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Abstract

The intricate pathways of fluid—mineral reactions occurring underneath active hydrothermal systems are explored in this
study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and
structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal
test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the
EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in
variable proportions) with Ischia’s reservoir rocks (the Mount Epomeo Green Tuff units; MEGT). The mineral assemblage
and composition of such MEGT units were initially characterised by ad hoc designed optical microscopy and electron micro-
probe analysis, showing that phenocrysts (dominantly alkali-feldspars and plagioclase) are set in a pervasively altered (with
abundant clay minerals and zeolites) groundmass. Reaction of infiltrating waters with MEGT minerals was simulated over a
range of realistic (for Ischia) temperatures (95-260 °C) and CO» fugacities (107°2 to 10%%) bar. During the model runs, a set of
secondary minerals (selected based on independent information from alteration minerals’ studies) was allowed to precipitate
from model solutions, when saturation was achieved. The compositional evolution of model solutions obtained in the 95—
260 °C runs were finally compared with compositions of Ischia’s thermal groundwaters, demonstrating an overall agreement.
Our simulations, in particular, well reproduce the Mg-depleting maturation path of hydrothermal solutions, and have end-of-
run model solutions whose Na—K—-Mg compositions well reflect attainment of full-equilibrium conditions at run temperature.
High-temperature (180-260 °C) model runs are those best matching the Na—K-Mg compositions of Ischia’s most chemically
mature water samples, supporting quenching of deep-reservoir conditions for these surface manifestations; whilst Fe, SiO,
and, to a lesser extent, SO4 contents of natural samples are better reproduced in low-temperature (95 °C) runs, suggesting that
these species reflect conditions of water—rock interaction in the shallow hydrothermal environment. The ability of model runs
to reproduce the compositional features of Ischia’s thermal manifestations, demonstrated here, adds supplementary confi-
dence on reaction path modelling as a realistic and insightful representation of mineral-fluid hydrothermal reactions. Our
results, in particular, demonstrate the significant impact of host rock minerals’ assemblage in governing the paths and trends
of hydrothermal fluids’ maturation.
© 2012 Elsevier Ltd. All rights reserved.

1. INTRODUCTION
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waters and host rock formations (Drever, 1997). The major
element concentrations of groundwaters are, however, rad-
ically dissimilar from compositions of pristine (unaltered)
aquifer rocks, reflecting the variable ‘weatherability’ of dif-
ferent primary minerals, and the formation of secondary
solid phases during incongruent dissolution (Krauskopf
and Bird, 1995; Berner and Berner, 1996; Stumm and Mor-
gan, 1996; Langmuir, 1997).

From a thermodynamic viewpoint, geochemical pro-
cesses involving groundwaters and reservoir rock minerals
are far from equilibrium. However, rock weathering can
conventionally be parceled into a sequence of partial equi-
librium states, in which the system is out of equilibrium
overall, but equilibrium conditions exist between dissolved
aqueous species and some secondary minerals (Helgeson,
1968). In such a view, water—rock interactions are described
by an array of mass transfer reactions from primary miner-
als to other phases in the system (e.g., the aqueous solution
and secondary minerals) (Helgeson et al., 1969, 1970). By a
combination of mass balance and equilibrium relations, the
chemical evolution of aqueous solutions and mineral para-
genesis over time can be tracked (Helgeson, 1968, 1979;
Helgeson et al., 1969, 1970; Steinmann et al., 1994), and
compared with natural groundwater compositions (taken
to represent different steps of water maturation along a sin-
gle evolutionary trend).

Even though initially developed to investigate water—
rock interactions in shallow/surface (often sedimentary)
environments (Helgeson, 1968, 1979; Helgeson et al.,
1969; Gislason and Eugster, 1987), the Helgeson’s ap-
proach of rock-solution mass transfer has also been applied
to quantitative exploration of reaction dynamics in hydro-
thermal systems (e.g., Giggenbach, 1984). In such extreme
environments, intense water-rock reactions are driven by
prevailingly high temperatures and supply of magmatic/
hydrothermal dissolved gases, making infiltrating waters
particularly aggressive relative to aquifer rocks (Reed,
1982; Giggenbach, 1988; Hedenquist and Lowenstern,
1994; Symonds et al., 2001). While a continuous supply of
acidic gases may maintain the water-rock system at very
immature (far-from-equilibrium) stages in the shallow
hydrothermal envelop, full-equilibrium conditions are more
likely to be reached in deep seated hydrothermal aquifers,
because of far longer timescales of water residence (Giggen-
bach, 1984, 1988). Since kinetics of fluid—mineral reactions
generally decrease with decreasing temperature, deep-equil-
ibrated waters often preserve, upon their ascent toward the
surface, their reservoir-derived compositions, which then
become potentially valuable hydrothermal geo-indicators
(Giggenbach, 1988).

This notwithstanding, reaction path modelling has been
applied at active hydrothermal systems in a relatively lim-
ited number of occasions (Lonker et al., 1993; Gianelli
and Grassi, 2001; Aiuppa et al., 2005; Gambardella et al.,
2005; Hurwitz et al., 2007; Federico et al., 2008; Lelli
et al., 2008; Stefansson, 2010; Gysi and Stefansson, 2011,
2012; Markusson and Stefansson, 2011; Stefansson et al.,
2011; Tempel et al., 2011). This may reflect the inherent dif-
ficulties in playing with the variety of simultaneously occur-
ring mineral-solution reactions, the complex and time/

space-variable paragenesis of secondary minerals, and the
large P-T-redox gradients over relatively small areas, which
are all characteristic of hydrothermal systems.

In this paper, we attempt at applying the principles and
methods of reaction path modeling to quantitatively inves-
tigate water-rock interaction processes at Ischia’s hydro-
thermal system. Ischia, a small active volcanic island in
the Gulf of Naples (Southern Italy), is known to host a
structurally complex hydrothermal system, characterized
by several superposed and interconnected thermal reser-
voirs, recharged by infiltrated meteoric water and seawater
(De Gennaro et al., 1984; Panichi et al., 1992; Caliro et al.,
1999; Inguaggiato et al., 2000; Aiuppa et al., 2006; Morell
et al., 2008; Di Napoli et al., 2009, 2011). Because of this
complex hydrothermal setting, and in light of the composi-
tional variety of surface thermal manifestations, Ischia is a
particularly suitable site to test the potentialities of reaction
path modeling in characterizing hydrothermal mineral—-
fluid reactions. We show below that our model results sat-
isfactorily reproduce the chemical compositions of thermal
fluids, a hint for the significant contribution reaction path
modeling can offer in unrevealing the key processes occur-
ring at volcano-hosted hydrothermal systems.

2. THE STUDY AREA

Ischia, a volcanic field characterized by a resurgent cal-
dera (Orsi et al., 1991), has been the site of recurrent volca-
nism over the past 150 ka, and most recently on 1302 AD
(Arso eruption) (Vezzoli, 1988; Civetta et al., 1991; Orsi
et al., 1996, 2003). Volcanic rocks on the island have been
deposited by both effusive and highly to moderately explo-
sive eruptions. The largest-scale volcanic event is the cal-
dera-forming Mount Epomeo Green Tuff eruption
(MEGT) dated at ~55 kyr BP (Vezzoli, 1988), during which
thick (>270 m; Brown et al., 2008) green-coloured ignim-
brite deposits of trachitic to phonolitic composition were
erupted (Civetta et al., 1991; Orsi et al., 1991; Brown
et al., 2008). The subsidence resulting from the MEGT cal-
dera collapse led to flooding of most of the present island
by the sea, and to intense submarine alteration of MEGT
deposits. Marine terrigenous formations topping the
MEGT indicate that a 70-120 m deep basin formed in the
central part of the island (Barra et al., 1992). A resurgence
phenomenon, started not before 33 kyr BP, caused uplift of
the central portion of the island and formation of the
Mount Epomeo resurgent block (Orsi et al., 1991). This
resurgence is thought to have played a structural control
on eruption dynamics during the last (<10 Ka) eruptive cy-
cle (Orsi et al., 1991).

Ischia volcano is presently undertaking a period of qui-
escence, with intense seismicity, hot water discharges, fuma-
rolic emissions and diffuse soil degassing. The presence of a
large hydrothermal system at Ischia was firstly demon-
strated in the late 30s, during a project of exploitation of
thermal resources in the southern sector of the island. Re-
sults of explorative drillings (Ippolito, 1942; Penta, 1949,
1954; Penta and Conforto, 1951a,b) and for compositions
of thermal water discharges and fumarolic emissions (Cara-
pezza et al., 1988; Panichi et al., 1992; Tedesco, 1996; Caliro
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et al., 1999; Inguaggiato et al., 2000; Chiodini et al., 2004;
Aiuppa et al., 2006) were recently synthesised in a model
of hydrothermal fluid circulation (Di Napoli et al., 2009,
2011), in which a shallow thermal aquifer, recharged by
infiltrating meteoric and marine waters, is thought to be
heated by fluids rising from two distinct deep hydrothermal
reservoirs, having equilibrium temperatures of ~150—
200 °C and ~260 °C, respectively. Heat sustaining hydro-
thermal circulation is overall provided by a deep magma
storage zone (Moretti et al., 2011), which degassing pro-
vides a persistent volatile flux (Carapezza et al., 1988; Tede-
sco, 1996; Inguaggiato et al., 2000; Chiodini et al., 2004; Di
Napoli et al., 2009).

3. MATERIALS AND METHODS

Our models here make use of pre-existing (thermal
waters) and ad hoc obtained (minerals) information on
compositions of a variety of Ischia’s geological materials.
This section briefly summaries the analytical methods used.

3.1. Thermal waters

The water chemistry data we make use of in this manu-
script are taken from Di Napoli et al. (2009). We extracted
the subset of thermal (>25 °C) waters (109 samples) from
the original compilation. These data were obtained using
traditional analytical techniques in geothermal exploration
(e.g., ion chromatography for major dissolved ions, with
analytical accuracy better then +3%; spectrophotometry
for Si and ICP-MS for Fe). The reader is referred to the ori-
ginal Di Napoli et al. (2009) manuscript for details on ana-
Iytical procedures and uncertainties.

3.2. Rock samples

Modal and mineral chemistry data were obtained on a
representative sample (MEGT0322) of the Mount Epomeo
Green Tuff deposit. The modal abundances of the main and

Table 1
Modal composition of MEGT0322 sample.

Mineral vol.%

Phenocrysts

Alkali—feldspar 2
Plagioclase

Clinopyroxene

Black mica

Opaque oxide

S I, BN B

Groundmass
Alkali-feldspar
Black mica
Opaque oxide
Zeolites

Clay minerals

Fe oxyhydroxides
Vesicles

Sum 100

[SS IS
hn = O = o

Gypsum is estimated at 0.04 vol.% based on bulk-rock S content of
~100 mg/kg (Fowler et al., 2007).

accessory minerals in MEGT0322 were first evaluated by
optical microscopy (Table 1). Then, mineral chemistry data
were obtained by electron microprobe analysis (EMPA) at
the HP-HT Laboratory of Experimental Volcanology and
Geophysics of Istituto Nazionale di Geofisica e Vulcanolo-
gia, Sezione di Roma, Italy. Data are reported in Table 2.
EMPA measurements were performed using a Jeol JXA
8200 Superprobe, equipped with five wavelength dispersive
spectrometers, and an energy dispersive spectrometer.
Operating conditions were 15 kV accelerating voltage and
7 nA probe current. A probe diameter of 5 um, with a final
spot size of about 7 um, was used to reduce alkali loss.
Counting time was 10 s on peak and 5s on background,
and data reduction was carried out using a ZAF correction
method.

4. GEOCHEMICAL AND MINERALOGICAL
CONSTRAINTS

In a forward model approach as that undertaken here, a
complete a priori knowledge of the mineral-fluid system is
an essential pre-requisite for quantitative exploration of
hydrothermal reactions. Correct initialisation of reaction
path models, in particular, requires knowledge of the envi-
ronment (P, 7, recharge water salinity and chemistry) of
water-rock interactions and the mineral assemblage and
composition of dissolving host rocks. We review below
the constraints we can set, based on existing knowledge,
to confine our computations to a set of conditions pertinent
to the Ischia’s system.

4.1. Structure of the hydrothermal system, and environments
of water-rock interaction

In spite of its limited extension (~46 km?), Ischia is char-
acterised by significant heterogeneity in the physical-chem-
ical features of superficial hydrothermal manifestations, a
hint for a complex subsurface hydrothermal circulation.
We build on previous work on Ischia (Di Napoli et al.,
2009, 2011) to schematically image the structure of the
Ischia hydrothermal system (Fig. 1). This sketch contains
the geological-geochemical constraints used to initialise
our hydrothermal reaction models described below (cf.
Section 5).

Fig. 1 identifies a shallow (depth, about 100 m b.s.l.)
aquifer, likely hosted within the MEGT formation (Celico
et al., 1999; Di Napoli et al., 2011), tapped by drillings in
almost all sectors of Ischia. Groundwaters circulating in
the shallow aquifer have temperatures up to boiling, and
range in composition from diluted bicarbonate waters to
more saline and Cl-rich waters; this fact has been taken
as an evidence of dual (meteoric plus seawater) recharge
to the aquifer (Panichi et al., 1992; Inguaggiato et al.,
2000; Aiuppa et al., 2006; Di Napoli et al., 2009).

The high K/Na ratios and strong Mg-depletion (Mg
concentrations to as low as 0.1 mg/l) of numerous ground-
water samples suggest, however, that the shallow aquifer is
additionally fed (apart from superficial recharge) by hotter
and chemically more mature waters rising from deep hydro-
thermal reservoirs (Panichi et al., 1992; Inguaggiato et al.,



Table 2

Representative EMP analyses of minerals from sample MEGT0322.

Mineral Plagioclase Plagioclase Alkali- Alkali- Alkali- Alkali- Alkali- Clino- Clino- Clino- Clino- Opaque Black mica
feldspar  feldspar  feldspar  feldspar  feldspar pyroxene pyroxene pyroxene pyroxene oxide
Spot label cStdlr c4fdlr c4fd2r clfdl cSbfdlr c5 72 ¢S z1 c2_pxlc c2 pxlr cdpxlc cSpxl c6_ox c2 _bt2
Type m-ph rim  ph rim ph rim ph rim ph rim m-It m-It m-ph core  m-phrim  ph core m-ph core  m-It ph core
SiO, 57.00 60.14 64.92 65.47 65.18 65.79 65.38 47.06 51.35 51.59 51.65 0.07 37.54
TiO, 0.06 0.04 0.04 0.08 0.06 0.13 0.29 0.95 0.65 0.61 0.58 7.41 5.57
ALO; 25.81 24.20 19.07 18.59 18.55 18.38 18.11 6.71 3.90 2.71 1.80 2.81 14.10
FeOror 0.52 0.40 0.29 0.18 0.24 0.19 0.31 7.98 4.56 7.81 8.53 80.06 13.84
MnO b.d.l. b.d.l. b.d.L b.d.l. b.d.l. b.d.L b.d.l. 0.16 0.08 0.44 0.77 0.96 0.31
MgO 0.07 0.02 b.d.l b.d.L 0.02 0.04 0.03 12.41 15.83 14.09 13.11 2.13 15.49
CaO 8.94 6.40 1.05 0.63 0.59 0.24 0.47 23.34 23.51 22.74 23.04 0.10 0.03
Na,O 5.41 6.63 4.30 2.86 2.79 6.43 7.27 0.48 0.13 0.59 0.64 0.59
K,O 1.32 1.78 9.97 12.58 12.68 7.60 5.64 b.d.l. b.d.L b.d.l. b.d.l. 10.08
SrO 0.11 0.04 0.04 0.14 0.15 b.d.l b.d.L n.a. n.a. n.a. n.a.
BaO 0.01 b.d.l b.d.l 0.07 0.27 b.d.l 0.02 n.a. n.a. n.a. n.a. 0.22
Cl 0.05
F 0.58
Sum 99.25 99.65 99.67 100.59 100.53 98.80 97.52 99.09 99.99 100.57 100.11 93.55 98.39
Fe,0; 5.86 1.76 3.34 3.19 51.5
FeO 2.71 2.97 4.80 5.66 33.7
Sum 99.69 100.18 100.90 100.45 98.7
Cations per
formula unit
Si 10.352 10.806 11.828 11.922 11.905 11.968 11.968 1.760 1.878 1.899 1.923 2.745
Ti 0.008 0.006 0.006 0.011 0.008 0.018 0.040 0.240 0.122 0.101 0.077 0.306
AlY 0.056 0.046 0.017 0.001 1.215
Al 1.760 1.878 1.899 1.923 0.000
Al tot 5.524 5.125 4.094 3.990 3.993 3.941 3.907
Fe** 0.079 0.060 0.044 0.028 0.037 0.029 0.048 0.165 0.049 0.093 0.089 0.760
Fe?* 0.085 0.091 0.148 0.176 0.467
Mn 0.005 0.002 0.014 0.024 0.019
Mg 0.019 0.005 0.006 0.011 0.008 0.692 0.864 0.773 0.728 1.688
Ca 1.739 1.231 0.204 0.123 0.116 0.047 0.093 0.935 0.921 0.897 0.919 0.002
Na 1.904 2.309 1.519 1.008 0.989 2.269 2.580 0.035 0.009 0.042 0.046 0.084
K 0.306 0.408 2.318 2.923 2.954 1.763 1.318 0.940
Sr 0.012 0.004 0.004 0.014 0.016 0.000 0.000
Ba 0.001 0.000 0.000 0.005 0.019 0.000 0.001 0.006
F 0.134
Cl 0.006
OH 1.860
Sum 19.944 19.954 20.016 20.024 20.043 20.045 19.963 4.000 4.000 4.000 4.000 10.232
An mol% 43.89 31.15 5.04 3.01 2.83 1.16 2.33
Ab + Sr-f mol%  48.37 58.53 37.65 25.11 24.53 55.62 64.62
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33.05

43.22

72.63

57.30 71.88

10.32

7.74

Or + Cn mol%

Ca at.%

47.82 46.62 47.45

49.70
36.76

40.18 37.57

44.82

Mg at.%
Fe™ at.%

14.98
0.72

7.36 13.20
0.75

0.86

13.54
0.73

0.67

mg-number
X’Usp

0.21
Ti-

Ferroan

Andesine Sanidine  Sanidine  Sanidine  Na- Anorthoclase Ferroan Ferroan Ferroan Ferroan

Andesine

Classification

name

phlogopite

diopside diopside diopside magnetite

diopside

sanidine

Aluminian Ferroan
ferroan

Aluminian

Aluminian
ferrian

Adjectival

modifiers names
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Major and minor oxides as wt.%. Fe,O3 and FeO in Cpx are calculated on the basis of stoichiometry; all Fe in feldspars is recalculated to Fe*™; b.d.1. = below detection limit; n.a. = not analyzed;

ph

microphenocryst; m-It = microlite. The cation proportions are calculated on the basis of: 6 oxygens for Cpx, 32 oxygens for feldspars and opaque oxides, and 11 oxygens

phenocryst; m-ph =

for black mica. An = anorthite; Ab = albite; Sr-f = Sr-feldspar; Cn = celsian; Fe* = Fe*" + Fe*" + Mn?"; mg-number = atomic Mg>"/(Mg>" + Fe*" + Mn”"); X’Usp = ulvéspinel as molar

fraction. Cpx was classified according to the International Mineralogical Association (IMA) 1990 rules, by the PYROX vers. 99.12 software (Yavuz, 2001), with adjectival modifiers names after

Rock (1990). Black mica was classified according to IMA 1998 nomenclature scheme by the Mica + software (Yavuz, 2003).

2000; Aiuppa et al., 2006; Di Napoli et al., 2009, 2011).
These fluids fall indeed in the field of partially equilibrated
waters in the commonly used Giggenbach’s (1988) Na-K-
Mg triangular diagram (examples of which are given in
Fig. 9), and are therefore likely to have long interacted
(and equilibrated) with rocks at reservoir conditions. The
nature (P-T conditions) of these deep hydrothermal reser-
voirs at Ischia have been inferred via geothermometric stud-
ies on surface manifestations (Panichi et al.,, 1992;
Inguaggiato et al., 2000; Chiodini et al., 2004; Di Napoli
et al., 2009) and explorative drillings (Ippolito, 1942; Penta,
1949, 1954; Penta and Conforto, 1951a,b). These studies
concur to support the existence of at least two superposed
hydrothermal reservoirs, probably both hosted within the
MEGT series. The shallowest (150-300 m of depth) of the
two reservoirs, clearly identified in the SW-sector of the is-
land (Di Napoli et al., 2009), has inferred equilibrium tem-
peratures of 150-200 °C (Fig. 1), and is thought to be
mainly recharged by meteoric water—seawater mixtures:
Di Napoli et al. (2009) identified two distinct types of ther-
mal fluids (the Serrara and Citara thermal end-members;
essentially differing for their salinity) being the surface dis-
charges of this 150-300 m deep reservoir. The deepest reser-
voir is supposed to lie at about 1000 m (or more) of depth
b.s.l., and has clear surface expression only on the northern
portion of the island; a hot (~260 °C), low-salinity and
HCOs-rich fluid (the so-called Casamicciola thermal end-
member; Di Napoli et al., 2009), indicative of a prevalent
meteoric recharge, circulates in this reservoir.

There is clear chemical and isotopic evidence (Carapezza
et al., 1988; Tedesco, 1996; Inguaggiato et al., 2000; Chio-
dini et al., 2004; Di Napoli et al., 2009) for that the Ischia’s
thermal reservoirs, described above, are supplied by mag-
ma-derived volatiles, likely sourced by a degassing and
cooling magmatic body at depth (Moretti et al., 2011). This
ultimately sustains fluids circulation.

4.2. Rock and mineral chemistry

At Ischia Island, there is a general consensus on that
hydrothermal circulation takes place mostly within thick in-
tra-caldera ignimbrite deposits produced by the MEGT
eruption (Sbrana et al., 2009, 2010). The MEGT pyroclastic
sequence (recently studied in detail by Brown et al., 2008)
includes pumice falls, non-welded to weakly welded ignimb-
rites, and lithic breccia deposits. The juvenile portion of the
MEGT is made up of pumices, and dense glassy clasts in
breccia. Whole-rock composition of MEGT juvenile por-
tion varies up-section from trachytic to phonolitic (Brown
et al., 2008, and INGV-Osservatorio Vesuviano, unpub-
lished data), a recurrent compositional range over the entire
Ischia volcanic history (e.g., Vezzoli, 1988; Civetta et al.,
1991; D’Antonio et al., 2007). The characteristic green col-
our of the MEGT has been attributed to post-emplacement
alteration, due to prolonged chemical exchange with fluids
of marine origin (Vezzoli, 1988; Sbrana et al., 2009, 2010)
after the caldera collapse.

The MEGTO0322 sample, which according to previ-
ous work (Brown et al, 2008 and INGYV-Osservatorio
Vesuviano, unpublished data) well averages the
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Fig. 1. Geochemical conceptual model of the chemical-physical structure of Ischia’s hydrothermal system. Depth, temperature and chemical
composition data for Ischia’s reservoirs are taken from Di Napoli et al. (2009, 2011). The main outcomes of thermal budget proposed by Di
Napoli et al. (2009) are also indicated. Degassing of a cooling magmatic body at depth sustains the activity of the Ischia’s hydrothermal
system, providing heat Q;, (transferred by a volatiles flux) to the deep and shallow hydrothermal reservoirs. In a steady state, the same heat
amount is supplied to the shallow aquifer from the beneath hydrothermal reservoirs (Qres = Qi) by rising liquid and vapour phases. This
amount of heat is (i) dissipated by the shallow groundwater system to warm the shallow infiltrating waters (meteoric and seawater) up to the
boiling temperature (Qgv), (ii) lost by conduction to the overlying rocks (Q.q), and finally (iii) spent by steam transport and condensation in

the very shallow levels of soil in active fumarolic fields (Qg).

mineralogical-chemical features of the MEGT deposit, was
selected in this study as representative of the primary rock
materials thermal waters interact with at Ischia. The sample
was collected from a matrix-rich, non-welded ignimbrite de-
posit, cropping out in intra-caldera position. Highly por-
phyritic (~36 vol.%) poorly vesicular (~5 vol.%; likely as
an effect of vesicle sealing due to secondary mineral deposi-
tion) juvenile pumice fragments are abundant (~75 vol.%)
over the deposit.

MEGT0322 has a primary mineral assemblage (Table 1)
including phenocrysts of alkali—feldspar (~20 vol.%), pla-
gioclase (~7 vol.%), clinopyroxene (~5 vol.%), black mica
(~3 vol.%) and opaque oxides (~1 vol.%). The phenocrysts,
occurring both as single individuals and glomerocrysts, are
set in a felty, glass-rich groundmass, where the original
glass shards have been almost completely replaced by abun-
dant clay minerals and zeolites in approximately similar
amounts (35% of groundmass), minor amounts of Fe-oxy-
hydroxides (10 vol.% of groundmass) and very low

amounts of gypsum (<<1 vol.% of groundmass) (Table 1).
Sparse microlites of mostly alkali-feldspar (~15 vol.% of
groundmass), minor black mica (~3 vol.% of groundmass)
and opaque oxide (~2 vol.% of groundmass), are also pres-
ent (Table 1). An additional petrographic evidence of per-
vasive rock alteration is the common occurrence of
optically distinct alkali—feldspar overgrowths around alka-
li-feldspar phenocrysts (coronae; see later).

Results of EMPA analyses on MEGTO0322 minerals (Ta-
ble 2) indicate that:

(1) Alkali—feldspars occur as the most abundant, some-
times rounded, phenocrysts in the analyzed rock.
They spread over the compositional field of sanidine
(from Or;3Ab,s to Ors;Absg), although single pheno-
crysts are poorly zoned (Fig. 2a).

(i1) Plagioclase varies in the field of andesine (Ang4.3;
Abyg_so; see Fig. 2a) and shows a slight chemical nor-
mal zoning. There are recurrent K-rich coronae of
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alkali—feldspar which, given the evolved chemical
character of the host whole-rock (trachytic) and of
the coexisting Na-rich plagioclase, are thought to
be secondary (= adularia), due to Na-loss under
hydrothermal conditions, as observed in deep-seated
volcanic rocks (e.g., D’Antonio and Kristensen,
2005).

Following the IMA 1990 pyroxene nomenclature
scheme (Yavuz, 2001, and references therein), all
analyzed clinopyroxenes (cpx) are ferroan diopside.
In terms of relative enstatite and ferrosilite contents,
they are slightly variable from EnysFs; to EnzgFs;s;
Mg# (atomic 100 * Mg/Mg + Fe,o + Mn), in the
range 86-72 (Fig. 2b). The wollastonite content
slightly decreases from 50 to 47 with increasing Fs
contents (a possible effect of alteration), differently
from the “usual” clinopyroxenes of alkaline affinity
(Carbonin et al., 1984). The most primitive cpx, with
a composition approaching that of diopside
(Mg# = 86), has been found as the rim of a reversely
zoned phenocryst. From the data above, we derive
the following characteristic composition of the
MEGT0322 ferroan diopside: CagoMgg gFeg 3Si,0s.

(iii

=
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Fig. 2. (a) Ternary classification diagram Ab-An-Or for feldspars
(Deer et al., 1992) showing all analyzed plagioclase and alkali—
feldspar crystals from sample MEGTO0322. Ab = albite;
An = anorthite; Or = orthoclase. Early = phenocryst cores;
late = phenocryst rims, microphenocrysts and microlites. (b)
Portion of the pyroxene quadrilateral classification diagram Di—
Hd-En-Fs (Rock, 1990) showing all analyzed clinopyroxene
crystals from sample MEGT0322. Wo = wollastonite; En = ensta-
tite; Fs = ferrosilite. Early = phenocryst cores; late = phenocryst
rims, microphenocrysts and microlites.

(iv) According to the IMA 1998 nomenclature scheme
(Yavuz, 2003, and references therein), the common
black mica, which occurs in the analyzed sample, is
a ferrian phlogopite (corresponding to Mg-biotite, a
disapproved IMA name). Its composition is quite
homogeneous, with Mg# (atomic Mg/Mg + Fe,)
around 0.67.

(v) Ti-magnetite is the only opaque oxide occurring as
micro-phenocrysts in the analyzed MEGT sample.
Its ulvospinel content (calculated according to Stor-
mer, 1983) is around 23-24%.

5. QUANTITATIVE MODELLING OF
HYDROTHERMAL REACTIONS

We use reaction path modeling in the attempt to quan-
titatively constrain the chemical evolution of the fluid-min-
eral system upon water-rock hydrothermal interaction. Our
target is to simulate the mass exchanges occurring between
infiltrating recharge water (starting solution) and irrevers-
ibly dissolving rock-forming minerals at different stages of
the water-rock interaction process, and at different 7" and
P conditions (at the hydrothermal reservoirs conditions
shown in Fig. 1); and to compare model results with natural
samples (alteration mineral assemblage and thermal
waters). Computations are performed throughout via the
EQ3/6 code (version 7.2b; Wolery and Daveler, 1992) (see
Appendix A for details on model theory).

5.1. Initialization of model runs

Application of reaction path modelling to a given case
study requires a number of external constraints to be used,
in order to confine calculations to a number of close-to-real
solutions. Modelling of water-rock hydrothermal reactions
requires exploring the wide range of P-7-X conditions gen-
erally encountered in these highly dynamic systems. In this
application, we initially run a set of reaction path simula-
tions at 95 °C, which target was to quantitatively character-
ise water-rock reactions at conditions relevant to the
Ischia’s shallow groundwater system (Fig. 1). In a second
stage, we extended our calculations to conditions relevant
to deeper and hotter Ischia hydrothermal reservoirs
(Fig. 1), by imposing temperatures of 180 °C (an average
of T estimates for the intermediate reservoir of Fig. 1)
and 260 °C (deep reservoir conditions; Fig. 1) in our iso-
thermal model runs.

In view of the relative slow circulation (Celico et al.,
1999) of groundwaters inside Ischia reservoir(s), our reac-
tion path simulations were carried out in closed system
mode, whereby solid reactants and secondary minerals are
assumed to remain in contact with hydrothermal solutions
during the entire process. We yet imposed the system to be
open to a CO,-dominated gas phase, to satisfy the evidence
of persistent supply of external (deep-rising) CO, to Ischia’s
hydrothermal reservoirs (Moretti et al., 2011). Conceptu-
ally, this corresponds to simulating the interaction of
hydrothermal solutions with a large (infinite) external
CO, reservoir, which acts as to buffer CO, fugacity.
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Fig. 3. Scatter plots for (a) 8'%0 vs. Cl and (b) Mg vs. Cl for Ischia’s thermal groundwaters (data from Di Napoli et al., 2009). The diagrams
confirm that Ischia groundwaters can be interpreted as mixtures (in various proportion) of meteoric water and seawater (sw) (the mixing curve
is shown as a solid black curve). In the diagrams, Ischia water samples are clustered into 6 main groups, each characterized by a relatively
narrow range of Cl concentrations, and therefore similar seawater mixing contributions (%sw; see legend). Solid blue lines in (b) show the
model (&-dependent) evolution of solutions obtained in 6 different reaction-path model runs (all at 95 °C). Each simulation uses, as initial
solution, a different meteoric water-seawater mixtures (2, 8.5, 15, 33, 63 and 80%sw; Table 3), each pertinent to one of the above natural
sample clusters. The extent of model reaction advancement is exemplified by the specific values of the reaction progress, reported along the

95 °C — 2%sw model curve (numbers as logg&,).

Simulations at 95 °C were carried out at fixed (constant)
CO, fugacity of 1072 bar, which is representative of shal-
low reservoir conditions (Di Napoli et al., 2009). Although
no direct information of CO, fugacity at deep reservoir(s)
condition is currently available, we can make an indepen-
dent guess by assuming attainment of full-equilibrium con-
ditions (water—gas-rock system) in the deep Ischia
hydrothermal reservoirs. In such an assumption, at any gi-
ven temperature, CO, fugacity is fixed by the reaction
involving (Giggenbach, 1984, 1988):

Ca-Al-silicate + K-feldspar + CO,
> calcite + K-mica + 4Si0, (1)

The following empirical relation is proposed by Giggen-
bach (1984) to calculate the CO, fugacity values in the
range 100-350 °C:

log fco, = 0.0168 - T(°K) — 8.369 )

By using relation (2), we calculate CO, fugacities of 1077

to 10° at 180 and 260 °C, respectively. These values, in good
agreement with those reported in Chiodini and Marini
(1988), were imposed in our high-temperature model runs.

Oxygen fugacity (fo,) was not an externally fixed in our
simulations, and was left to vary during the reaction pro-
gress from its original value in the initial solution (cf.
Section 5.1.1).

5.1.1. Initial solutions

Chemical and isotopic measurements on Ischia’s ther-
mal water discharges clearly indicate that hydrothermal res-
ervoir fluids (both shallow and deep; see Fig. 1) are
originally mixtures of local meteoric water and seawater
(cf. Section 4.1) (Panichi et al., 1992; Inguaggiato et al.,
2000; Aiuppa et al., 2006; Morell et al., 2008; Di Napoli
et al., 2009, 2011). As demonstrated by combined geochem-
ical-geophysical observations (Di Napoli et al., 2011), mix-
ing proportions between the two contributing components
vary over the island, depending on distance from the sea-
shore and local hydrological/structural conditions. From
concentrations of Cl and 8'%0 (two conservative parame-
ters during mixing) in natural samples (Fig. 3a), we estimate
seawater (sw) contributions in the mixtures ranging from
0% to 100%. To make the effect of meteoric water—seawater
mixing clearly visible in our diagrams, we have arbitrary
grouped our samples into six main clusters of increasingly
more saline (more seawater-like) waters, each characterized
by a relatively narrow range of Cl-concentrations (Fig. 3b).

The extent of meteoric water-seawater mixing upon
infiltration governs the composition of recharge fluids
entering the hydrothermal reservoir(s). To account for this
effect, we used, as starting solutions for our EQ3/6 model
runs, 6 different “initial solutions”, each pertinent to one
of the above described natural sample clusters, the
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Table 3

Chemical composition of the initial aqueous solutions used in the geochemical modeling.

Species 2%sw 8.5%sw 15%sw 33%sw 63%sw 80%sw
Na* 226 951 1676 3685 7032 8928

K" 8.4 35.3 62.2 136.6 260.7 330.9
Mg>" 27 114 201 442 843 1071
Ca** 8.8 36.6 64.3 141.2 269.3 341.9

Cl™ 407 1710 3013 6622 12639 16046
NO;~ 50x107° 5.0 % 107° 50x107° 50x107° 49 x107° 49 x107°
S0, 56.9 239.6 422.3 928.2 1771.4 2248.9
HCO;~ 9.0E-05 2.2E-04 3.4E-04 6.9E-04 1.3E-03 1.6E-03
SiO, 0.09 0.38 0.67 1.46 2.80 3.55

Sr?t 0.16 0.67 1.18 2.60 4.96 6.30

Fe** 42x107° 1.8 x 107 3.1x107* 6.9 x107* 13x1073 1.6 x 1073
Ba®* 1.7 x 1073 1.7 x 1072 1.7 x 1073 1.7 x 1073 1.7 x 1073 1.8 x 1073
A" 2.7x107¢ 9.4 x107° 1.6 x107° 3.5%107° 6.6 x 107° 83 x107°
Initial solution pH at 15°C

2%sw 7.94

8.5%sw 9.49

15%sw 9.57

33%sw 9.66

63%sw 9.64

80%sw 9.68

%sw is the percentage (% vol.) of seawater contribution to the mixing (see text). Concentrations of different species are in mg/l.

compositions of which are reported in Table 3: 2%, 8.5%,
15%, 33%, 63%, 80% in vol. of seawater contribution to
the mixing. These so-obtained model solutions were used
as initial solutions for the 95-260 °C model runs described
below. For clarity of data presentation, results of only 4
(2%, 8.5%, 63% and 80% sw) over 6 model runs conditions
are shown in the following Figures, and discussed through-
out the manuscript.

5.1.2. Solid reactants

All model simulations were carried out by allowing irre-
versible reaction of initial solutions (cf. Section 5.1.1) with
the assemblage of mineral phases listed in Table 4. The fol-
lowing phases were used as solid reactants to initialise our
reaction path modelling simulations: sanidine (Or;;Abyg),
plagioclase (AbsyAngg), a Fe-rich diopside (CagoMgps.
Fe(*1)0.351,0), biotite (annite 50%, phlogopite 50%), mag-
netite, zeolite (as pure heulandite), a smectite solid solution
(see Appendix D), hematite (a proxy for the Fe-oxyhydrox-
ides recurrently detected — 10% of the total groundmass and
~6% of the whole rock — in MEGT0322) and gypsum. The
above mineral compositions reflect mineral chemistry data
on the MEGTO0322 representative sample (Table 2). Table 4
also lists, for each of the selected solid reactants, the
adopted specific surface areas and kinetic dissolution
parameters, taken from a variety of literature sources.
Attention was paid to select results of laboratory experi-
ments performed on minerals of similar grain size as
MEGT natural crystals. In the assumption that pore spaces
are water-saturated, we used an effective inter-granular
porosity of 0.5 (Calcaterra et al., 2004; Colella et al.,
2009) to calculate the total volume of rock (1222 cm®) react-
ing with 1kg of water solution. From this, the specific
reacting mass for the different minerals (Table 4) was

calculated from their modal proportions in MEGT0322
rock (Table 1).

6. MODEL RESULTS
6.1. Dissolving primary minerals

In our model runs, the primary MEGT minerals (both
phenocrysts and in groundmass) dissolve irreversibly in
proportions dictated by their abundances and dissolution
rates (Eq. A2). Fig. 4a exemplifies the case of a typical mod-
el run (7 =95 °C; initial solution: 2% sw), and shows the
cumulative moles of dissolved minerals plotted against the
reaction progress variable (logf;). At all conditions ex-
plored, the reacting primary minerals dissolve more rapidly
in the early steps of the model simulation (—1000 <logé&;
< =2, thus producing an initial steep increase of destroyed
mineral amounts. As more mature reaction stages (for
log&; > —1) are attained, primary minerals appear to dis-
solve at more gentle rates. Gypsum, the most soluble
species among the considered minerals, is totally dissolved
at logf, = —2.

The various minerals contribute chemicals to the model
solutions in proportions varying from one run to another.
At 95 °C (and 2%sw initial solution; Fig. 4a), smectite, zeo-
lite and plagioclase appear to dissolve most; whilst sanidine,
diopside phenocrysts and hematite in groundmass are the
least reactive minerals, followed by sanidine in groundmass
and biotite and magnetite, both as phenocrysts and ground-
mass minerals.

While this mineral sequence is roughly maintained at all
explored conditions, primary minerals are seen to dissolve
more effectively at 260 °C than in 95 °C runs. Comparison
of 95°C and 260 °C model runs (both initialised with



Table 4

Specific surface areas and thermodynamic parameters in the kinetic equations in Appendix (Eq. A2) and (Eqs. A4)—(A6) used in the EQ3/6 simulations.

Mineral mol/kg BET specific surface Acidic mechanism Neutral mechanism Basic mechanism References
water (mol)  area (cm? g’l) log k E, my log k E, log k E Hor
(molm2s™") (kJ mol ™) (mol m—2 s’l) (kJmol™") (molm2s™") (kJmol™")

Phenocrysts

Sanidine 2.36 22 —10.06 51.7 0.5 —1241 38 -21.2 94.1 —0.82 Palandri and Kharaka (2004) and
reference therein

Plagioclase 0.89 1116 —8.88 53.5 0.54 —-1147 57.4 Palandri and Kharaka (2004) and
reference therein

Diopside 1.01 860 —7.51 95.5 0.76 Chen and Brantley (1998)

Biotite 0.28 5000 —9.84 22 0.53 —12.55 22 Palandri and Kharaka (2004) and
reference therein

Magnetite  0.29 1260 —8.59 18.6 0.28 —10.78 18.6 Palandri and Kharaka (2004) and
reference therein

Groundmass

Sanidine 1.05 1116 —10.06 S51.7 0.5 —1241 38 -21.2 94.1 —0.82 Palandri and Kharaka (2004) and
reference therein

Biotite 0.16 2.00E+04 —9.84 22 0.53 —12.55 22 Palandri and Kharaka (2004) and
reference therein

Magnetite  0.34 1260 —8.59 18.6 0.28 —10.78 18.6 Palandri and Kharaka (2004) and
reference therein

Zeolite 2.79 1715 -7.8 58 0.7 —11.8 58 -10 58 0.3 Ragnarsdottir (1993)

Smectite 0.86 6.40E+05 —10.98 23.6 0.34 —12.78 35 —16.52 58.9 —0.4  Palandri and Kharaka (2004) and
reference therein

Hematite 2.52 1060 -9.39 66.2 1 —14.6 66.2 Palandri and Kharaka (2004) and
reference therein

Gypsum 0.00684 3000 -2.79 0 Palandri and Kharaka (2004) and

reference therein

Masses of solid phases (mol/kg water) are derived from the modal abundances (Table 1). The BET specific surface areas are derived from literature data. The rate constant values (log k) are listed
for dissolution at 7'= 25 °C with the exception of Diopside which is referred at 7= 90 °C. Ea is the activation energy and nH and nOH are the orders of the reactions (Eqgs. A4 and A6).
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Fig. 4. (a) Molar amounts of primary minerals (listed in Table 4)
dissolving into model solutions during a typical reaction path run
at 95 °C (the 2%sw initial solution example is shown); (b) End-of-
run molar percentages of primary minerals destroyed in 95 °C (blue
bar) and 260 °C (red bar) model runs, both initialized with a 2%sw
initial solution. Numbers on the right of each bar couples indicate
the cumulative amounts (moles) of destroyed minerals at the end of
reaction path (95°C/260°C). Results highlight that primary
mineral dissolution is enhanced by increasing temperature.

2%sw initial solution) (Fig. 4b) highlights that only 10% of
the initial rock is titrated at 95 °C at the end of the simula-
tions (log&; = 0.11), whilst this amount increases to 44% at
the higher temperature (end of the simulations log&; = 0.7).
Dissolution of diopside and sanidine is particularly fa-
voured at high T, increasing from 95 to 260 °C by factors
~10% and ~102, respectively (Fig. 4b).

Overall, our model calculations suggest that sanidine
phenocrysts, while being among the most abundant mineral
phases (~20% of whole rocks), contribute only marginally
to hydrothermal reactions at Ischia: only 0.003-0.08% of
the amount initially present is destroyed at the end of model
runs (at any considered temperature and initial solution
salinity). Instead, rock leaching is dominated, at least in
our model calculations, by groundmass smectites and

zeolites, and plagioclase phenocrysts (Fig. 4b). Smectites
are seen to dissolve almost completely in all of our simula-
tions, while zeolites and plagioclase are partially destroyed
at 95 °C (12-15% of initial moles are destroyed at the end of
run), and completely destroyed at 260 °C (compare Fig. 4b
and Table 4).

6.2. Secondary minerals

As reaction runs proceed, model solutions attain satura-
tion relative to a variety of minerals. The EQ3/6 software
would by default allow for precipitation of all solid phases
existing in the thermodynamic database, and for which sat-
uration has been reached. However, in order to confine our
model computations to a finite number of “geologically sig-
nificant” solutions, we restricted our list of potentially
forming secondary minerals to those truly found in the
alteration mineral assemblages of Ischia’s intra-caldera
MEGT units, or in similar hydrothermal settings (Table 5).
The saturation state of these mineral phases in Ischia’s ther-
mal waters was carefully checked by performing prelimin-
ary speciation calculations on some selected samples.

The secondary mineral assemblage produced during our
95 °C runs is illustrated in Fig. 5a and b. Comparison be-
tween the two plots demonstrates that the chemical compo-
sition of the initial solutions has only a marginal effect on
the type and amount of secondary phases formed. Regard-
less of the initial solution’s salinity, the following secondary
phases are formed in 95 °C model runs (listed in decreasing
order of abundance): smectites (up to 1.8 mol), carbonates
(up to 0.2 mol), and zeolites (up to 0.1 mol). These are the
characteristic mineral phases composing the Ischia’s argil-
litic alteration facies (7'~ 100 °C; Sbrana et al., 2009,
2010). The formed smectites are solid mixtures of mainly
Mg-beidellite (~42%), Ca-beidellite (~25%) and Na-beidel-
lite (~16%); orthorhombic carbonate is a solid mixture of
strontianite (~73%), aragonite (~20%) and witherite
(~7%), while trigonal carbonates are composed by calcite,
magnesite and siderite (~65%, 31% and 4% respectively); fi-
nally, Ca-clinoptilolite (~53%), Na-clinoptilolite (~30%)
and, in minor proportions, Sr-clinoptilolite (~13%) and
K-clinoptilolite (~4%) make up the secondary zeolites.

In addition to the minerals above, a number of less
abundant phases are formed in the 95°C model runs,
including: (i) secondary dolomite (up to ~107> mol), at
least in the most saline initial solutions (Fig. 5b); (ii) sapo-
nite (up to 5.4 x 1073 mol), a solid mixture of mainly Mg-
saponite (~64%) and Ca-saponite (~23%); (iii) pyrite,
anhydrite and barite (up to ~1072 mol); (vi) cristobalite-al-
pha (~4 x 10~ mol), which appears in our EQ3/6 simula-
tions only in the case of saline initial solutions (see Fig. 5b);
more diluted aqueous solutions (e.g., 2%sw) are far from
attaining saturation with respect to quartz polymorphs,
and in such conditions silica is only removed by precipita-
tion of silicate minerals (smectites, zeolites and kaolinite;
Fig. 5a); (v) small amounts of ephemeral goethite, gibbsite
and kaolinite (up to ~10~* mol), appearing in the first reac-
tions steps.

The secondary mineral assemblage produced by water—
rock interactions at Ischia changes dramatically in response
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Table 5
Secondary minerals expected to form in model runs.

T~100°C(1,2,3,4,7)

Argillitic alteration

150 < T7'<200°C (3, 7)
Phyllitic alteration

220-265°C (3, 6, 7, 8)
Propylitic alteration

Clay minerals (kaolinite)
Clay minerals (smectite)

Clay minerals (saponite)
Carbonates (calcite, dolomite)
Zeolites

Fe oxi-hydroxide
Sericite-muscovite

Silica

Sulphates (anhydrite)
Sulphides (pyrite)

Carbonates (calcite)
Clay minerals (chlorite)
Clay minerals (saponite)
Clay minerals (illite)
Feldspar (albite)
Sericite-muscovite

Silica (quartz)
Sulphates (anhydrite)
Sulphides (pyrite)

Carbonates (calcite)
Clay minerals (chlorite)
Clay minerals (saponite)
Feldspar (albite)
Feldspar (K-feldspar)
Silica (quartz)
Sulphides (pyrite)

Data from 5, 6, 7, 8
Data from 3,4, 5,6, 7, 8
Data from 5, 6, 7, 8
Data from 1, 2, 3, 5, 6, 8
Data from 1, 2, 3, 6, 8

5 D5 Uy

Data from 4, 5
Data from 1, 2, 7
Data from 1, 2, 3, 4
Data from 1, 2
Data from 1, 2, 3

Data from 1, 2, 3, 6, 7, 8
Data from 1, 2, 3, 7
Data from 3

Data from 1, 2, 3, 6, 7, 8
Data from 3, 6, 8

Data from 7

Data from 1, 2, 3, 7
Data from 1, 2, 3

Data from 1, 2, 3, 6, 7, 8

Data from 1, 2, 3, 6, 7, 8
Data from 1, 2, 6, 7, 8
Data from 3

Data from 1, 2, 3, 6, 7, 8
Data from 1, 2, 3, 6, 7, 8
Data from 1, 2, 3, 7
Data from 1, 2, 3, 6, 7, 8

(1) De Vivo et al. (1989); (2) Caprarelli et al. (1997); (3) Fulignati et al. (1997); (4) Fulignati et al. (1998); (5) Brocchini et al. (2001); (6) Sbrana

et al. (2009); (7) Ambrosio et al. (2010); (8) Sbrana et al. (2010).

to increasing temperatures, as indicated by results of our
180 °C (not shown) and 260 °C (Fig. 5e and f) model runs.
Of particular relevance are the disappearance of kaolinite,
zeolite and smectite (as beidellite), and the formation of
newer clay minerals typical of phyllitic and propylitic alter-
ation assemblages (Fulignati et al., 1997; Ambrosio et al.,
2010), including Mg-rich chlorite (stable in both 180 and
260 °C model runs) and potassic illite (in 180 °C simula-
tions). Illite is replaced by secondary K-feldspar in 260 °C
model runs, and either one of the two K-bearing minerals
remains stable until the end of the simulations, in coexis-
tence with albite. As additionally shown by Fig. Se and f,
the most abundant secondary phases produced in high-T
model runs are quartz (up to 21 mol precipitated) and dia-
spore (up to 8.5 mol precipitated), which act as sinks for
dissolved Si and Al (a role played at 95 °C by smectite, zeo-
lite and kaolinite; Fig. 5a and b). Up to 3.5 mol of carbon-
ates (orthorhombic is 97% calcite and trigonal is 67%
aragonite) are precipitated in the 180-260 °C model runs,
and a calcic saponite (molar fractions ~0.80 of saponite so-
lid solution) is the only mineral of the smectite group pre-
cipitating in high-T runs (up to 0.3 mol). As in lower-T
simulations, small amounts of Ba—Sr—sulfates, pyrite and
goethite are also formed at 260 °C.

Overall, results of 180-260 °C model runs are consistent
with the typical mineral alteration assemblages found in
hydrothermal settings (Table 4) similar to Ischia. Forma-

tion of secondary albite, illite-K and chlorite during our
180 °C simulations indicate that hydrothermal reactions
in the Ischia’s intermediate reservoir (Fig. 1) take place at
conditions near the phyllitic to early propylitic alteration
facies; whilst replacement of illite-K by K-feldspar, occur-
ring in 260 °C model runs, is evidence for that hydrother-
mal alteration in propylitic facies occurs in the deepest
and hottest reservoir (Fig. 1). Coexistence of albite and
K-feldspar in all 260 °C model runs supports that cation ex-
change on alkali—feldspars becomes dominant at such con-
ditions. Comparison of Fig. 5e and f, however, suggest that
first appearance (stability) of secondary alkali-feldspars de-
pends on composition (salinity) of initial solutions, and is
overall delayed (depressed) at high salinity: this fact, which
is even more visible in 80%sw model runs at 260 °C (not
shown), has marked effects on composition of model solu-
tions (see below).

6.3. Model solutions

The &-dependent compositional evolution of model solu-
tions in our 95-260 °C runs are shown in Figs. 3 and 6-8.
To verify the extent to which results of reaction path mod-
elling offer a realistic representation of hydrothermal reac-
tions occurring at Ischia, we compare in the Figures the
compositions of model solutions and natural samples
(Ischia’s groundwaters).
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Fig. 5. Typical precipitation sequence of secondary solid phases precipitating during model runs: (a) 95 °C, 2%sw; (b) 95 °C, 63%sw; (c) same
as (a) but with muscovite and albite in the list of potentially precipitating minerals (see text; cf. Section 7.1); (d) same as (b) but with muscovite
and albite in the list of potentially precipitating minerals (see text; cf. Section 7.1); (¢) 260 °C, 2%sw; (f) 260 °C, 63%sw. In all diagrams, the y-
scale gives the relative abundance (moles normalized to 100%) of each solid phase in the secondary mineral assemblage formed at any given
reaction progress value (log&;). Simulations well reproduce, at any considered 7, the typical secondary mineralogical assemblage observed in
altered intra-caldera tuffs of Ischia Island (Sbrana et al., 2009, 2010) and other volcano-hosted hydrothermal systems (see Table 5).

A distinctive and long-known (Ellis, 1971) end-product
of water-rock reactions occurring within hydrothermal sys-
tems is the progressive removal of Mg from aqueous solu-
tions, and its entrapment in hydrothermal secondary
minerals. Mg-depletion — relative to its initial contents in re-
charge (either meteoric or marine) fluids — is a peculiarity of
hydrothermal solutions, and can be taken as a proxy for
their “maturity” and, more generally, for the state-of-
advancement of mineral-solutions reactions (Giggenbach,
1988).

Figs. 3b and 6 show that this hydrothermal Mg deple-
tion trend is well reproduced by our model simulations.
The diagrams show that, at all of the explored tempera-
tures (95-260 °C range), model solutions become progres-
sively Mg-poorer as reactions advance (e.g., with
increasing of the reaction progress variable — logg;). Large
Mg-depletions are observed in case of reactions initialised
with more dilute (2-8.5%sw; Table 2) initial solutions; in
such conditions, Mg concentrations decrease of at least
two orders of magnitude in the 95 °C runs, and extremely
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Fig. 6. Model evolution of Mg contents in aqueous solutions,
plotted against the reaction progress variable (log&. In all run
conditions (7 range: 95-260 °C), a progressive Mg-decreasing trend
is observed in model aqueous solutions upon reaction advancement
(Mg-depletion can therefore be used as a proxy for hydrothermal
maturation in Figs. 7 and 8).

low (0.001 mgl~!) Mg contents are obtained at 260 °C
(Fig. 6).

In the assumption that Mg is a good proxy for the
advancement of hydrothermal reactions, we use this ele-
ment as a reference to investigate the behaviour of other
dissolved species, which analytical (natural samples; Di Na-
poli et al., 2009) and modelled (model runs; this study) data
are compared in Figs. 7 and 8 (note that, in drawing the
diagrams, water samples are grouped into six clusters as
in Fig. 3, and according to the procedure described in
Section 5.1.1).

Fig. 7a reveals an overall consistency in Na contents be-
tween natural waters and model solutions. In our runs, Na
contents are seen to invariably increase in the first reaction
steps, when dissolution of primary minerals manifestly pre-
vails over Na-removal by secondary minerals (mainly zeo-
lites and smectites). At low salinities (e.g., for runs with
2%sw and 8.5%sw initial solutions; Fig. 7a), this Na enrich-
ment trend is particularly evident in the 95 °C model runs
(where Na contents of ~1000 mg 1~ or more are reached);
whilst at higher temperatures (180-260 °C runs) model Na
contents are seen to first increase, to then visibly decline
upon reaction advancement (for log&; > —2), when second-
ary albite comes to play (Fig. 5e and f). Model trends are
smoother in runs with 63-80%sw initial solutions
(Fig. 7a), essentially because Na contribution from primary
minerals is more marginal (initial solutions already have
Na-content of 7000-9000 mg 17!), and because appearance
of secondary albite is delayed at high solution salinities
(compare Fig. 5e and f).

The model evolution of dissolved K concentrations
(Fig. 7b) mirrors that of Na. In low salinity model runs,
K contents initially increase for low logg&; values, and then
clearly decrease as K-bearing secondary minerals (zeolites

and smectites a 95 °C; K-illite at 180 °C; K-feldspar at
260 °C; Fig. 5a-b and e—f) reach saturation and precipitate.
Of particular note is that high-T (180-260 °C) low salinity
model solutions are those better matching the whole Na-—
K-Mg range of Ischia thermal waters, and particularly
the compositions of the most “hydrothermally mature”
waters (the Mg-poor thermal end-members of Di Napoli
et al., 2009; stars A and B in Fig. 7a and b). Model runs
at 95 °C typically yield to end-of-run model solutions which
are far too Mg-rich (and K-poor) than these evolved natu-
ral samples. Potassium displays, instead, more conservative
behaviour in high-salinity model runs (Fig. 7b), where it in-
creases rather steadily at all investigated temperatures
(again, because precipitation of K-bearing secondary min-
erals is delayed at high salinity; compare Fig. Se and f).

While concentrations, and relative ratios, of sodium and
potassium in Ischia groundwaters may to a large extent be
determined by high-temperature (7" ~ 180-260 °C) reac-
tions (Fig. 7a and b), silica and iron contents seem to be
mainly controlled by water—rock interactions at the shallow
(~95 °C) aquifer conditions (Fig. 8a and c). At any temper-
ature and initial solution used, results of EQ3/6 runs show a
rapid SiOx,q) increase in the first simulation steps (Fig. 8a),
due to leaching of silicate primary minerals from the aquifer
rocks. This initial phase is followed, in more evolved (high-
er log;) reactions stages, by achievement of a constant
SiOx(aq) value (from ~100 mg 17! at 95°C to ~400 mg1~!
at 260 °C), which reflects buffering of dissolved Si by pre-
cipitating secondary minerals (mainly smectites at low T
and quartz at high T simulations; see Fig. 5a-b and e-f).
The 95-180 °C model trends perfectly overlap the chemical
evolution of Ischia thermal waters (Fig. 8a). Model runs at
260 °C, instead, manifestly over-estimate dissolved SiOy(aq)
contents of natural samples (Fig. 8a).

Iron is mostly supplied by leaching of smectite (as Felll)
and magnetite (as Felll/Il) from the MEGT units, and
mainly scavenged by aqueous solutions by secondary smec-
tite and pyrite and carbonate. The smectite/magnetite rela-
tive proportions in the mineral assemblage therefore
control the Fe**/Fe?" release to model solutions. Sensitiv-
ity tests we performed, by changing both the nontronite
content of the smectite and the smectite/magnetite abun-
dances in the primary mineral assemblage, proved however
to only marginally affect the redox evolution (Fe content
and Eh) of model solutions. Comparison between model
and natural solutions (Fig. 8b and c) supports the idea that
dissolved iron concentrations in Ischia thermal waters are
mainly controlled by hydrothermal reactions at shallow res-
ervoir conditions (95 °C). There is, in fact, a good agree-
ment between measured (natural waters) and modelled
(model solutions) at 95 °C, whilst model runs at 180 and
260 °C underestimate measured Fe contents in Ischia ther-
mal waters (except at high salinity). During our 95 °C mod-
el runs, redox conditions of model solutions evolve from
oxidising (Eh ~ >200 mV) to reducing (Eh ~ —200 mV)
(Fig. 8c) as a consequence of reactions taking place in the
hydrothermal envelope. These increasingly reducing redox
conditions promote iron release to leaching solutions, lead-
ing to a net increase in dissolved Fe at the end of model
runs. Natural Ischia water samples plot nicely along the
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Fig. 7. Natural (Ischia’s thermal water samples; from Di Napoli et al., 2009) and modelled aqueous solutions (solid lines) at match. (a) Mg vs.
Na; (b) Mg vs. K. In both diagrams, symbols for natural samples are as in Fig. 3 and stars (A, B and C) indicate the Ischia’s hydrothermal end-
members (cf. Section 4.1) identified by Di Napoli et al. (2009). Solid lines describe the model-derived evolution of aqueous solutions upon
hydrothermal reaction over a range of conditions (see legend). The advancement of reaction is indicated by numbers (logg&;) along each model
curve; (c) Detail of (a), describing the statistical procedure used to quantitatively assess the effectiveness of model runs in reproducing natural
compositions. In the Figure, we compare the compositions of model solutions obtained in the 95 °C (initial solution: 2%sw) model run with
compositions of Ischia’s thermal water of similar salinity (e.g., reflecting seawater contributions to the mixture of 2 + 1%; see Fig. 3). For each
thermal water sample, we estimated a “distance” from the model curve as: ANa (%) = 100-(Nagample — Namodel)/Namoder. This coefficient
averaged at 23 4 13% in the specific case of Fig. 7c. This procedure was extended to all runs and major elements, demonstrating that natural

samples are reproduced by model results within a factor 8-30% (the lowest errors are observed in high salinity runs).

95 °C model trends of Fig. 8b and c, while being far more
oxidizing than high-T (180-260 °C) model calculations
would suggest.

Reaction paths simulated in the 95-260 °C range show
model SO4 contents (Fig. 8d) which agree well with the
trends exhibited by Ischia water samples. As a matter of
fact, at any considered salinity, seawater represents the
most significant source of dissolved sulphate in Ischia
groundwaters (the absence of S-rich steam-heated ground-
waters on the island was already evidenced by Di Napoli
et al., 2009). However an additional S contribution from
leaching of gypsum in MEGT justifies the SO, enrichments
observed in early reaction path stages (Fig. 8d). As a conse-
quence of further water-rock interactions, dissolved SO,
contents are then forced to decrease by formation of new-
forming secondary minerals, such as anhydrite, Ba—Sr—sul-
phates and pyrite (Fig. 5).

7. GENERAL DISCUSSION

A full understanding of the complex gas-water-rock
interactions taking place within hydrothermal systems re-
quires modelling of the complex mass exchanges between
minerals and fluid phase(s). Our results here indicate that
application of reaction path modelling, while requiring a
number of independent constraints (structure of the system,
mineralogy of primary rocks and alteration minerals, etc.)
to be properly set, provides a variety of key information
on the hydrothermal system under study.

One first significant — and somewhat unexpected — result
of our calculations is that leaching of aquifer rocks would
be dominated at Ischia by alteration mineral phases such
as smectites and zeolites, rather than by primary minerals
(Fig. 4). This fact may to some extent reflect the peculiar sit-
uation of Ischia, where MEGT units have long remained in
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Fig. 8. Natural (Ischia’s thermal water samples; from Di Napoli et al., 2009) and modelled aqueous solutions (solid lines) at match. (a) Mg vs.
Si0,; (b) Mg vs. Fe; (c) Eh vs. Fe; (d) Mg vs. SO,4. Symbols and lines as in Figs. 3 and 7.

contact with seawater after their deposition when the island
subsided (forming the MEGT caldera), leading to pervasive
alteration. Yet, we believe that dissolution of alteration
minerals can remain a highly significant (though often over-
looked) process at many long-lived hydrothermal system:s,
where present-day infiltration waters interact with rocks
having been altered by hydrothermal fluids for centuries,
or even millennia.

During the model runs, the chemicals made available by
rock dissolution are partitioned between the aqueous solu-
tion and any secondary mineral reaching saturation. It fol-
lows that careful examination and choice of the set of
secondary minerals the software is allowed to form is

critical to a realistic representation of the hydrothermal
water evolution. Our results indicate that, when realistic
sets of secondary mineral assemblages are selected (Table 5
and Fig. 5), these reflecting well the range of alteration min-
eral facies in hydrothermal environments, the modelled
solutions have compositions which agree well with natural
data (Figs. 3 and 6-8). We used simple statistical argu-
ments, the rationale of which is illustrated in Fig. 7c, to as-
sess that compositions of natural (water) samples are
reproduced by our models within a factor 8-30%.

Results of our reaction path models show that only chlo-
rine concentrations remain nearly constant during model
runs (Fig. 3b), an hint for that dissolved CI in aqueous
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Fig. 9. A modified version of the Giggenbach’s (1988) triangular diagram showing the distance from equilibrium (“maturation degree”) of
Ischia thermal water samples (from Di Napoli et al., 2009). Symbols, lines and stars as in Figs. 3 and 7. (a) High-temperature (180-260 °C)
model runs (green and red curves; calculated in range of initial solutions’ salinities: 2, 8.5 and 63%sw) satisfactorily reproduce (in terms of Na/
K and K/Mg ratios) the chemical features of “fully mature waters” indicated by Di Napoli et al. (2009, 2011) as Ischia’s hydrothermal end-
members (A, B and C stars). (b) Solid blue curves, representing the chemical evolutions of model solutions at 95 °C (initialised with 2-80%sw
initial solutions), well fit the Na—K-Mg compositions of natural Ischia’s samples in earlier stages of water-rock interaction process
(“immature waters”). These model runs were performed with muscovite/K-feldspar and albite being suppressed from the list of potentially
forming secondary minerals. Dashed lines are shown for comparison, displaying compositions of model solutions obtained in identical
conditions (7= 95 °C; 2 and 80%sw initial solutions) but with muscovite/K-feldspar and albite included in the list of potentially forming
secondary minerals. Logg&; values drawn in the curves as in Fig. 3 and Figs. 7 and 8.

solutions are only fixed by initial mixing proportions be-
tween meteoric water and seawater (Fig. 3a). By contrast,
the remaining dissolved species in Ischia groundwaters
show large variations, and spread over a range un-repro-
ducible by meteoric-water mixing (Figs. 6-8): fluid-mineral
reactions are therefore decisive in determining their
behaviour.

The strong temperature dependence of Mg contents in
thermal surface discharges has long been recognized, and
generally ascribed to equilibration of hydrothermal solu-
tions with chlorite (Ellis, 1971) or Mg-rich clays for with
chlorite may serve as a thermodynamic proxy. This Mg-
depletion trend upon hydrothermal reaction is well ob-
served in our model runs at all explored temperatures and
salinities (Fig. 6). The model evolutions of other dissolved
constituents show, instead, more contrasted behaviour dur-
ing our simulations (Figs. 7 and 8), with concentrations ini-
tially increasing during early reaction steps (low logg;), and
then typically decreasing (at high logg;) as secondary miner-
als come to play.

One significant outcome emerging from comparison be-
tween natural and model solutions is that natural abun-
dances of SO,, SiO, and Fe are best reproduced by low-
temperature (95 °C) model runs (Fig. 8), indicating that
these elements are buffered by reactions occurring in the
shallowest parts of the hydrothermal system. In contrast,
the Na-K-Mg compositions of several Ischia water samples,

and particularly of the Ischia’s thermal end-members (cf.
Section 4.1) described by Di Napoli et al. (2009) (stars in
Figs. 7 and 8), can only be reproduced in high-temperature
model runs: only at 180-260 °C, model solutions achieve
the typical Mg-poor and K-rich composition required to
fit with natural samples. It is therefore concluded that the
cation contents of several (most) surface water discharges
preserve memory of quenched equilibria attained deep at
reservoir(s) conditions. The validity of this conclusion, an
obvious pre-requisite for the use of classic solute geother-
mometers, is tested further below.

7.1. Clues from the Giggenbach’s (1988) triangular diagram

An universally used graphical tool to evaluate the “mat-
uration degree”, or distance from equilibrium, of hydro-
thermal solutions is the Giggenbach’s (1988) triangular
diagram, a simplified version of which is given in Fig. 9.
In such diagram, “immature waters”, or fluids in initial
stages of hydrothermal interactions because of shallow/fast
circulation in the hydrothermal envelop, typically plot close
to the Mg corner. By contrast, when recharge fluids perco-
late (and long reside) deep within the hydrothermal system,
the resulting extensive (prolonged) water-rock interactions
lead to a sequence of dissolution reactions of primary min-
erals — and deposition of secondary minerals — overall forc-
ing hydrothermal solutions to diverge from the Mg corner,
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to become increasingly more alkali (Na and K) rich (Gig-
genbach, 1988). The final stage of such “maturation path”
is the so-called “full equilibrium” (Giggenbach, 1988),
which corresponds to a state in which fluids have attained
equilibrium with a mineral assemblage composed of alka-
li-feldspars, Mg-chlorite and silica (Giggenbach, 1984). In
such conditions, and at geothermally relevant temperatures
(>150 °C), the relative Na to K proportions of thermal
waters are buffered, and therefore univocally fixed, by
full-equilibrium with coexisting secondary albite and K-
feldspar, via the following cation exchange reaction:

Na-feldspar + K* < K-feldspar + Na* (3)

Observations on deep geothermal well discharges
(White, 1957; Ellis and Wilson, 1960; Ellis and Mahon,
1964) have provided general support to model expecta-
tion dictated by equilibrium (3) (Giggenbach, 1988),
demonstrating preferential K partitioning (relative to
Na) into hydrothermal solutions with increasing temper-
ature (e.g., a decrease of Na/K ratios on increasing res-
ervoir T).

With the final goal to add confidence on results of our
reaction path simulations, we use the Giggenbach’s (1988)
triangular diagram (Fig. 9) to test the ability of our calcu-
lations to quantitatively reproduce the general maturation
track of hydrothermal fluids. When the solutions resulting
from our 95-260 °C model runs are drawn in Fig. 9 (see
curves), the hydrothermal maturation trends emerge
clearly: all model solutions are Mg-rich at very early simu-
lation stages, and then rapidly evolve towards the full-equi-
librium line upon advancement of reaction, as Mg-bearing
secondary minerals are being formed (see Fig. 5). The
hydrothermal maturation track follows different paths in
the different simulations (see curves in Fig. 9), however,
demonstrating a strong dependence on temperature and
composition (salinity) of the initial solution, as detailed
below.

In Fig. 9a, four different model curves are shown, each
describing the evolution (in terms of Na, K and Mg con-
tents) of an aqueous solution interacting at high tempera-
ture (either 180 or 260 °C) with the Ischia’s characteristic
mineral assemblage (Table 4). The accent is put on low
salinity fluids (i.e., initial solutions 2% and 8.5% sw; Table 3)
in view of the evidence (Di Napoli et al., 2009) of a domi-
nantly meteoric nature of the deep hydrothermal reservoirs
(see Fig. 1). However, in order to characterise the depen-
dency of model results on initial salinity, and because some
more saline thermal fluids (the Citara thermal end-member
of Di Napoli et al., 2009) have also been identified, results
for a 260 °C model run — using the 63%sw initial solution —
are also shown.

In the entire range of initial solution salinities ex-
plored (Fig. 9a), the 180-260 °C model paths invariantly
display somewhat overlapping linear trends in the initial
model reaction steps: in such early stages of the reaction
path, Na and K are added to model solutions in propor-
tions close to those of the bulk MEGT host rock (the
minor differences in the slopes of the 4 different model
trends do reflect the range of Na/K ratios in starting
aqueous solutions). In later model stages of water-rock

reaction, however, the model curves manifestly diverge,
as the T-dependent sequence of appearance of precipitat-
ing secondary solid phases (see Fig. 5) leads to dissimilar
buffering of dissolved Na and K contents. Clear breaks in
the slopes of model curves correspond, in fact, to first
appearance of specific alkali-bearing secondary minerals:
(1) in the 180 °C model run, the two kinks in the curve
reflect secondary K-illite (first slope variation; Fig. 9a)
and albite (second slope variation of 180 °C curve;
Fig. 9a); (ii)) at 260 °C instead, model curves display a
first characteristic break-in-the-slope when solutions at-
tain a partial equilibrium state (“partial equilibrium field”
in Fig. 9a), caused by secondary albite precipitation
(Fig. Se and f), whilst a second break-in-the-slope marks
secondary K-feldspar formation (Fig. Se and f). Compar-
ison of the three 260 °C model curves interestingly con-
firm (Giggenbach, 1988) that albite formation is
apparently delayed (occurring at high logg; during the
reaction) with increasing salinities: in the 63%sw model
run (thick red curve; Fig. 9a), albite only precipitates
when the “full equilibrium” curve is intercepted by our
model solution evolutionary curve.

In all 180-260 °C model runs, coexistence of secondary
albite and K-feldspar in the final stages of the simulations
fix the model solutions Na/K ratios at values which agree
well with those distinctive of attainment of water-feldspar
equilibrium (Eq. (3)) at the considered T. This confirms that
the full equilibrium state of hydrothermal reactions is well
reproduced by our simulations. In addition, a good fit be-
tween model hydrothermal paths (model curves) and com-
positions of chemically “mature” (e.g., above the “partial
equilibrium curve”) Ischia thermal waters is recognized in
Fig. 9a. This Figure shows, in particular, that our model
runs satisfactorily reproduce the Na—K-Mg compositions
of the Ischia’s “thermal end-members” (stars A, B and C
in Figs. 7-9) which were indicated by Di Napoli et al.
(2009) as those most representative of equilibrium condi-
tions in deep hydrothermal reservoirs. More in the specific,
our runs at 260 °C (2-8.5%sw initial solution) generate end-
of-run model solutions fitting well the cation composition
of the Casamicciola thermal end-member (A in Fig. 9a),
for which an equilibrium temperature of 254 °C, and an
essentially meteoric origin, have been postulated (Fig. 1)
(Di Napoli et al., 2009). On the other hand, the composi-
tion of the Serrara thermal end-member (B in Fig. 9a),
which according to Di Napoli et al. (2009) would be the sur-
face discharge of fluids rising from the intermediate
(T ~ 150-200 °C) hydrothermal reservoir (see Fig. 1), is
well reproduced in the final steps of the 180 °C model
run. The same Fig. 9a also shows a more ambiguous situa-
tion for the Citara thermal end-member of Di Napoli et al.
(2009) (C in Fig. 9a): since this water sample plots far from
the full-equilibrium line, its composition can be matched
well by either the 95 °C (see below), 180 °C (indeed, Di Na-
poli et al. (2009) interpreted this fluid as derived from the
intermediate 150/200 °C hydrothermal reservoir, followed
by near-surface seawater dilution) or ~260 °C model runs.

The solid curves in Fig. 9b represent the Na—K-Mg
compositions of model solutions obtained during a number
of different 95°C model runs, initialised with initial
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solutions of 2, 8.5, 63 and 80%sw, respectively. One signif-
icant — but somewhat questionable — aspect of such simula-
tions is the potential formation of albite, muscovite and/or
K-feldspar. These mineral phases, if allowed to form during
our model simulations, would in fact precipitate in all 95 °C
runs (see Fig. 5c and d). This is not surprising since, as
activity diagrams (not shown) demonstrate, these mineral
phases are thermodynamically stable in the temperature-
compositional domain of Ischia’s thermal groundwaters.
However, that albite, K-feldspar and muscovite are truly
formed in the natural Ischia’s environment is doubtful.
Mineralogical observations on hydrothermal alteration fa-
cies indicate that formation of secondary albite and K-feld-
spar only takes place at temperatures higher than 150 °C
(Muffler and White, 1969; Naboko, 1970; Browne and Ellis,
1970; Browne, 1978); and secondary feldspars have never
been detected in the argillitic alteration facies at both Ischia
(Sbrana et al., 2009, 2010; this work) and nearby Campi
Flegrei (De Vivo et al., 1989; Caprarelli et al., 1997) (Ta-
ble 5). Muscovite, and its proxy sericite, are common
low-T secondary minerals in hydrothermal alteration of fel-
sic rocks (Creasey, 1966; Meyer and Hemley, 1967; Rose,
1970; Lowell and Guilbert, 1970; McDowell and Elders,
1980; Que and Allen, 1996; Deer et al., 1997), and have
been identified in the argillitic alteration facies of nearby
Phlegrean Field (Caprarelli et al., 1997). However, musco-
vite has not been detected in hydrothermally altered tuffs
of Ischia (Sbrana et al., 2009, 2010), and, if allowed to form
during model runs, would force model solutions to become
largely K-depleted, a fact which is not observed in natural
samples.

For the reasons above, we consider the solid curves in
Fig. 9b, which were obtained using the typical secondary
minerals of the Ischia’s argillitic alteration facies
(T ~ 100 °C; Sbrana et al., 2009, 2010; see Table 5) — and
therefore with albite, muscovite and K-feldspar suppressed
from the list of the potentially forming secondary minerals
— as the most realistic of the natural Ischia’s environment.
In such conditions, with reaction (Eq. (3)) being prevented
to occur, water-rock interactions remain far from
equilibrium: the full-equilibrium line is never achieved by
our simulations (Fig. 9b), and the Na/K ratios of model
solutions, if projected to intersect the full-equilibrium line,
would lead to unrealistically high temperatures (180—
200 °C). Indeed, the evolution of dissolved Na and K in
such 95 °C model runs is being controlled by precipitation
of secondary zeolite and smectites (Fig. 5a and b), and
can in no way be used in combination with (Eq. (3)) in
the feldspar geothermometer.

That feldspars are essential ingredients for water-
reaction to go to completion (e.g., for equilibrium to be at-
tained) is confirmed by results of two model runs at 95 °C
(initialised with 2 and 80%sw initial solutions; black and
blue dotted lines, respectively) in which feldspars and
muscovite were left free to form. In such conditions, model
reactions advance to intersect the full equilibrium line at
temperatures (80—100 °C) consistent with model run condi-
tions. However, none of the Ischia’s thermal waters fall
along these “feldspar-in” model curves. This additionally
proves that precipitation of feldspars and muscovite, while

thermodynamically possible, is actually not occurring in the
Ischia’s shallow hydrothermal environment (see Table 5).
Most Mg-rich Ischia’s thermal waters (e.g., those sample
plotting at or below the partial equilibrium line of
Fig. 9b) plot nicely above the “feldspar-out” model curves
(solid curves), evidencing that equilibrium conditions are
far from being achieved in the shallow (95 °C) Ischia’s
hydrothermal system. This may reflect either kinetic effects
(rapid groundwater transit in the shallow aquifer), or com-
plex hydrological conditions (e.g., recurrent mixing with re-
charge of deep-rising thermal fluids) during hydrothermal
circulation.

8. CONCLUSIONS

Reaction path modelling, when correctly initialised
with independent constraints on (primary and secondary)
minerals chemistry/abundance and T-X conditions, offers
a realistic and powerful representation of hydrothermal
processes. Our study here, in particular, demonstrates
that the compositions of surface discharges can be ade-
quately reproduced by model simulations, providing addi-
tional confidence on the use of reaction path modelling in
hydrothermal contexts. Even more significantly, all main
aspects of hydrothermal reactions are accounted for by
our model calculations, including (i) the progressive
Mg-depletion in hydrothermal solutions upon reaction;
(ii) the T-dependent buffering of Na/K ratios of aqueous
solutions by secondary feldspars; (iii) the buffering of sil-
ica contents by mineral equilibria; and (iv) the progres-
sive evolution from oxygenated (low-Fe) infiltration
waters to reduced (high-Fe) deeply circulating hydrother-
mal fluids.

In the specific Ischia case here, application of reaction
path modelling provides a number of significant new
information on the hydrothermal system, including (i)
that leaching of groundmass secondary minerals (e.g.,
clay minerals and zeolites) sources a significant fraction
of chemicals transported by hydrothermal fluids. This sig-
nificant role played by dissolving secondary minerals is
likely a common aspect of hydrothermal processes, often
overlooked in previous studies; (ii) that composition
(salinity) of infiltrating waters has an impact on the path-
ways of hydrothermal reactions (for instance, delaying
formation of secondary feldspars at high salinity); (iii)
and that the chemical compositions of surface manifesta-
tions preserve memory of a range of hydrothermal reac-
tion environments. In particular, the Na-K-Mg
compositions of Ischia’s thermal water samples (at least
of the poorest in Mg) are best matched by high-temper-
ature (180-260 °C) model runs, indicating they reflect
quenched equilibria at deep-reservoir conditions. Iron,
SiO, and, to a lesser extent, SO4 contents of natural sam-
ples are instead better reproduced by low-temperature
(95°C) runs. These species therefore reflect conditions
of water-rock interaction in the shallow Ischia’s hydro-
thermal environment.

In light of the results obtained here, reaction path mod-
elling should become an essential technique to investigate
hydrothermal systems.
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