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a b s t r a c t

The mismatch between generated and consumed electricity is a relevant topic of the energy and

economic assessment of photovoltaic (PV) systems. Due to the load mismatch some amount of PV

electricity may be exported to the grid because the electrical demand is temporarily lower than

production, whereas a consumption, which is higher than production and/or that does not match the

available PV generation, will require to be supplemented by the public grid electricity. The presence of

the load mismatch can cause the effect of disadvantageously purchasing electricity from the grid and/or

squandering the unexploited PV energy. If only a very small part of the PV generation is used to supply

the household appliances, benefits may not compensate disbursements. Moreover, instead of giving a

benefit to the community, an amount of surplus electricity generated by a great number of PV systems

may represent a significant problem for the grid operators.

In this paper the study of the effect of the load mismatch on the energy and economic analysis of the

PV potential of a district of a city of the South Italy is presented. The authors propose an appropriate

methodology able to explore the architectural morphology of buildings and evaluate both the solar

potential of PV systems installed on roofs and the economic aspects involved. The impact on the grid of

the electricity generated by large-scale PV systems, which is a worry to the traditional electricity

producers and dispatchers, seems to be much less than expected if the economic viability is considered

in the assessment of the real penetration of PV systems. The results, which confirmed the importance of

the role played by the load mismatch, suggest that only the generation of the PV electricity that is really

consumed by the PV producers should be wisely supported by the economic incentives.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Since 2005, when Kyoto protocol legislations were implemen-
ted in order to enforce the reduction of CO2 emissions resulting
from the use of fossil fuel, promoting renewable energy sources
(RES) has become a priority and, for encouraging the installa-
tion of RES-based generation systems, many countries have
wisely adopted different support policies. The European Union
(EU) has set binding targets for the dissemination of the renew-
able energy sources (RES) until 2020, known as the ‘‘20-20-20’’
targets. In particular, with the Directive 2009/28/EC, Italy is
obliged to ensure that 17% of the final energy consumption in
2020 comes from RES.

Buildings are responsible for a considerable share of energy
consumption, and will play a growing role in the energy demands
of emerging economies in the next decades. Cities are the places
where great amounts of electricity are consumed, but power
stations cannot be installed amid blocks of flats. Using electricity
in the same place where it is produced it is very gainful for both
the self-producing consumer, whose energy bills will lower, and
the electrical manufacturers and grid operators that will reduce
costs for transmission and distribution. Cities are often composed
of multi-storey buildings containing many flats that are covered
by the same roof, which is a common property of all homeowners.
Because each homeowner can use only a part of the common roof
to install a PV system, the number of floors affects to the
possibility of freely harvesting the solar energy collected by the
building roof. As a consequence, it may be difficult to adequately
cover the electricity demand of the households dwelling in multi-
storey buildings and even the economic investments may result
unprofitable.

For this reason, it is important to accurately analyze the energy
and economic performance of the system to correctly estimate
the profit of the investment. The assessment of the economic
feasibility of PV systems requires an accurate analysis based on
the evaluation of all costs and benefits. The crucial factors
involved in the assessment are the value of the discount rate,
PV devices costs, selling and purchasing power prices and feed-in
tariffs (FIT). These variables have to be carefully considered
because they can rapidly change due the financial situation, the
government energy policies and the trend in the market of PV
devices and fossil fuels. Other costs, which are often overlooked,

regard the indemnity insurance and the equipment maintenance,
servicing and replacement of the PV system.

Even the mismatch between generated and consumed elec-
tricity may produce relevant effects in the viability of PV systems.
Because the instantaneous perfect correspondence between
demand and generation is quite improbable, a part of the
demanded electricity may be not covered by the PV generation
or the energy generated by the PV systems may be greater than
the electricity demand. The PV energy surplus may represent an
important issue:

1) for the electricity transmission grid operators: the unpredict-
able presence in the grid of PV generated energy can increase
the difficulties in dealing with short-term transients, electri-
city load, non-dispatchable power and intermittency;

2) for the PV system owners: the investment may result not
economically convenient because the selling price of electri-
city is generally less than the purchase price;

3) for the country: an energy policy that economically supports
the PV electricity generated, even it is not really consumed,
may be responsible of high levels of greenhouse gas emission
and fossil fuel importation.

The problem of the load mismatch was studied by many
authors. Paatero et al. [1] analyzed for Lisbon and Helsinki
climates the effects of a high level of photovoltaics connected in
the middle voltage distribution network. They found that the
mismatch between PV production and domestic electricity con-
sumption, which in their cases appeared in the early evening
hours, could not be fully compensated through orientation of the
PV panels. PV integration up to 50% of annual domestic load
would positively influence both the voltage and network losses
without increasing the voltage of the grid. Denholm et al. [2]
considered the constraint of traditional electricity generation
plants to reduce output and accept PV generated energy. Basing
on the power system flexibility concept, they deduced that there
was a somewhat absolute limit to the economic integration of PV
sources in Texas, USA. Even with a completely flexible power
system, which can reduce to zero the electricity produced,
providing 50% of the systems energy from PV appears to be
close to the technical limit. Denholm et al. [3] also tried to
increase the usefulness of PV generation dealing with different

Nomenclature

CPV Gross energy cover factor of the district [%]
cu Utilization coefficient cu

DDay Electricity demand of the standard flat from dawn to
dusk [kWh]

DDay,j Electricity demand of the generic j-th PV system from
dawn to dusk [kWh]

Dn

j Electricity demand of the generic j-th PV
system [kWh]

Dj Electricity demand of the generic j-th PV system
during the generic i-th time interval [kWh]

DMatch,j Matched energy demand of the generic j-th PV
system [kWh]

DMism,j Mismatched energy demand of the generic j-th PV
system [kWh]

DNight Electricity demand of the standard flat from dusk to
dawn [kWh]

DNight,j Electricity demand of the generic j-th PV system from
dusk to dawn [kWh]

DTotal Yearly electricity demand of the district [kWh]
Eexp,j Electricity exported by the generic j-th PV system

during the generic i-th time interval [kWh]
Egrid,j Electricity exchanged with the grid by the generic j-th

PV system during the generic i-th time interval [kWh]
Eimp,j Electricity imported by the generic j-th PV system

during the generic i-th time interval [kWh]
En

PV ,j Yearly electricity produced by the generic j-th PV
system [kWh]

EPV,j Electricity generated by the generic j-th PV system
during the generic i-th time interval [kWh]

En

PVload,j Electricity supplied to the load by the generic j-th PV
system [kWh]

EPVload,j Electricity supplied to the load by the generic j-th PV
system during the generic i-th time interval [kWh]

EPVTotal Yearly electricity produced by all PV systems [kWh]
N Number of samples in the evaluation period
NPV Number of PV systems
gD Load match index of the district [%]
gD,j Load match index of the generic j-th PV system [%]
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possibilities: load shifting, energy storage, ramping capability and
flexibility of conventional generators. Even after increasing sys-
tem flexibility, some additional accommodation would be made
for the excess of PV energy generated in non-summer seasons.
They found that a storage system capable of storing the average
daily demand would provide about 50% of the system’s energy.
Load shifting would require the development of real-time price
signals and smart control systems of appliances and devices. To
reach such a purpose, a radical transformation of the electricity
systems, from centrally controlled to highly distributed and
interactive systems, would be required.

Stodola et al. [4] faced the problem of evaluating the max-
imum deployment that would permit 95% of the annual output
from PV to be utilized without reducing the output of the
baseload plants located in 32 regions of USA. Without considering
the problems related to the grid flexibility, they compared the
energy produced by dual tracking, azimuth-tracking and fixed
tilted panels, and calculated that 7.8% of the total annual elec-
tricity demand could be met by installing 59 GW of PV panels.
They also compared the PV energy prices to the cost of baseload
power and the costs of the dispatchable power stations that PV
systems would replace. Passey et al. [5] analyzed the potential
impact of integrating photovoltaics in the Western Australian
electricity networks. Using the marginal cost administrative
prices to assess the economic convenience, they explored the
possibility of offsetting baseload and/or peaking generation,
deferring network augmentation and reducing line losses. The
present values earned by PV offsetting conventional baseload and
peaking generation resulted significant compared to its installed
cost. In contrast, the present values earned by PV in deferring
network augmentation and reducing line losses on the main grid
were very low, compared to its installed, and very site specific.

Solomon et al. [6] studied the penetration of PV generation in
Israel achieved with no-dump (ND) systems, which were defined
as the largest PV systems that could deliver all their annual
production to the grid without any need for spillage. They stated
that a grid flexibility of 65% represents the limit above which no
intake of energy from ND-sized systems is allowed without
dumping. With a grid flexibility of 65% a no-dump PV system
could have contributed a maximum of 2.7% to annual fuel saving
of the grid; the contribution could have been increased to 10.4%
by enlarging the PV system size and allowing 5% of its annual
output to be dumped. Solomon et al. [7] extended their study
including the use of 1- and 2-axis sun tracking, and 2-axis
concentrator PV technologies. Moreover they analyzed the effect
of very large-scale PV power plants, even considering their
influence on grid ramping requirements. They found that for grid
flexibilities above 70% the tested PV technologies of ND-sized
systems begin to produce significantly larger grid penetration
than the static fixed-panel situation. In a further paper Solomon
et al. [8] investigated the appropriate storage size and the
available technologies in order to achieve high grid penetration
for various grid flexibilities.

The above researchers addressed the PV penetration mainly
considering the energy aspects of the problem. Myers et al. [9]
provided an assessment of the large-scale implementation of
distributed photovoltaics in Wisconsin, USA, considering both
the energy and economic aspects of the problem. They evaluated
a state wide aggregate annual capacity factor of 13.3% and found
that with a flexibility factor of 60%, which is representative of the
analyzed electricity infrastructure, the corresponding contribu-
tion level of PV approached a limit of 20% of annual energy.
The results of the energy assessment confirmed the data issued by
Denholm et al. in their study of Texas: with a 60% flexibility factor
the percentage of system energy from PV approached a limit of
20%, with 80% flexibility a limit of 35% and with 100% flexibility a

limit of 50%. The economics of residential or light-commercial
scale PV systems, with no incentives, were analyzed based on the
levelized cost of the PV generated electricity, the net present
value of the investment and the benefit-to-cost ratio. The assess-
ment, which was calculated over a period of 25 years on the basis
of a normalized cost per watt, considered realistic values of the
inverters lifetime, PV panels time degradation, growth rate of
electricity cost and inflation rate. On an economic basis, the
investment in distributed solar photovoltaics in Wisconsin was
considered not profitable at that time.

Widén et al. [10] presented a methodology for evaluation of
options for improved load matching. The method was applied to
assess the impact of PV array orientation, demand side manage-
ment and storage on the matching of PV to demand profiles for
detached houses and apartments in Sweden. Storage was found to
be the most effective option at high penetration levels, while
demand side management was effective or even slightly better at
low overproduction levels. Zerhouni et al. [11] presented a
method to reach the optimum load matching by the PV array
reconfiguration.

To assess the impact of the load mismatch on the PV system
owners it is necessary to perform accurate economic analyses in
order to reach the most realistic conclusions about the viability of
the investment. Actually, the problem of the penetration of the PV
generation on the grid becomes an important issue for the PV
system owner only when he gets the feeling that the load
mismatch may cause him an economic damage because the
surplus electricity is sold off whereas the price of the purchased
energy remains high. The awareness of the situation can induce
each household to try to implement some personal strategies to
better exploit the PV generated electricity. The impact of these
strategies, whose global result may be very effective, can only be
assessed with an accurate energy and economic overview of the
problem that includes also the economic point of view of the PV
system owners. Actually, before to be concerned about the
maximum amount of PV energy that a grid can accept, one should
also explore how many PV systems are likely to be installed
considering the penalizing effect of the load mismatch on their
economic assessment.

In order to study the above issue dealing with photovoltaic
systems operating in dense city contexts, a case study already
presented by the authors [12] is exhaustively analyzed in this
paper. The study case refers to a district of Palermo (Sicily), which
is a densely built town in the south of Italy. The district is
interesting because adequately represents the mixed combination
of ancient and new buildings, which is often present in many
European cities. The study has showed the importance of not
oversizing the PV systems and the impact of the load mismatch
on the profitability of the economic investment. Even the achieve-
ment of the ‘‘20-20-20’’ energy targets of the European Union,
which is supposed to be reasonable for a sunny southern city
whose buildings mostly have a relatively small number of flats,
may be seriously questioned due to the economic effect of the
load mismatch.

A wise energy policy should consider that only the generation
of the PV electricity that is really consumed should be economic-
ally supported. Actually, instead of giving a benefit to the com-
munity, an amount of surplus electricity generated by a great
number of PV systems, which is suddenly and unpredictably
transferred to the grid due to the momentary favourable weather
conditions or the improper habits in using the electrical appli-
ances, may represent a significant problem in the management of
the public grid transmission lines. The study has shown that the
impact on the grid of the PV electricity that mismatches the
demand should be significantly less than expected if only the PV
systems whose economic viability was assessed are installed.

A. Orioli, A. Di Gangi / Renewable and Sustainable Energy Reviews 21 (2013) 13–28 15
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2. The methodological approach

The methodology and the case study are the same that were
fully described by Cellura et al. [12] who assessed the photo-
voltaic potential of a selected urban area of the city of Palermo
(Sicily, Italy) using Google Earth

TM

to classify buildings, according
to their number of floors, the shape, orientation and pitch of roofs.
The coverage of the electricity demand was investigated on the
basis of the consumption of electricity of the households and the
results of the energy assessment were screened considering
the economic feasibility of grid-connected photovoltaic systems.
The study also considered the main factors influencing the
computation, such as the mismatch between generated and
consumed electricity and the shading effects due to the surround-
ing obstacles.

Some parameters were changed in order to update the results
and highlight the effect of the load mismatch. The methodology
and the results of the case study are briefly summarized in this
paragraph. The following points were considered:

� Architectonic aspects:
– identification of the roof surfaces of buildings;
– estimate of the number of floors of buildings;
– shape classification of roofs.

� Energy aspects:
– estimate of the electricity produced by the PV systems

installed on the roofs;
– estimate of the electricity consumed by the households;
– estimate of the coverage of the electricity demand.

� Economic aspects:
– evaluation of costs and benefits of the PV systems;
– identification of the installed PV systems that are econom-

ically effective.
� Energy and economic assessment:

– estimate of the coverage of the electricity demand related
to the results of the economic analysis;

– sensitivity analysis for the most significant physical and
economic parameters.

2.1. Architectonic aspects

The analyzed district measures 268.88 m2 and, as it is shown
in Fig. 1, is characterized by a regular square layout of streets,
well ordered orientation of buildings (1171 East of South and 1531

West of South), and almost constant pitch of slanted roofs (about
251 above the horizontal).

The district area occupied by buildings measures 109,207 m2,
which is 40% of the whole district’s surface, and it is subdivided as
shown in Fig. 2.

The slanted roofs, which have different shapes (gable, hip and
skillion), typically cover old stone buildings characterized by a
small number of floors and made with masonry walls distant each
other about 4–5 m; the buildings have a standard depth of about
9 m. The buildings contain residential apartments whose gross
surface is about 150–170 m2. This building typology is supposed
to be very suitable for PV systems because the ratio of roof surface
to the number of inhabitants is quite advantageous.

The shape and size of the flat roofs of multi-storey buildings
are quite irregular. Despite the large flat roofs, which are sup-
posed to provide a high annual PV electricity production poten-
tial, these buildings have several shortcomings mostly related to
the shading effects due to balustrades, elevator housings, HVAC
equipment, water tanks etc. Moreover, even if this study con-
sidered that all flat roofs were exploited by all the building
landlords, flat roofing may also be the private terrace of a
penthouse flat.

The number of floors of the building, on which depends the
amount of roof surface that each co-owner of the building can use
to install a PV system, was determined using the Street View
function of Google Earth

TM

. The results of matching the roof areas
with the number of floors of the buildings are shown in Fig. 3.

Most of roofs areas of the analyzed district cover buildings of
four floors. Moreover most of the slanted roofs belong to buildingsFig. 1. The analyzed district of Palermo (Sicily).

Slanted 
roofs
55%Terraces

10%

Flat roofs
35%

Roofing distribution

Fig. 2. Percentage distribution of the district roofing.

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10

Number of floors

Percentage distribution of roof areas 
vs number of floors

All roofs
Slanted roofs
Flat roofs

Fig. 3. Distribution of roof areas versus number of floors.
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of four floors whereas most of the flat roofs cover buildings with
eight floors.

The slanted roofs were classified using the 16 types of shapes
depicted in Table 1 where the arrows in the pictures indicate the
direction where the roof is sloping.

The roof of each building was subdivided in parts similar to the
roof types of Table 1; all parts were catalogued by assigning the
corresponding roof type, the surface area and the identification
code of the building. The obtained results are shown in Fig. 4.

To classify flat roofs, five classes – from FR1 to FR5- containing
almost the same number of buildings were identified. Once
evaluated the area mean value for each class, five buildings, with
a roof area near to the class mean values, were selected to represent
the five groups of buildings. The results are depicted in Fig. 5.

2.2. Energy aspects

The size of a PV field is related to the available roof surface. For
a multi-storey building the portion of the shared roof available for
each co-owner depends on the ratio of the area of each flat to the
total area of the flats located in the building. The PV fields
installed on the flat roofs were sized assuming that

� each flat had a standard surface of 162 m2 and a fixed
dimension (width or length) of 9 m;
� the employed PV panel (Kyocera KD210GH-2PU) had the

dimensions of 1.50�0.99 m;
� the PV panels were collocated with the same orientation and

pitch (251 above the horizontal) of the slanted roof surface;
� the PV panels installed on flat roofs were oriented to the South

with a pitch of 301, which is the yearly most efficient for the city
of Palermo, and placed considering the shadowing caused by the
present balustrades, elevator housings and other obstructions.

Contrary to the case study presented by Cellura et al., the PV
fields on the slanted roofs were arranged in order to locate on the
roofs the maximum number of panels. Modules were flanked
without leaving room between them; for routine maintenance
only a 0.60 m wide strip of roof around the PV field was reserved.
The decision of maximizing the size of PV fields was made in
order to explore what is the effect of oversized PV systems that
generate an amount of electricity much greater than the energy
demand of the householders. The results of the PV fields sizing are
shown in Table 2.

The selected technology was a grid-connected PV system with
inverters equipped with maximum power point trackers; bat-
teries to store energy were not used. The inverters were selected
matching their nominal power with the size of each PV field. The
hourly electricity produced by the PV systems was calculated for
194 combinations of roof type and number of floor using the
software PVsyst 5.06 [13]. The values of the hourly electricity
generation of each PV system, calculated for a whole year, were
summed; the results were divided by the roof area available for
each flat and then multiplied by the total surface of each type of
slanted or flat roof in order to calculate the PV generation of all
slanted roofs of the district. The obtained results are depicted in
Figs. 6–8.

Table 1
Classification of roof shapes.

T1 T2 T3 T4 T5 T6 T7 T8

T9 T10 T11 T12 T13 T14 T15 T16

T1 
8162

T2 
12901

T3 
2690

T4
2031T6 

2219

T5 
2144T7

1582
T8 

2880

T9 
2296

T10 
1683

T11 
3298

T12
2906

T13 
3787

T14
3765

T15 
3618

T16 
4183

Slanted roof areas [m²] distribution

Fig. 4. Surface areas of slanted roofs.

FR1
3065

FR2
4267

FR3
5501

FR4
9235

FR5
15834

Flat roof areas [m2] distribution

Fig. 5. Surface areas of flat roofs.
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In order to assess the average electricity consumption the data
officially issued by TERNA [14], which is the main Italian elec-
tricity transmission grid operator, and ISTAT, Italian National
Institute of Statistics [15], were used; it was calculated that 5.02
people live in the standard flat of 162 m2 and averagely consume
5957.3 kWh of electricity every year.

2.3. Economic aspects

To make a judgment about the viability of installing PV systems
it is necessary to select the economic evaluation measures that
better serve the purpose. The net present value (NPV) and the
benefit-to-cost ratio (B/C) are recommended when the full cost of
an alternative has to be considered [16]. The NPV is defined as the
sum of the cash flows obtained by algebraically adding the present
value of all costs and profits related to the generic year the
investment lifetime. NPV, which is used in capital budgeting to
analyze the profitability of an investment or project, is sensitive to
the reliability of future cash inflows that an investment or project
will yield. For accept/reject investment decisions the internal rate
of return (IRR) is commonly used. IRR is the discount rate that
makes the net present value of all cash flows from a particular
project equal to zero. Generally speaking, the higher a project’s
NPV or IRR, the more desirable it is to undertake the project.

To perform the complete economic analysis all costs and
benefits have to be considered for each year of the investment.
The disbursements are due to the costs for investment, system
devices replacement, maintenance and management, and insur-
ance; the benefits are related to the gain for the avoided
electricity bill cost, for incentives and for selling electricity. The
costs of the investment were obtained from the market prices of
components, considering the cost for labour, fitter’s gain and the
value added tax (VAT).

In order to avoid that the temporary financial instability
observed in Italy in the last months of 2011 improperly influ-
enced the results of the economic analysis, the values of the
economic parameters were referred to August 2011, when the
effects of the oscillations of the European economic system were
still moderate.

The electricity bills were calculated considering the difference
between the bills corresponding to the electricity demand and
those referred to the difference between the electricity demand
and the energy consumed while the PV systems are producing
electricity. The electricity tariffs issued by the AEEG-Italian
Authority for electricity and gas for domestic consumers with

n.1
6

n.2
48

n.3
173

n.4
573

n.5
194

n.6
113

n.7
32

n.8
54

n.9
24

Electricity produced by all slanted roofs 
[kWh/year] 

Fig. 6. Electricity produced by all slanted roofs of the district.
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Fig. 7. Electricity produced by all flat roofs of the district.

Table 2
Number of PV panels installed on the roofs.

Roof Type Number of floors

1 2 3 4 5 6 7 8 9 10

Slanted roofs

T1 68 32 20 16 12 8 8 8 4 –

T2 68 32 20 16 12 8 8 8 4 –

T3 60 29 18 13 11 8 6 6 6 –

T4 60 29 18 13 11 8 6 6 6 –

T5 60 29 18 13 11 8 6 6 6 –

T6 60 29 18 13 11 8 6 6 6 –

T7 54 26 16 12 10 6 6 4 4 –

T8 54 26 16 12 10 6 6 4 4 –

T9 85 42 28 21 17 14 12 10 9 –

T10 85 42 28 20 16 14 12 10 8 –

T11 85 42 28 21 17 14 12 10 9 –

T12 85 42 28 21 17 14 12 10 9 –

T13 75 37 25 18 14 12 10 8 8 –

T14 75 37 25 18 14 12 10 8 8 –

T15 75 37 25 18 14 12 10 8 8 –

T16 75 37 25 18 14 12 10 8 8 –

Flat roofs

FR1 24 12 7 6 4 3 3 3 2 2

FR2 34 17 11 8 6 5 4 4 3 3

FR3 39 19 13 9 7 6 5 4 4 3

FR4 42 21 14 10 8 7 6 5 4 4

FR5 46 23 15 11 9 7 6 5 5 4
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Fig. 8. Electricity produced by all slantedþflat roofs of the district.
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an electricity capacity of 3 kW were used. Table 3 lists the data
issued for the third trimester of 2011.

For the incentives, the values of FIT given by the decree issued
in 2011 by the Ministry for the Economic Development were
assumed. Table 4 list the incentives paid depending on the rated
power of the PV system.

For the gain in selling PV electricity, which was calculated on
the basis of the exported PV energy, a selling price of 0.103 h/kWh
was used. The net gain in selling the exported PV electricity was
evaluated charging an income tax of 30.22%, which was estimated
on the basis of the average income of the inhabitants of Palermo.
The economic analysis was performed also considering:

� a yearly degradation rate in the efficiency of the PV panels
equal to 1% of the nominal initial value:
� yearly maintenance and management costs estimated to be 1%

of the investment cost, for flat roofs, and 2.5% for slanted roofs;
� a replacement of 1% of the PV panels every year and of all

inverters every five years;
� insurance costs, varying from 184.00 to 307.00 h for PV

systems with peak power of 3 and 15 kWp, respectively;
� a yearly increasing of 5.17% in the price of electricity;
� a mean selling price of 0.103 h/kWh for the exported PV

electricity;
� an inflation rate of 2.05%;
� a current value of 5.20% of the discount rate;
� a VAT rate of 10% for all system devices.

All above economic factors were connected to the cash flows
obtained by adding algebraically all the costs and all the profits
related to the generic year in order to calculate the values of NPV
and IRR for a lifetime of the investment of 20 years, which is the
period of time when incentives are provided in Italy.

2.4. Energy and economic assessment

In order to evaluate the effective coverage of the electricity
demand of the district, the results obtained from the energy
assessment were coupled with the results of the economic
analysis. It was assumed that only the electricity generated by

the PV systems, which resulted economically convenient (i.e.
characterized by advantageous values of NPV or IRR), was useful
to supply the demand of the district. Actually, it is realistic to
guess that a PV system is installed on the roof of a house because
the homeowner thinks that it is worth to spend the money for
that purpose. As a consequence it is very likely that only the PV
systems, which were considered economically convenient by
homeowners, will be really installed.

For this reason, in assessing the coverage of the electricity
demand of the district, the PV systems, whose economic analysis
showed disadvantageous values of NPV or IRR, were filtered out
and energy produced by them was not included in the calculation.

To assess the level of integration of all NPV PV systems of the
district, the produced electricity was compared with the energy
demands by means of the gross energy cover factor CPV:

CPV ¼

PNPV

j ¼ 1 En

PV , jPNPV

j ¼ 1 Dn

j

U100¼
EPVTotal

DTotal
U100 ð1Þ

where En

PV ,j and Dn

j are the yearly PV generation and demand of
the j-th PV system of the district, respectively; EPVTotal and DTotal

are the yearly PV generation and demand of the district, respec-
tively. Fig. 9 shows the results of the calculations performed
taking account of the available roof areas and the number of floors
of all building of the district.

It can be seen that, due to the maximization of the PV fields,
the gross energy cover factor surpass the values presented by
Cellura et al. who found that PV systems supplied the 35.8% of the
electrical energy required for the district. In particular, slanted
roof covered 25.6% while flat roofs kept a cover factor of 10.2%.
A similar distribution of the energy cover factor with the number
of floors was found by Cellura et al. Like for the actual case, the
energy production was mainly due to the sloped roofs covering
buildings of four floors, while the slanted roofs always appeared
the most efficient.

Anyway the results shown in Fig. 9 are definitely too optimis-
tic because the energy was calculated without taking account of
the lack of solar irradiance due to the shadowing of obstructions,
which may be quite likely in a urban context, and possible
technical malfunctioning of the PV systems. Fig. 10 shows the
yearly gross energy cover factors filtered with the economic
criterion.

The comparison with Fig. 9 shows the significant reduction of
the gross energy cover factors related to the economic conve-
nience of the PV installations; the gross energy cover factor of the
district lowers from 43.9% to 31.4%, with a percentage decrement
of 28%.
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Fig. 9. Yearly gross energy cover factors for the whole district, versus the number

of floors.

Table 3
Electricity tariff in Italy.

Energy (h/kWh) Power (h/kW/year) Fixed cost (h/year)

o1800 kWh 0.113146 14.53760 5.13400

1800–2640 kWh 0.161676

2640–4440 kWh 0.216276

44440 kWh 0.261996

Table 4
Feed-in tariff for electricity generated by PV systems in Italy.

Rated power August 2011

PV systems installed

on buildings

PV systems not installed

on buildings

[kWp] [h/kWh] [h/kWh]

1–3 0.368 0.327

3–20 0.339 0.303

20–200 0.321 0.291

200–1000 0.303 0.263

1000–5000 0.280 0.250

45000 0.269 0.238
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3. The load mismatch and the surplus PV generation

The load mismatch is a relevant topic of the assessment of PV
systems that has been studied also considering the effects of the
use of time-of-using and real-time electricity pricing [17,18]. Due
to the load mismatch some amount of PV electricity may be
exported to the grid because the PV field is oversized or the
electrical demand is temporarily small; the surplus would be sold
off because the selling price of electricity is generally less than
purchase price. Adversely, a great consumption, which does not
match the available PV generation, will require to be supplemen-
ted by the grid electricity. The presence of the load mismatch due
to the improper habits in using the electrical appliances can cause
the occurrence of disadvantageously purchasing electricity from
the grid and/or squandering the unexploited PV energy. If only a
very small part of the PV generation is used to supply the
household appliances, benefits will not compensate disburse-
ments. When almost all PV electricity is used by the household,
the economic investment can be very convenient.

The randomness, which characterizes the energy exchange
between the grid and the electricity users provided with PV
systems, may require a greater degree of grid flexibility and
smart energy management strategies. Because the effort required
for reaching such objectives may contrast with the economic
interests of the traditional electricity producers and dispatchers,
the penetration of the PV electricity may meet resistances that are
greater than the difficulties related to solving the involved
technological problems.

To better analyze the problem, in Fig. 11 the j-th PV system of
the district is sketched; batteries are not considered.

EPV,j(i) and Dj(i) are the PV generated electricity and the load
demand during the generic i-th time interval, respectively.
Because not always EPV,j(i) fully covers Dj(i) and the electricity
supplied to the load never can surpass Dj(i), the electricity
EPVload,j(i) that the PV system supplies to the load during the
generic i-th time interval is

EPVload,jðiÞ ¼min½EPV ,jðiÞ,DjðiÞ� ð2Þ

When the PV electricity and the electrical demand do not
perfectly match each other, or the PV generation is insufficient,
some amount of electricity is exchanged with the grid:

EPV ,jðiÞ ¼ EPVload, jðiÞþEexp, jðiÞ ð3Þ

DjðiÞ ¼ EPVload, jðiÞþEimp, jðiÞ ð4Þ

where exported electricity Eexp,j(i)a0, if EPV,j(i)4Dj(i); conversely
imported electricity Eimp,j(i)a0, if EPV,j(i)oDj(i). Obviously if

Eexp,j(i)a0 then Eimp,j(i)¼0, and vice versa, during the same time
interval.

In order to consider the effect of the mismatch between
generated and consumed electricity, many load matching
indicators have been indicated. The ratio of the PV electricity
provided to the users and the electrical demand was named
the solar fraction by Widén et al. [10], the load match index by
Voss et al. [19] and the cover factor by Verbruggen et al. [20].
Such a parameter, which represents the percentage of the
electrical demand that is covered by the generation of the j-th
PV system over the period, can be calculated with the following
equation:

gD,j ¼

PN
i ¼ 1 min ½EPV ,jðiÞ,DjðiÞ�PN

i ¼ 1 DjðiÞ
U100¼

En

PVload,j

Dn

j

ð5Þ

where N is the number of samples in the considered evaluation
period. En

PVload,j and Dn

j are the PV electricity provided to the users
and the electrical demand of the j-th PV system over the
evaluation period, respectively. The accurate evaluation of load
match index gD,j would require a dynamic approach based on the
knowledge of the daily distribution of the electricity generation
and demand. When only the yearly energy data are available, load
match index gD of the district may be evaluated with the
approximate expression:

gD ¼

PNPV

j ¼ 1 min½En

PV ,j,D
n

j �PNPV

j ¼ 1 Dn

j

U100 ð6Þ

where it was assumed that:

XNPV

j ¼ 1

XN

i ¼ 1

min½EPV ,jðiÞ,DjðiÞ� �
XNPV

j ¼ 1

min
XN

i ¼ 1

EPV ,j ið Þ,
XN

i ¼ 1

DjðiÞ

" #
¼
XNPV

j ¼ 1

min½En

PV ,j,D
n

j � ð7Þ

The above value of gD was calculated with Eq. (2) that
corresponds to the condition under which, if the PV generation
is sufficient, the daily energy demand is always covered by the PV
electricity. Such an optimistic condition is quite unreal because it
involves a perfect simultaneity between PV generation and
consumption. Actually, even adopting the best strategy to exploit
the PV generation, the electricity DNight consumed after sunset and
before dawn will be never compensated by the energy produced
by a grid-connected PV system that does not use batteries.
Therefore, to correctly assess the economic convenience, a mini-
mum mismatch between generated and consumed electricity has
to be always considered.

To calculate the value of DNight, it was assumed that at least
some appliances (lamps, refrigerator, television and P.C.) were
working at night. Moreover, because the electricity generated by

Generation System

LOAD

EPV,j

Meter
Eexp,j

Eimp,j

Egrid,j

Eimp,jEPVload,j

Dj

Distribution
Point

Fig. 11. Sketch of the energy exchanges in a PV systems without batteries.
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the PV systems is quite small at the beginning and at the end of
the day, DNight was calculated from time Ti and Tf that correspond
to one hour before sunset time and one hour after dawn time,
respectively. Using the data officially available [21–24] and
considering sunset and dawn time in Palermo on 15th of each
month, it was calculated for a standard flat a value of DNight equal
to 716.5 kWh/year; consequently the day energy demand DDay

resulted equal to 5240.8 kWh/year.
The portion of DDay that is matched by the PV electricity

mainly depends on the habits of the households in using the
electrical appliances. Some strategies, which are known as load
management and demand side management, have been devel-
oped. Both strategies aim to enable the supply system to meet the
demand in order to make the best use of its available generation
and transmission capacity. Load management may be implemen-
ted by limiting the demand or shifting the consumption from
peak to off-peak periods on a daily or weekly basis. Gellings et al.
[25] described six load management strategies: (1) peak clipping,
(2) valley filling, (3) load shifting, (4) strategic conservation,
(5) strategic load growth and (6) flexible load shape. First three
strategies aim to make the demand more constant in the time.
Strategic conservation and strategic load deal with the improve-
ment of the efficiency of energy use, the replacement of inefficient
fossil fuel equipment and the raise of consumer productivity and
quality of life. Flexible load shape assumes the use of specific
contracts and tariffs along with consumers’ equipment flexibly
controlled.

All above strategies try to solve the problem from the point of
view of the grid operators who are concerned about reducing to
reduce the difference between the maximum and minimum
values of the produced and dispatched electricity. Dealing with
PV electricity the problem should be inverted because a very flat
load curve represent the worst condition to efficiently utilize the
PV generation that, by its very nature, is never constant. Actually,
only if the consumption follows the variation of the PV genera-
tion, no surplus electricity – or the minimum – will be exported to
the grid that, in turn, will be minimally perturbed by large-scale
PV systems.

A household, aware of the importance of not wasting the
electricity produced by its PV system, will implement simple and
efficient personal strategies in using domestic appliances. Build-
ing automation can also provide economical solutions to manage
the appliances with the highest consumption (washing machine,
dishwasher, boiler) whose operation may be flexibly scheduled.
Even smart control systems, able to forecast the solar potential
and the PV generation up to 2 days, with hourly resolution, may
be implemented [26].

Whatever are the strategies to reach the best load matching it
is very difficult to calculate their real effects when the numerous
PV systems installed on the roofs of a densely built city are
analyzed. For this reason, in order to study the energy and
economic impact of the load mismatch on the district load match
index, a sensitivity analysis has been carried out on the basis of
the available yearly energy data. To reach the purpose it is useful
to split energy demand of the generic j-th PV system as described
below:

Dn

j ¼DDay,jþDNight,j ¼DMatch,jþDMism,j ð8Þ

where DMatch,j represents the amount of load matched demand
and DMism,j is the amount of mismatched demand. Let us assume
that Dn

j is constant (5957.3 kWh/year) and that DMatch,j varies
from zero to DDay,j (5240.8 kWh/year) as a consequence of the
smart use of the electrical appliances:

DMatch,j cuð Þ ¼ cuDDay,j ð9Þ

where utilization coefficient cu:

cu ¼
DMatch,j

DDay,j
ð10Þ

varies from 0 (no PV generation used) to 1 (maximum PV
generation used). Using Eq. (4) the yearly demand can be
rewritten as

Dn

j ¼DMatch,j cuð ÞþDMism,j cuð Þ ¼ En

PVload,j cuð ÞþEn

imp,j cuð Þ ð11Þ

where En

imp,j cuð Þ is the yearly imported electricity of the j-th PV
system of the district and En

PVload,j cuð Þ, which represents the PV
electricity supplied to the matched demand DMacth,j cuð Þ, is calcu-
lated with the following expression:

En

PVload,j cuð Þ ¼min½En

PV ,j,DMatch,j cuð Þ� ¼min½En

PV ,j,cuDDay� ð12Þ

By means of the above equations the load match index of the
district can be can be related to utilization coefficient cu:

gD,u ¼

PNPV

j min½En

PV ,j,cuDDay�PNPV

j Dn

j

U100¼

PNPV

j En

PVload,j cuð Þ

DTotal
U100 ð13Þ

For given values of the electricity demand and PV generation,
gross energy cover factor CPV is not affected by the load mismatch.
Adversely, load match index gD,u is sensitive to load mismatch and
can be less than 100% for two different reasons. If the PV systems
are undersized to cover the energy demands, then En

PV ,joDn

j and
consequently En

PVload,joDn

j . When the PV system is not undersized
(En

PV ,j4Dn

j ) but the generation mismatches the energy demand
(cuo1), then En

PVload,joDn

j . Even though the PV production per-
fectly covers the demand (En

PV ,j¼Dn

j -CPV¼100%), when cuo1,
some amount of energy produced En

PV ,j is not contemporary
consumed and consequently it is gD,uo100%. In a grid-
connected PV system, which does not use batteries, both the lack
of solar radiation and the inadequate use the appliances affect the
load match index. The difference between the gross energy cover
factor and the load match index indicates the percentage ratio of
the PV generation exported to the grid to the electricity demand.

4. Results

Prior to calculating the effect of the load mismatch on the
coverage of the electricity demand of the district, it is interesting
to observe how the energy and economic performances of the PV
systems change with the types of roof on which are installed. For
the sake of brevity only the results related to few types of roofs,
chosen to represent the various roofing technologies, are pre-
sented. For each type of roof the PV systems with the highest
energy performances are reviewed. If it is not differently declared,
the graphs of this section do not consider the shadowing effect of
obstructions.

4.1. Gable roof type T2 and T3 analysis

Gable roofs types T1 and T2 are very common in the analyzed
district. Type T1 roofs cover 13.16% of all buildings and produces
14.42% of the total electricity generated by the PV systems
installable on all the district’s roofs. Fig. 12 depicts some figures
of the electricity demand coverage that were calculated assuming
the most optimistic conditions in which a perfect load matching
(cu¼1) is present.

The PV systems installed on buildings of one or two floors are
oversized because the gross energy cover factor surpasses the
value of 88.0% corresponding to the ratio of DDay to the daily total
demand. The gross load match index, which corresponds to the
gross energy cover factor when a PV system is not oversized, is
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98.3% of DDay for a building with three floors; the load coverage
lowers to 19.7% of DDay for a building with nine floors.

Fig. 13 shows the ratio of the net present value to the present
value of costs of the PV system (NPV/PVC), which is a parameter
useful to assess the economic convenience of a PV system. If the
NPV/PVC is positive, then the revenues surpass the disbursements
over the PV system lifetime and the investment will be profitable;
with a NPV/PVC of 10%, if the disbursements are 100, the
revenues will be 110. The opposite is for negative values of
NPV/PVC. Moreover, high values of NPV/PVC indicate that pay-
back period will be quite short. Adversely, a NPV/PVC near to zero
represents a critical situation where the results of the economic
analysis may be abruptly upturned by small variations in the
assessment of costs and benefits.

The filtered load match indexes of the PV systems installed on
buildings of one and nine floors are zero because, as it is possible
to deduce observing Fig. 13, these systems are always economic-
ally disadvantageous. The reasons are different. The PV systems
referred to one floor are not convenient because the cost of the
oversized PV fields is exorbitant compared to the revenues of
selling the surplus energy exported to the grid. Adversely, due to
the lack of incentives, which are not paid when the peak power is
less than 1 kW, the investment for PV systems installed on
buildings of nine floors cannot be recouped.

Coefficient cu, which indicates how much the electricity
demand from dawn to dusk is covered by the PV generation,

significantly affects the value of the filtered load match index.
It can be observed that the PV systems installed on buildings of
two and three floors are economically advantageous if 80% of the
demand matches the PV generation. PV systems installed on four-
floor buildings requires that 60% of the demand is matched.
A greater flexibility, which allows a load matching of 40%, is
shown by the PV systems installed on the buildings with a
number of floors greater than four. No PV systems will be
economically convenient when only 20% of the demand is covered
by the PV electricity.

Gable roofs types T3, T4, T4 and T5 are present in the analyzed
district with almost the same percentage. Type T3 roofs cover
2.74% of all buildings and produces 2.91% of the PV electricity
generated by all the installable PV systems.

Observing Fig. 14 it is easy to recognize that the PV systems
installed on buildings of one or two floors are oversized. A PV
system installed on a building with three floors covers 90.7% of
DDay; the coverage lowers to 30.2% of DDay for buildings with more
than six floors.

The PV systems installed on buildings of one floor are eco-
nomically disadvantageous due to the cost of the oversized PV
fields. Adversely, because the advantages for the reduced cost for
the electricity bills are quite marginal, the PV systems installed on
buildings of more of six floors do not compensate the investment.

Fig. 15 shows that the PV systems installed on buildings of two
and three floors are economically advantageous if 80% of the
demand matches the PV generation. For the PV systems installed
on buildings with four, five and six floors it is sufficient that 40%
of the demand is matched. No PV systems will be economically
convenient when only 20% of the demand is covered by the PV
electricity.

Because 65.67% of type T2 and 69.78% of type T3 refer to roofs
belonging to buildings of four, five and six floors, this kind of
roofing can be very effective to cover the energy demand of the
district even with values of load matching that are not optimal.

4.2. Hip roof type T8 analysis

Due to their shape, on the hip roofs types T7 and T8a smaller
number of PV panels can be generally located. Type T8 roofs cover
2.94% of all buildings and produces 2.93% of the PV electricity
generated by all the installable PV systems of the district. The side
angle, which is the tilt of the triangular portions of and hip roof
[27], affects the PV energy generation. An hip roof type T8, with a
side angle of 251 and a tilt angle of 251, generates less electricity
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than a gable roof type T2 that has the same tilt angle; actually, hip
roof type T8 produces 79% of the electricity generated by T2.

As it is shown in Fig. 16 the PV systems installed on buildings
of one or two floors are oversized; a PV system installed on a
building with three floors covers 78.3% of DDay. The coverage
lowers to 19.7% of DDay for buildings with more than seven floors.

The filtered load match indexes of PV systems installed on
buildings of one floor are economically disadvantageous due to
the cost of the oversized PV fields. Adversely, because the
advantages for the reduced costs for the electricity bill are quite
marginal, PV systems installed on buildings of more than five
floors do not recoup the investment.

In Fig. 17 it is easy to observe that coefficient cu irregularly
affects the value of the filtered load match index for a number of
floors included between two and five. The PV systems installed on
buildings of two floors are economically advantageous if 80% of
the demand matches the PV generation. The PV systems located
on buildings of three floors are never profitable. For the PV
systems installed on buildings with four floors it is sufficient that
40% of the demand is matched, whereas a load matching of 60% is
required for five floors. Again, no PV systems will be economically
convenient when only 20% of the demand is covered by the PV
electricity.

Roof type T8 is very sensitive to the economic assessment. For
cu¼1 and three floors, it is NPV/PVC¼�0.98%, which indicates

that the energy assessment is very critical because a difference in
the costs or benefits of few hundreds of euros may invert the
judgement about the profitability of the investment.

4.3. Skillion roof type T9 and T13 analysis

Skillion roofs types T9, T10, T11 and T12 allow the placement
of the greatest number of PV panels. For this reason the PV
systems installed on skillion roofs are very energy effective. Type
T9 roofs cover 2.34% of all buildings and produces 5.11% of the PV
electricity generated by all PV systems of the district. The
different and less advantageous orientation of roofs types T10,
T11 and T12 determines a reduction of electricity production [28].
The rotation of 1801, 901 and �901 from the optimally oriented
roof type T9, which corresponds to roof types T10, T11 and T12,
respectively produces a reduction of 32%, 16% and 19% in the
electrical generation.

Fig. 18 shows that the PV systems located on buildings with
less than five floors are oversized. A PV system installed on a
building with five floors is able to cover 95.7% of DDay; the gross
load match index lowers to 50.7% of DDay for a building with nine
floors.

The filtered load match index of PV systems installed on
buildings of one floor is zero because these systems are economic-
ally disadvantageous. Thanks to the paid incentives, which are
very high due to the great value of the generated PV electricity,
the PV systems are economically advantageous for each number
of floors greater than one, even if they are oversized. The NPV/PVC
may surpass 30% and for this reason the pay-back period results
shorter than ten years.

Fig. 19 shows that PV systems installed on two-floor buildings
requires that 80% of the demand is matched. The profitability of
the PV systems located on building of three and four floors is
reached if 60% of the demand is matched. A greater flexibility,
which allows a load matching of 40%, is shown by the PV systems
installed on the buildings with a number of floors greater than
four. No PV systems will be economically convenient when only
20% of the demand is covered by the PV electricity.

Even skillion roofs types T13, T14, T15 and T16, which are
quite frequent in the analyzed district, result very energy effec-
tive. Type T13 roofs cover 3.86% of all buildings and produces
5.91% of the PV electricity generated by all the installable PV
systems.

Observing Fig. 20 it is easy to recognize that the PV systems
installed on buildings of less of four floors are oversized; a PV
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Fig. 16. Roof type T8 figures of the electricity demand coverage versus the

number of floors (cu¼1).
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system located on a building with three floors covers 98.2% of
DDay. The coverage lowers to 43.2% of DDay for buildings with
more than seven floors.

Although they are oversized, the PV systems installed on build-
ings of less than four floors are economically advantageous. The
calculated pay-back period of PV systems located on buildings with
five or six floors may result quite short because are about eight years.

Fig. 21 shows that the PV systems installed on buildings of one,
three and four floors are economically advantageous if 60% of the
demand matches the PV generation. For the other PV systems it is
sufficient that 40% of the demand is matched. No PV systems will
be economically convenient when only 20% of the demand is
covered by the PV electricity.

4.4. Flat roof type FR5 and FR1 analysis

Roofs Type FR5, which indicates the class of flat roofs with the
widest roofing areas, covers 16.15% of all buildings. The PV
systems, which are considered to be oriented to the South with
a tilt angle of 301, produce 11.34% of the PV electricity generated
by all PV systems of the district.

Observing Fig. 22 it is easy to recognize that the PV systems
located on buildings with less than three floors are oversized. A
PV system installed on a building with three floors is able to cover

92.0% of DDay; the gross load match index lowers to 27.7% of DDay

for a building with ten floors.
Fig. 23 shows that the filtered load match index is zero only for

PV systems installed on buildings with more than nine floors.
NPV/PVC reaches very high values and the pay-back period may
also result smaller than eight years. This type of roof presents a
small sensitivity to the load mismatch because if only 20% of the
demand is covered, the investment results profitable. Such a
performance is mainly due to the possibility of placing a great
number of PV panels because the unavailable portions of roof are
relatively small due to the wide dimension of the buildings.

For roof type FR1, which represents the class of flat roofs with
the smallest roofing areas, the energy and economic perfor-
mances are a bit different. Roofs Type FR1 covers 3.13% of all
buildings and produces 1.33% of the PV electricity generated by
all PV systems of the district.

Fig. 24 depicts some figures of the electricity demand cover-
age. A PV system located on a building with three floors covers
72.8% of DDay; the coverage lowers to 14.6% of DDay for a building
with five floors. Fig. 25 shows that the pay-back period of PV
systems located on buildings with less than four floors may result
quite short.

Fig. 25 also shows that the PV systems installed on buildings
with more than five floors are always economically disadvanta-
geous. For the other buildings this type of roof presents a small

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10

Number of floors

NPV/PVC - Roof type T9

cu = 1.0
cu = 0.8
cu = 0.6
cu = 0.4
cu = 0.2

Fig. 19. Ratio of the net present value to the present value of costs for a roof type

T9 PV system versus the number of floors.

0%

50%

100%

150%

200%

250%

300%

350%

400%

1 2 3 4 5 6 7 8 9 10
Number of floors

Electricity demand coverage - Roof type T13

Gross energy cover factor
Load match index
Filtered load match index

Fig. 20. Roof type T13 figures of the electricity demand coverage versus the

number of floors (cu¼1).
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sensitivity to the load mismatch because if only 20% of the
demand is covered, the investment results profitable.

The main difference between roof type FR1 and FR2 consists in
the fact that type FR1 is more suited for PV systems installed on
low buildings, whereas the opposite is true for type roof FR5. This
assertion is confirmed by the graphs related to the other flat roofs
FR2, FR3 and FR4, not presented for the sake of brevity, that show
a regular transition of the energy and economic performances.

4.5. Overall analysis of the district

In Fig. 26 the yearly load match indexes of the district are
shown. Without any shading effect due to surroundings, the PV
electricity supplied to the load is 42.4% of the district demand.

Comparing Fig. 26 to Fig. 9, it can be observed that the
difference between the gross energy cover factor and load match
index corresponds to 1.5% of the district demand; this amount of
electricity, which is exported to the grid, is due to the PV systems
installed on the roofs of the lowest buildings that are more likely
to result oversized. Their effect is quite small because the roofs of
buildings with one, two and three floors represent less than 9% of
the total roofing surface of the district.

Fig. 27 depicts the values of the load match indexes filtered
considering the results of the economic assessment of the PV
systems profitability. The value of 42.4% lowers to 30.2%, with a
percentage decrement of 29%. The overall effect of the load
mismatch, which variously affects each kind of roof types, is
shown in Fig. 28, where the load match indexes are depicted
versus the number of floor for some values of utilization coeffi-
cient cu.

If cu varies from 1 to 0.8, the load mismatch lowers the load
match index of the district from 42.4% to 40.5%, with a relative
reduction to 95.5% of the initial value; if cu is 0.2 the load match
index reaches the value of 15.8%, with a relative reduction to
37.1%.

The effect, which is not linearly proportional, is more evident
in Fig. 29 that depicts the filtered load match indexes versus the
number of floor for some values of utilization coefficient cu. In this
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case when cu varies from 1 to 0.8, the filtered match index
changes from 30.2% to 28.6%, with a relative reduction to 94.7%
of the initial value; the filtered load match index lowers to 2.2%,
with a relative reduction to 7.1%, when cu¼0.2.

Fig. 30 shows the effect of utilization coefficient cu on the
filtered gross energy cover factor of the district for different
values of the shading coefficient varying from zero (no shading)
to 100% (no solar energy).

As it was expected, all PV systems become economically
ineffective when only a very small amount of the electricity
demand is covered by the PV generation. Adversely, when the

shadowing coefficient is zero, the load mismatch has a little effect
on the gross energy cover factor if more than 60% of the electricity
demand is covered by the PV generation. For values of cu less than
60% an abrupt abatement of CPV is observed; this abatement
appears for cu less than 80% when 10% of the energy is shaded.
The value of 17%, fixed in Europe for the share of energy from
renewable sources in gross final consumption of energy in 2020,
can be reached with a utilization coefficient greater than 42%,
with a zero shadowing, and greater than 52% when a shadowing
coefficient of 5% is considered. In Fig. 31 the variation of load
match index gD is shown.

If the unfiltered values of PV generation are considered, gD

gradually decreases with utilization coefficient cu and its reduc-
tion is also linearly proportional to the shadowing coefficient.
Load match index, which is 42.4% if no shadowing effect is
considered, lowers to 38.6% with a shadowing coefficient of 10%.

The linear proportionality with the shadowing coefficient is
not kept when the filtered values of PV generation are considered.
The filtered load match index is 30.2% if no shadowing effect is
considered; it lowers to 19.4% with a shadowing coefficient of
10%. The value of 17% of gD is reached with a utilization coefficient
greater than 48% with a zero shadowing and greater than 55%
when a shadowing coefficient of 5% is considered. Fig. 32 shows

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7 8 9 10
Number of floors

Filtered Load match indexes γD 
for the whole district 

Slanted roofs
Flat roofs
Slanted+Flat roofs

: γDTotal = 22.6%
: γDTotal=   7.6%
: γDTotal= 30.2%

Fig. 27. Yearly load match indexes for the whole district, filtered by the economic

assessment, versus the number of floors (cu¼1).

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7 8 9 10
Number of floors

Load match indexes γD for the whole district 

γDTotal

DTotal

DTotal

DTotal

DTotal

= 42.4%
γ = 40.5%
γ = 35.8%
γ = 28.5%
γ = 15.8%

cu = 1.0
cu = 0.8
cu = 0.6
cu = 0.4
cu = 0.2

Fig. 28. Yearly load match indexes for the whole district versus the number of

floors.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7 8 9 10
Number of floors

Filtered load match indexes γD for the whole district 

γD Total

D Total

D Total

D Total

D Total

= 30.2%
γ = 28.6%
γ = 23.3%
γ = 12.9%
γ =   2.2%

cu = 1.0
cu = 0.8
cu = 0.6
cu = 0.4
cu = 0.2

Fig. 29. Yearly load match indexes for the whole district, filtered by the economic

assessment, versus the number of floors.

0%

5%

10%

15%

20%

25%

30%

35%

Utilization coefficient cu 

Filtered gross energy cover factor CPV 
for the whole district 

Shad.= 0%
Shad.= 5%
Shad.= 10%

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 30. Yearly gross energy cover factors for the whole district, filtered by the

economic assessment, at various values of the shading coefficient versus utiliza-

tion coefficient cu.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Utilization coefficient cu 

Load match index γD for the whole district 

Shad.= 0%  Unfiltered
Shad.= 5%  Unfiltered
Shad.=10% Unfiltered
Shad.= 0%  Filtered
Shad.= 5%  Filtered
Shad.=10% Filtered

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 31. Yearly load match index for the whole district (with economically filtered

and unfiltered data) at various values of the shading coefficient versus utilization

coefficient cu.

A. Orioli, A. Di Gangi / Renewable and Sustainable Energy Reviews 21 (2013) 13–2826



Author's personal copy

the difference between the gross energy cover factor and the load
match index, calculated with no shadowing effect; such a differ-
ence indicates the ratio of the PV electricity exported to the
energy demand of the district.

If the PV generation and the energy supplied to the load are
calculated without considering the effect of the economic analy-
sis, the amount of PV electricity exported to the grid regularly
varies with the utilization coefficient. With no load mismatch
(cu¼1), almost all PV generation is used to supply the load; only a
very small amount of PV electricity (1.5% of the demand), which
corresponds to the PV systems that produce more than the
demand, is exported to the grid. If the load is completely
mismatched the fully PV generation (43.9% of the demand) is
exported to the grid. This amount of exported PV electricity
corresponds to the hypothetical situation in which all the roofs
of the district were used to install PV systems, without consider-
ing their economic viability and all the PV electricity were
exported. The random injection into the grid of 43.9% of the
demand would require a high capability of the grid to quickly
reduce of the same amount the dispatched electricity. The curve
of Fig. 32 referred to the filtered data shows that this event, which
may worry the grid operator, should be impossible in these
conditions because no PV system would have passed the eco-
nomic assessment and, consequently, no homeowner would have
installed it.

Dealing with more realistic situations, with a load mismatch of
60% (cu¼0.4) the PV systems would export 15.4% of the demand,
but only 3% of the demand would be injected into the grid by the
PV systems whose profitability was verified. Because the house-
holders are interested in making their PV systems profitable, it is
sensible to think that the PV electricity exported to the grid will
be similar to the values depicted in Fig. 32 using the filtered data.

Nevertheless, because load mismatch values varying from 40%
to 60% are not uncommon occurrences, smart habits should be
adopted in using household appliances and modern building
automation systems might be installed to better harness the PV
electricity. Contrary the large PV generation plants, which it is
reasonable to think that will be built in zones far from a city, the
PV systems installed in dense urban areas should not represent a
worry to the grid operators.

5. Conclusions

The evaluation of the real energy and economic effectiveness
of the PV systems for reaching ambitious targets of the European

Union in the energy field is of paramount importance for addres-
sing decision makers towards different options of financial
support.

In the meantime scientists have developed much experience
but still now it misses a simple methodology for assessing the
effectiveness of the PV systems in urban contexts, where the
complexity of the problem has to cope with the need to simulate
PV systems in a reliable, fast and effective way. A methodological
approach, which has the above requested features and permits to
test the level of integration of the photovoltaic technology in
urban areas, was used to analyze a district of the city of Palermo
(Italy) in order to assess the coverage of the electricity demand
and the economic feasibility of grid-connected photovoltaic
systems installed on the roofs of multi-storey buildings. The roofs
were classified according to the shape, orientation and pitch of
buildings with different morphologies by means of satellite
images provided by Google Earth

TM

and the share of energy
generated by the installable PV systems was evaluated with
regard to the number of floors.

The load match index of the whole district resulted 42.4% if no
shadowing effect is considered; it lowers to 38.6% assuming that
10% of the solar radiation is obstructed by the surroundings. The
above values are sensibly reduced when the results of the
economic assessment are considered. A maximum value of
30.2% was reached; with a shading of 10% a load match index of
19.4% is obtained. The non-linearity of the decrement, which is
due to the effect of the economic assessment, is quite evident.

The study has shown the significant effect of the load mismatch
and the consequent impact on the economic convenience of invest-
ments. PV systems installed on various types of roof were analyzed
in order to observe the effect of the oversized PV fields and of
utilization coefficient cu, which indicates how much the electricity
demand from dawn to dusk is covered by the PV generation.

Oversizing the PV fields almost always makes the PV systems
unprofitable. Gable roofs resulted very convenient when the PV
systems are installed on the roofs of buildings with four and five
floors. Hip roofs showed a high sensitivity to coefficient cu.
Skillion roofs, which are very energy effective, tolerate a load
matching of 40% when the PV systems are installed on the
buildings with a number of floors greater than four. The conve-
nience of the PV systems located on flat roofs depends on the
relation between the roof area and the number of floors of the
building. To be convenient, the size of the flat roof has to increase
with the number of floors of the building. The PV systems
installed on flat roofs resulted almost insensitive to the load
mismatch because they also accept a value of cu equal to 0.2.

The reduction in the cost for the purchased electricity and the
profit for the sold surplus energy, which depend on the load
mismatch, strongly affect the economic convenience of PV sys-
tems. The feed-in tariff policy adopted by Italy incorrectly does
not consider the load mismatch and incentives the whole energy
generation even if the electricity produced is not consumed by the
producer. Actually, such a feed-in tariff policy cause counter-
productive effects: PV systems installed on some types of floor
may result economically advantageous for a householder but
represent a problem for the grid operators due to the random
injection into the grid of PV electricity that does not match the
consumption. The study has shown that the worries of the
traditional electricity producers and dispatchers may be exagger-
ated because the penetration of PV systems is significantly limited
by their economic viability.
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