim is to provide a basis for
comparison of these properties with those obtained in the first
part of the present work for the 2D jellium spherical model.
Clearly, completeness of such a review is out of the question,
given the vastness of the literature published on the subject of
spherical hollow clusters.

We begin our analysis by examining the stability of the
aggregates. Hollow clusters of noble metals present enhanced
stability at some magic numbers of atoms in the cluster. For
Au these magic numbers are 8, 18, 20, and 34 [14,15] as
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FIG. 8. Total polarizability of the 2D jellium in Å3 vs the number
N of atoms. The interpolating parabola αt = −0.081N 2 is shown.
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well as 32 and 90 [16,17] and 50 [18]. Also the much more
popular hollow structures of the fullerene series present an
abundance of magic numbers, such as 24, 28, 32, 36, 50, 60,
and 70 [19–22] for small fullerenes Cn (n < 100) and 122, 130,
162, 180, and higher for large fullerenes (n > 100) [23,24].
A complete list of stable fullerenes is made impossible by
the existence of a diverging number of isomers for each n.
Nevertheless, Fig. 1 of [25] summarizes the binding energy
of the fullerene series as a function of C atoms. A genetic
algorithm has also been implemented to explore the stability
of (MgO)n clusters, including a class of hollow quasispherical
clusters, with magic numbers from 10 to 35 [26].

We examine now the ionization energy; this has been
measured and calculated (using density-functional theory) [27]
for a large series of the fullerenes from C20 to C180. As
a function of the number of C atoms in the molecule, the
points fall on a smooth curve, gently decreasing toward 7 eV,
with clear superimposed discontinuous deviations of a few
percent [28,29].

As for static polarizability, a very popular family of hollow
quasispherical molecules for which trends of the static electric
polarizability have been calculated theoretically is that of
the icosahedral fullerenes from C60 to C2160 [30] using self-
consistent Kohn-Sham orbitals and energy eigenvalues. The re-
sults show that the random-phase approximation polarizability
αRPA divided by the volume of the molecules decreases with
increasing n. This behavior is in contrast to the indications of
the spherical model proposed in the paper by Knize [4], as
well as those of our present 2D jellium model, and seems to
suggest strong localization of the electrons about each of the
C nuclei on the surface of the molecule.

It is worth noting here that high-order-harmonic generation
(HHG) has been investigated in C60. The HHG spectrum of
C60 has been predicted using a theoretical model where the
valence electrons are contained inside a spherical shell of finite
thickness [31] and also by a model where a single electron
is constrained over the surface of a rigid sphere [32]. The
spectrum consists of odd harmonic peaks of the driving laser
frequency, in addition to hyper-Raman lines. Experimentally,
the C60 spectrum has been obtained in a plasma plume [33–36].

IV. COMMENTS

In this section we shall compare the physical properties
predicted by our toy model in Sec. II with those summarized in
Sec. III for hollow clusters. Given the simplicity of our model,
we shall focus on qualitative trends rather than on quantitative
predictions.

It is easy to check that the number of magic members
between 0 and M is obtained from Eq. (4) as

n(M) =
√

M

2
− 1. (20)

The density of magic numbers is

ρ(M) ≡ dn(M)

dM
= M−1/2

2
√

2
, (21)

which shows that the density of magic numbers decreases
according to a rather mild power-law distribution. Random
and infrequent processes, such as the number of tsunami
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FIG. 9. Starred line: the stability polygonal in eV from Fig. 3 of
the present paper. Thick line: binding energy for different fullerenes.
Data are adapted from Fig. 1 of [25].

occurring in 1 year, obey the Poisson distribution and vanish
in a quasiexponentially fast fashion. Square-root power-law
distributions are rather common in statistics and have been
found to describe a large variety of cases such as wealth in a
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FIG. 10. (top) The chemical potential μ(N ) ≡ WN,N −
WN−1,N−1 of the system in eV vs the number N of electrons (the
solid line is an interpolation) and (middle) second derivative of
WN,N ; both plots are from Fig. 3 of the present paper. (bottom left)
Stability peaks of the Mg+O− clusters; data are adapted from Fig. 4
of [16]. (bottom right) Stability peaks for the shell model of the
ground states of the clusters reported in Fig. 6 of [26] from which
the data are adapted.
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population or earthquake intensity distribution. Of course the
case here studied is not a random process but the outcome of
a perfectly deterministic law. The similarity, however, must be
noted and kept in mind for further investigations.

Regarding the chemical potential and stability in Fig. 9
we compare the polygon of Fig. 4 of the present paper with
Fig. 1 of [25]. We see that our model seems able to capture
the main features of the stability curve of the fullerenes. The
appearance of the stability peaks in Fig. 3 of the present paper
seems similar to that of the stability peaks of the Mg+O−
clusters in Fig. 6 of [26] as well as to that of the stability peaks
for the shell model of the ground states of the clusters reported
in Fig. 4 of [16]. We show these similarities in Fig. 10. In
Fig. 11 we compare our second derivative of WN,N with the
stability peaks of Fig. 6 of [26].

The trend of the ionization energy of fullerenes Cn as a
function of n has been calculated using density-functional
theory and is reported in Fig. 1 of [29]. In Fig. 12 of the
present paper we compare the lower curve of this figure with
the results of our model. The qualitative trend seems to be
the same apart from the obvious scale differences (Figs. 11
and 12).

We have addressed also the problem of static polarizability;
Figs. 6 and 7 of the present paper indicate an essentially
parabolic dependence of the polarizability of our model
from the number of electrons. This is at variance with the
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FIG. 12. Ionization potential in eV vs the number N of atoms
extended to 1000 atoms. The inset shows the ionization potential
calculated using density functional theory; data are adapted from
Fig. 1 of [29].

results of the density-functional theory in the random-phase
approximation presented for the extended fullerene series in
Fig. 2 of [30]. Evidently, our toy model, consisting of free
electrons, is not able to capture the physics of electrons which
are strongly localized around the carbon nuclei.

It may be appropriate at this point to spend a few words on
the exchange and correlation effect [6]. Using these results,
we speculate that exchange and correlation should yield
an attractive contribution to the effective electron-electron
interaction. Such a contribution, however, is a function of the
Seitz radius, which becomes negligible at low electron density.

V. CONCLUSIONS

Inspired by John Ziman’s ideas on mathematical models in
theoretical physics [37] and presumably influenced by many
discussions on this subject that took place within his group
almost 50 years ago in Bristol and subsequently spread around
all the physics world, we have considered a mathematical
model consisting of a finite but large number N of noninter-
acting electrons constrained on a spherical surface. We have
calculated a number of physical properties that such an ideal
system should possess, with particular reference to chemical
stability, ionization potential, electric polarizability, and the
generation of high-order harmonics in a strong laser field, and
we have compared the results of our calculations with the
analogous physical properties experimentally observed (when
experimental results are available) or theoretically predicted
(by relatively sophisticated theoretical chemistry techniques
on much more realistic models) for hollow spherical clusters
of atoms and molecules. Given the simplicity of our toy
model, we could not expect quantitative agreement. Thus we
have focused on trends of the selected physical properties
as functions of N . Our calculations indicate the prominence
of shell effects for all the physical properties considered,
yielding a distribution of magic numbers N , many of which are
observed in hollow quasispherical clusters. All our calculations
have been performed analytically, although for reasons of
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clarity the results are summarized numerically in the figures.
The trend in the ionization potential for our toy model is
qualitatively similar to that obtained for the fullerene series
using density-functional theory. In contrast, the electric static
polarizability behaves quite differently as a function of N from
that obtained using self-consistent density-functional methods;
this discrepancy is presumably due to the impossibility for
our model to account for effects of localization of the
electrons around nuclei of cluster atoms. Finally, it may
also be appropriate to remark that the toy model discussed
here seems to suggest the possibility of establishing chemical
bonds between two different clusters exploiting the formation
of closed shells by sharing electrons in incomplete valence

shells. By a stretch of imagination one could thus envisage a
rich new chemistry of clusters where the building blocks are
whole magic clusters rather than atoms and molecules. In this
perspective the mathematical model presented here might turn
out to be a useful tool for a preliminary design of complex new
nanoscale materials involving hollow molecules.
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