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Abstract Follistatin is a single-chain glycosylated protein
whose primary function consists in binding and neutralizing
some members of the transforming growth factor-β super-
family such as activin and bone morphogenic proteins.
Emerging evidence indicates that this molecule may also
play a role in the malignant progression of several human
tumors including prostate cancer. In particular, recent find-
ings suggest that, in this tumor, follistatin may also contrib-
ute to the formation of bone metastasis through multiple
mechanisms, some of which are not related to its specific
activin or bone morphogenic proteins’ inhibitory activity.
This review provides insight into the most recent advances
in understanding the role of follistatin in the prostate cancer
progression and discusses the clinical and therapeutic impli-
cations related to these findings.
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Prostate cancer

Introduction

Prostate cancer (PCa) is the third most common cause of
death from cancer in men of all ages and the most common
cause of death from cancer in men over 75 years old [1, 2].
The number of affected subjects is expected to increase as the
population of males over the age of 50 grows worldwide [1,
2]. Complete surgical resection or radiotherapy is currently
the only potentially curative treatment for patients with

localized prostate cancer. However, about one third of these
patients relapse after radical prostatectomy due to undetected
metastatic disease [3]. The lack of effective clinical treat-
ments for prostate cancer reflects, in part, the incomplete
knowledge of the molecular mechanisms involved in the
development and progression of this tumor [4]. Therefore,
a better understanding of this process may lead to the iden-
tification of new molecular targets and more effective thera-
peutic options in PCa treatment. In this scenario, emerging
evidence indicates that activin (Act), a member of the
transforming growth beta (TGF-β) superfamily of growth
factors, appears to play a role in the malignant progression of
prostate cancer [5–7]. This hypothesis is supported by grow-
ing experimental and clinical observations which highlight
that the activin signaling pathway is deregulated in PCa and
that this phenomenon is associated with the onset of more
aggressive forms of this tumor [6, 7]. The deregulation of the
activin signaling pathway appears to be the result of several
mechanisms including alterations in the expression level of
some endogenous inhibitors of activin such as follistatin
(FLS) [6, 7]. Therefore, this inhibitor may be of potential
clinical interest as a novel molecular target in the treatment
of prostate cancer. The aims of the present paper are to
provide an updated systematic review on the role of FLS in
prostate cancer progression and to discuss the clinical and
therapeutic implications of these novel findings.

Follistatin: structure and functions

Follistatin is a cystein-rich glycosylated polypeptide chain
of 31–39 kDa that binds to Act with high affinity (850–
500 pM) [8, 9]. This inhibitor was originally isolated from
porcine ovarian follicular fluid and identified as a molecule
implicated in the regulation of the secretion of follicle-
stimulating hormone [8, 9]. FLS is a product of a single
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gene, located on the long arm chromosome 5q11.2. Se-
quence analysis demonstrated that the FLS gene consists
of six exons separated by five introns transcribed into the
precursor FLS317 and FLS344 messenger RNA (mRNA)
forming at least two molecular weight forms by alternate
splicing, i.e., FLS288 (from pre-FLS317) and FLS315 (from
pre-FLS344) [10] (http://www.ncbi.nlm.nih.gov/LocusLink/
s). These isoforms contain a N-terminal domain and three
domains, known as follistatin domains (FSD1, FDS2, and
FDS3 respectively), which differ in their amino acid com-
position [8, 10]. Each FLS domain consists of 73–77 amino
acids and is distinguished by ten conserved cysteine resi-
dues. In particular, FSD1 contains an amino acid sequence
known as a heparin binding sequence (HBS) that enables
FLS to bind with high-affinity cell surface proteoglycans
[10, 11]. The heparin binding sequence of follistatin has
been mapped to a lysine- and arginine-rich sequence within
residues 75–86 in FSD1 [11]. Experimental in vivo studies
show that FLS knockout mice dies soon after birth due to a
variety of skeletal and cutaneous defects [12]. The transcrip-
tion of FLS gene may be stimulated by Act, TGF-β,
forkhead domain transcription factor L2 (FoxL2) via Smad
proteins [13, 14], gonadotropin-releasing hormone [15],
GLI2 (a transcription factor activated by hedgehog signal-
ing) [16], dexamethasone [17], androgens [18], activators of
Wnt signaling [19, 20] and 1,25-dihydroxyvitamin D
(1,25(OH)2D3) [21]. Conversely, FLS gene expression has
been shown to be downregulated, according to the cell type,
by peroxisome proliferator-activated receptor gamma
(PPRA-γ) or the transcriptor factor epiprofin, also known
as Sp6 [22, 23]. The FLS288 and FLS315 splice variant
isoforms are the most common ones. They are widely pres-
ent and differentially expressed in human tissues [8–10, 24,
25]. The longer FLS315 variant is predominant, while the
FLS288 isoform accounts for less than 5 % of the encoded
mRNA [26, 27]. A third intermediate form, namely FS303,
is presumably derived by proteolytic processing of the C-
terminal domain of the FS315 variant [10, 26, 28]. Both
FLS315 and FLS288 bind to Act with high affinity [9, 26,
28–32]. However, while FLS288 binds heparan sulfate pro-
teoglycans with high affinity and may function as local
regulator of Act [33], the longer FLS315 isoform, which is
the main circulating form of this molecule, does not bind to
the cell surface proteoglycans as it contains a tail consisting
in an acidic extension at the C terminus of the 27 amino acid
residues that can mask the heparin binding sequence of
follistatin when the molecule is in an unbound state [9, 26,
31–33]. After binding to Act, the tail region unmasks the
heparin binding sequence and the Act–FS315 complex can
then bind to the cell surface proteoglycans [26, 30, 33]. This
phenomenon may explain the reason why FLS315 is secret-
ed faster than FLS288 and why FLS315 may enter the
circulation in a larger fraction [24]. Within the circulation,

70–90 % of FLS315 exists in the bound form [34]. The
interaction between a molecule of FLS and a molecule of
Act results in an almost irreversible binding complex that
prevents Act to interact with its specific receptors (Fig. 1).
This phenomenon ultimately leads to the inhibition of the
biological effects induced by Act on various cells and tis-
sues [8, 9, 28, 29, 31] (Fig. 1). Moreover, the irreversible
binding of FLS to Act facilitates its internalization and the
subsequent degradation of this complex by the lysosomal
enzymes [8, 9, 29] (Fig. 1). The Act–FLS binding complex is
generally composed of one Act and two FLS molecules [29]
(Fig. 1). However, the exact function of the bound form re-
mains to be defined. On the other hand, the FS315 does not
appear to function as serum carrier for Act as its binding to this
growth factor appears to be irreversible [9,10, 26, 28, 29, 31].
FLS may also bind with lower affinity to other members
including bone morphogenic proteins (BMPs), in particular,
BMP-2, BMP-4, BMP-5, BMP-6, BMP-7, BMP-11 [34–37],
myostatin [38] and TGFß3 [39]. Additionally, FLS may also
interact with two molecules that are not related to the TGF-β
family, namely, the serum pan-protease inhibitor α2-
macroglobulin [40] and the pro-angiogenic factor angiogenin
[41]. However, the functional significance of the interactions
between FLS and these molecules remains to be fully
elucidated.

Follistatin’s role in the physiological growth
and function of prostate gland

FLS is widely distributed in adult tissues including the
prostate where it is usually co-localized with activin sub-
units and/or activin receptors [5, 8, 9, 25, 34, 42–45].
Compelling evidence indicates that the FLS/Act system
plays a role in the paracrine/autocrine control of the physi-
ological growth and functions of several tissues including
the prostate gland [7, 42, 46–59]. The hypothesis that the
interplay between FLS and Act may contribute to regulate
prostate tissue homeostasis is suggested by the findings that
FLS and Act receptors are predominantly co-localized in the
developing prostatic epithelium [45–47]. Furthermore, this
molecule is expressed throughout the epithelium of devel-
oping prostate and maintained into the mature glands [48].
In particular, immunohistochemical studies highlight a
staining of FLS mainly in the stroma cells, while Act is
mainly detected on the epithelial cells [46, 47]. Interestingly,
the prostate epithelium and stroma differentially produce
FS288 and FS315 isoforms respectively, thus suggesting a
correlation between a specific isoform of FLS expression
and cell type [43]. On the other hand, in vitro studies by
Wang et al. [42] show that fresh human primary tissues and
primary culture of human epithelial prostate cells actively
secrete both Act and FLS that exert opposite effects, i.e.,
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inhibiting or promoting effects respectively, on the growth of
normal prostatic epithelial cells. These findings are consistent
with the observations that FLS may act as a positive regulator
of branching morphogenesis of the prostate while Act may
function as a negative regulator of this phenomenon [43,
46–48]. The specific role of FLS in the promotion of the
branching morphogenesis is further supported by the findings
that in newborn prostate explants grown in the absence of
testosterone, the addition of FLS increases the growth and
branching of the prostate gland [47, 48]. These studies further
stress the concept that a balanced interaction between FLS and
Act is an essential prerequisite in order to regulate the prostate
ductal growth and branching morphogenesis.

Follistatin in prostate cancer progression

The process of prostate organogenesis ultimately leads to the
development of a mature gland composed of both highly
differentiated contractile muscle cells and secretory epithelial
cells [7, 47, 48]. Experimental evidence shows that, in physi-
ological conditions, reciprocal homeostatic interactions be-
tween smooth muscle and epithelial cells contribute to
regulate cell growth quiescence and functional differentiation
[46–48]. However, perturbations of these cell–cell interactions

may cause loss of control of the epithelial cell and muscle cell
growth and differentiation and, eventually, may trigger the
process of malignant transformation [47–51]. As the FLS/Act
system appears to have a role in the regulation of prostate
growth and development, it is conceivable to hypothesize that
a deregulation of this system may cause alterations of the
normal homeostasis of prostate tissue and may contribute to
the development and progression of prostate cancer [5–7,
46–48]. In support of this hypothesis, in vitro studies on human
LNCaP androgen-sensitive prostate cancer cells highlight that
FLS expression increases during the progression of prostate
cancer toward more malignant androgen-independent disease
variants [40, 52–54]. Furthermore, other in vitro observations
show that unlike LNCaP cancer cells which are responsive to
the growth inhibitory effect of Act, androgen-independent PC3
human prostate cancer cells which, conversely, are resistant to
the growth-promoting effects of Act actively secrete FLS [7,
37, 40, 44]. In particular, PC3 tumor cells predominantly
express the FS288 isoform while LNCaP or DU145 tumor
cells mainly express the FS315 variant [54, 55]. These findings
are in line with some data from in vitro studies which highlight
that FLS288 expression in PC3 tumor cells appears to be
specifically associated with their resistance to the growth-
inhibiting effects of Act [22, 32, 40, 43]. Additional evidence
in support of the specific involvement of FLS288 in this
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Fig. 1 Schematic representation of the activin–follistatin interactions
and the resulting neutralization pathway. (a) FLS315 and FLS288 bind
to Act with high affinity. The Act–FLS binding complex is composed
of one Act and two FLS molecules. (a) Free Act dimers associate with
membrane-bound FLS 288 which has a strong affinity for cell surface
heparan sulfate proteoglycans (HSPG) (a). (b) The binding of FLS to
Act blocks the interactions between Act and its receptors (Act type II
receptor). (c) This phenomenon, ultimately inhibits the activation of
activin mediated downstream signal transduction pathways and,

consequently, the biological effects induced by this growth factor on
various cells. (d) The irreversible binding of FLS to Act facilitates its
internalization and the subsequent degradation of this complex by the
lysosomal enzymes. (e) FLS315, which is the main circulating form of
this molecule, exhibits limited binding to HSPG. The fate of these
complexes and the function of this pathway are unclear. However it is
currently suggested that circulating FLS315 bound to Act to facilitate
its clearance and/or prevent the diffusion of this cytokine from its local
site of action
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phenomenon is provided by the findings that the inhibitory
activity of Act on LNCaP and DU145 cells can be
counteracted by the addition of a tenfold excess of FLS288,
but not by the addition of inhibin, another intracellular inhibitor
of Act [7, 9, 42, 44, 53]. The preferential inhibiting effect of the
FLS288 variant form on Act may be, in part, explained by the
fact that this inhibitor is endowed with a neutralizing effect on
Act greater than that of the FLS315 isoform and that FLS288,
rather than FLS315, appears to be involved in the inactivation
and clearance of activin [8, 26, 28, 29, 31] (Fig. 1). On the
other hand, the growth-promoting effects of FLS on the pros-
tate cancer cells are also indirectly proven by in vitro experi-
ments which show that some plant-derived polyphenolic
compounds with estrogen-like properties such as soy
isoflavones may inhibit the prostate cancer cell growth by
downregulating several genes involved in tumor cell prolifer-
ation, angiogenesis and metastasis, including FLS gene [56].
Furthermore, van der Poel et al. [57] also show that rapamycin,
a specific inhibitor of the mammalian serine/threonine protein
kinase mammalian target of rapamycin (mTOR), inhibits PC3
prostate cancer cells proliferation by causing cell cycle arrest in
G1 phase and that this phenomenon is associated with an
increase in the expression levels of BMP-4 and a decrease in
the levels of FLS. Intriguingly, recent studies by Havard et al.
[58] highlight that Act may promote in vitro the entry of PCa
cells in a dormant state caused by a slight increase of the
osmotic pressure in culture medium. On the basis of these
findings, it should be conceivable to speculate that an increase
in the expression level of FLS may facilitate the escape of
tumor cells from a dormant state regulated by Act thus foster-
ing the growth and dissemination of these cells. Finally, Ye et
al. [59] show that the loss of endogenous BMP-7 in the
prostate cancer cells is associated with an increased invasive-
ness and motility which appears to be facilitated by alterations
in the expression level of some BMPs antagonists including
FLS. Although these studies indicate that the mechanisms
through which FLS may promote the malignant progression
of PCa appears to be essentially correlated to its Act and or
BMP inhibitory activity, accumulating evidence indicates that
this molecule may also contribute to promote PCa progression
by additional mechanisms not related to its Act or BMP
inhibitory activity. For instance, recent observations by Gao
et al. [60] show that FLS may be up-regulated and translocated
to the nucleoli in the HeLa cells in response to glucose depri-
vation. The overexpression of FLS, in turn, negatively regu-
lates rRNA synthesis and ribosome biogenesis. These effects
are known to delay glucose deprivation-induced apoptosis
[61]. Conversely, a downregulation of FLS elicits opposite
effects [60]. As the increased resistance of cancer cells to
glucose deficiency contributes positively to tumor progression
[61], it is reasonable to hypothesize that FLS, through these
mechanisms, could indirectly foster tumor development. On
the other hand, these data further confirm the previous findings

of the same authors [41] highlighting that in HeLa cells, FLS is
present in the nucleus and may interact with angiogenin, a 14-
kDa protein endowedwith pro-angiogenic functions, including
endothelial cell activation, which may also promote migration,
invasion, proliferation, and formation of tubular structure
[62–64]. Finally, FLS has been reported to bind to type III
TGF-β [39]. As this isoform appears to play a major role in
regulating the inhibition of PCa growth [65], it should be
conceivable to speculate that FLSmight probably also promote
the malignant progression of PCa by interacting with type III
TGF-β.

Follistatin and tumor angiogenesis

Growing experimental observations indicate that FLS may be
also involved in the regulation of tumor angiogenesis thereby
fostering the malignant progression of prostate cancer. In this
context, early studies of Kozian et al. [66] showed that FLS
may promote in vitro the proliferation of human umbilical vein
endothelial cells, while, in vivo, this molecule is moderately
angiogenic. These findings are consistent with some in vitro
observations showing that FLS is upregulated in proliferating
human microvascular endothelial cells (MVEC), but not in
tubular MVEC [67]. Moreover, Gao et al. [41] have identified
FLS as a binding partner of angiogenin which is a potent
stimulator of angiogenesis and tumor cell proliferation [68].
Furthermore, other in vitro observations highlight that FLS, in
concert with vascular endothelial growth factor (VEGF), ap-
pears to facilitate the formation of new blood vessels by
stimulating the production of matrix metalloproteinase-2
(MMP-2), a proteolytic enzyme implicated in tumor angiogen-
esis and bone metastasis formation in prostate cancer [69–71].
On the other hand, the hypothesis of a possible involvement of
FLS on tumor angiogenesis is further corroborated by in vivo
studies of Krneta et al. [72] who have recently described that
FLS may function as a potent angiogenesis stimulator also in
severe combined immunodeficiency (SCID) mice transplanted
with R30C human mammary tumor cells. These findings fit
well with other recent observations which highlight that potent
antiangiogenic molecules present in dietary sources, such as
derived polyphenolic compounds with estrogen-like proper-
ties, may inhibit PCa cells growth by downregulating the
expression of several genes involved in the malignant progres-
sion of this tumor, including FLS [56, 73]. However, unlike
these findings, Ogino et al. [73] reported that, in NK cell-
depleted SCID mice, the transfection of FLS gene resulted in
the suppression of the experimental multiple organ metastases
due to the inhibition of angiogenesis by small-cell lung cancer
cells. The discrepancies in these results are, in part, currently
explained through the use of different animal tumor models
and the possible different role of the Act/FLS system at differ-
ent stages of tumor progression and in the malignant progres-
sion of the different types of tumors [72, 74–79].
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Follistatin and metastasis

The possible involvement of FLS in tumor angiogenesis
supports the concept that this molecule may also facil-
itate the dissemination of tumor cells to distant organs
via the angiogenic route. In line with this hypothesis,
emerging evidence suggests that, at least in some tu-
mors, FLS appears to facilitate the metastatic process [7,
72, 80–85]. On the other hand, a possible involvement
of FLS in the pathogenesis of bone metastasis is not
surprising as this molecule has been shown to actively
cooperate with activin A in the regulation of normal
bone homeostasis [86–89]. Consequently, it is conceiv-
able that a deregulation of FLS expression may eventu-
ally result in pathological alterations of the normal bone
remodeling processes such as it occurs in metastatic
bone diseases. This hypothesis is sustained by some
our previous clinical studies that show a significant
correlation between circulating levels of FLS and PCa
progression [84]. These findings are also consistent with
the results from other immunohistochemical and molec-
ular biology observations that highlight a positive cor-
relation between altered expression level of FLS in
prostate cancer and a more aggressive behavior of this
tumor [7, 51, 52, 85, 90]. The possible mechanisms
behind the promoting activity of FLS of PCa bone
metastasis formation remain currently to be unraveled.
Nonetheless, recent in vitro studies suggest that this
molecule, in addition to its tumor angiogenesis promot-
ing activity, may also indirectly facilitate bone metasta-
sis by modulating the adhesion and invasion of tumor
cells via BMP-2, BMP-4, and BMP-7, which appear to
play a key role in the formation of osteoblastic lesions
associated with prostate cancer metastases [59, 90–93].
Interestingly, Simon et al. [94] have recently reported
that FLS may indirectly promote tumor cell detachment
and migration by up-regulating the expression levels of
the enzyme A -Disintegrin and Metalloproteinase-15
(ADAM-15), a disintegrin which cleaves integrin mole-
cules and whose altered expression has been shown to
support tumor growth, endothelial interaction, and
metastasis of prostate cancer cells [66, 91, 95].

Intriguingly, this latter mechanism has been described
so far only for human prostate cancer and neuroblasto-
ma cells [94, 96]. These findings are promising for the
discovery of more selective and effective therapeutic
strategies in the treatment of prostate cancer.

Follistatin as a marker of prostate cancer progression

The observations that FLS expression levels are altered in
tumor tissues [7, 45, 52, 55, 87] and/or in body fluids [83,
84, 93, 94] of patients with prostate cancer are suggestive of
a possible clinical usefulness of this inhibitor as an addi-
tional marker in the clinical management of these patients.
However, studies directed toward this aims are still scanty.
Nonetheless, some of our recent clinical observations high-
light that FLS serum levels are significantly increased in
patients with prostate cancer as compared to those deter-
mined in patients with benign prostate hyperplasia or
healthy subjects [85]. These findings further confirm previ-
ous observations of Sardana et al. [84]. In addition, our
investigations show a close relationship between FLS serum
concentrations and the presence of bone metastasis or in-
creased PSA levels in these patients and that the ratio
between the serum concentration of FLS and Act in PCa
patients significantly differs from that measured in normal
subjects [85]. These results further suggest a possible rela-
tionship between a deregulation of the Act/FLS system and
prostate cancer growth and progression, and a close rela-
tionship between FLS serum concentrations and the pres-
ence of bone metastasis or increased PSA levels in these
patients. However, these studies additionally show that, in
our series of patients, the diagnostic performance of FLS, as
assessed by receiver operating characteristic curve, is not
significantly different from that observed for PSA or Activin
[85, 97]. Moreover, the combination of FLS with PSA
and/or Act does not result in an improved diagnostic accu-
racy as compared to that determined for each single mole-
cule [84, 85, 97]. Although these findings appear to rule out
a diagnostic usefulness of FLS in PCa patients, they indicate
that this molecule may be of potential clinical interest as
additional circulating marker for the therapeutic manage-
ment and follow-up of PCa patients [84, 85, 94, 96]. Further

Table 1 Possible mechanisms
not related to the Act or BMP
inhibitory activity by which FLS
may facilitate prostate cancer
cell proliferation invasion and
metastasis

Mechanism Reference

Delay of glucose deprivation-induced apoptosis [60]

Stimulation of endothelial cell proliferation [66]

Nuclear translocation and interactions with angiogenin [41]

Stimulation of matrix metalloproteinase-2 [69]

Stimulation of sprouting angiogenesis and VEGF expression [72]

Up-regulation of disintegrin ADAM-15 [94]

Modulation of adhesion and invasion of tumor cells [90]
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studies with a wider number of subjects may better define
the clinical role of FLS in prostate cancer.

Conclusions

There is an increasing evidence that follistatin, an inhibitor
of the pleiotropic cytokine of the TGF β superfamily
Activin, may be implicated in the malignant progression of
prostate cancer [5, 7, 52, 54–56, 83, 88]. Moreover, exper-
imental and clinical observations indicate that FLS may
foster the dissemination of tumor cell into distant organs
[7, 88]. In particular, recent findings indicate that in PCa
FLS may facilitate bone metastasis formation through mul-
tiple mechanisms, some of which are independent from its
Act or BMPs’ inhibitory activity [7, 60, 64, 68, 71, 93]
(Table 1). The possible implication of FLS in facilitating
bone metastasis formation in patients with prostate cancer is
further suggested by some our recent clinical observations
that highlight a positive correlation between altered expres-
sion levels of FLS and prostate cancer growth and/or pres-
ence of bone metastasis [83, 84]. Moreover, recent findings
show that FLS may up-regulate ADAM-15, a disintegrin
whose altered expression has been shown to specifically
facilitate growth, endothelial interaction, and metastasis of
prostate cancer cells and neroblastoma cells [66, 91, 94, 95].
These findings make FLS an attractive target for novel
therapeutic options in the prevention and treatment of pros-
tate cancer [56, 57, 72] and a potentially useful biomarker in
the clinical management of patients with this tumor [83, 84,
92–94, 96]. In support of these hypotheses, recent in
vitro experiments report that plant-derived polyphenolic
compounds, namely, soy isoflavones, may inhibit pros-
tate cancer cell growth and that this therapeutic effect is
also correlated with a downregulation of the FLS gene
[56]. Similarly, rapamycin, a specific inhibitor of the
mammalian serine/threonine protein kinase mTOR, in-
hibits PC3 prostate cancer cells proliferation by causing
cell cycle arrest in the G1 phase, a phenomenon which
is associated with a decrease of FLS t levels in this case
too [57]. These findings warrant further investigations in
order to better assess the clinical role of FLS in prostate
cancer.
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