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Abstract: We report on bulk and guided-wave second-harmonic 

generation via random Quasi-Phase-Matching in Lithium Tantalate. By 

acquiring the far-field profiles at several wavelengths, we extract 

statistical information on the distribution of the quadratic nonlinearity 

as well as its average period, both at the surface and in the bulk of the 

sample. By investigating the distribution in the two regions we 

demonstrate a non-invasive approach to the study of poling dynamics. 
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1. Introduction 

Electric field assisted periodic poling (PP) is a powerful and versatile technique to 

achieve Quasi-Phase-Matching (QPM) and efficient frequency conversion with 

ferroelectric crystals in both 1D and 2D configurations [1–4]. PP-QPM is also crucial 

towards signal processing via quadratic cascading [5–14], including transverse light 

localization [15–18], wavelength shifting [19–21], unidirectional optical transmission 

[22,23]. A few parametric applications, such as backward second-harmonic generation 

(SHG), counterpropagating optical parametric oscillations and ultraviolet generation, 

require short periodicities of the nonlinear coefficient distribution, often below 1μm [24–

27]. Thus, great attention has been recently paid to small irregularities in the periodic 
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pattern and how they can affect the performance of fabricated devices [28–30]. In fact, 

the presence of a 2D modulation of the mark-to-space ratio (MTSR) superimposed to a 

pattern of nominal period Λ (defined by PP electrodes) is inherent to electric field PP and 

due to the stochastic nature of the nucleation process triggering ferroelectric domain 

inversion [31]. 

Randomness in the periodic distribution of the nonlinearity gives rise to several non-

collinear grating vectors in Fourier space, thus satisfying momentum conservation in a 

wide range of wavelengths and yielding broadband SHG [28–30, 32–34]. Such 

phenomenon, known as random quasi-phase matching (rQPM), is more relevant the 

shorter the grating period Λ. A non-invasive analysis of the nonlinear susceptibility 

distribution with its average periodicity along various directions can be crucial in 

designing and testing parametric components. 

Among ferroelectric crystals, Lithium Tantalate (LT) has emerged as one of the most 

attractive because of its high threshold to photorefractive damage, extended transparency 

in the UV down to 280 nm [35], large electro-optic and quadratic coefficients [36]. 

Moreover, LT allows realizing good quality dielectric waveguides by means of proton 

exchange (PE) [37]; the latter is also compatible with PP and has proven to be an 

excellent fabrication approach for devices in nonlinear integrated optics [38, 39]. 

In this paper we discuss bulk and guided-wave SHG via rQPM in Lithium Tantalate, 

demonstrating how the far-field images of the second harmonic generated at various 

wavelengths can provide statistical information on the bulk/surface distribution of the 

quadratic nonlinearity as well as its average period. 

2. Samples fabrication and nonlinear characterization 

We prepared rQPM samples from optical grade wafers of 500μm thick z-cut congruent 

LT. For the periodic poling we applied high voltage pulses across the LT thickness using 

an electrolyte gel and an insulating mask. After spin coating the z facet with a 1.5 μm 

thick photoresist (Shipley 1813), we defined by standard photolithography a Λ = 1.5μm 

period grating with grooves parallel to the y-axis. Subsequently, the samples were soft-

baked for 30 minutes at 90°C and, after development, post-baked overnight at 90°C and 

for 3 hours at 120°C. In order to exceed the LT coercive field we used an electrolyte gel 

over the photoresist insulating mask and applied a single 1.3 kV pulse on a 10 kV bias for 

300μs, a time interval long enough to achieve periodic ferroelectric domain inversion in 

the patterned area of 0.06 x 5.0 mm
2
. After poling, some of the samples were etched in a 

solution of Hydrofluoric Acid (HF 40%) and water (HF: H2O = 1:10) to reveal the 

domain patterns on the –z surface [40]. Fig. 1 shows two typical scanning electron 

micrographs of different portions of the sample: while in most of the area the periodicity 

of the electrodes is faithfully transferred on the sample (Fig. 1(a)), in some portions a 

random MTSR is clearly visible in the QPM grating (Fig. 1(b)). The poling dynamics is 

such that the first enucleated (inverted) domains spread in the x-y crystal plane and 

become wider than those generated later. Despite the dominant role of the periodic 

electrodes in defining the ferroelectric grating (as demonstrated by first-order QPM SHG 

on similar substrates [27]), the final MTSR has non-uniform stochastic features 

superimposed to the regular pattern. While this effect is known to always occur during 

electric-field poling, it becomes particularly relevant when the domain size (i.e., period) is 

small, as in our samples. 

 

Fig. 1. Scanning electron microphotographs of an etched LT sample after periodic poling: 
(a) general view and (b) detail of the area by the edge of the poled region. 
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Slab waveguides were fabricated after poling on the –z facet by “sealed ampoule” 

proton exchange (PE) [37], using a melt of Benzoic Acid and 3.6% Lithium Benzoate that 

was proven to preserve the nonlinear optical properties and domain orientation of the 

crystal [38], realizing “soft PE” waveguides in the α-phase. PE for 144 hours at 300°C 

yielded single mode (TM0) waveguides at the fundamental frequency (FF) wavelengths 

used in our experiments, with two modes (TM0 and TM1) supported at the corresponding 

second harmonic (SH) wavelengths. Finally, the chip end-facets were polished to optical 

grade to allow efficient in and out coupling from/to radiation modes. 

For the nonlinear characterization, the FF excitation was provided by a cw 

Ti:Sapphire laser tunable from λFF = 700 to 980nm, with a 40 GHz linewidth and a 

maximum operating power of 1W. Bulk measurements were performed by employing an 

f = 11mm lens to focus the TEM00 input beam to a waist of about 27μm at the center of 

the sample; for the measurements in waveguide an additional cylindrical lens (f = 50mm) 

was used to obtain an elongated beam of about 27 x 4 μm
2
 and so ensure a good input 

coupling into the guiding structure. The measurements were performed with an input 

power of about 40mW and at the constant temperature of 195°C in order to prevent 

photorefractive effects. In either cases, during propagation in the 5mm-long poled region 

of the sample, the FF beam generated a frequency doubled signal via rQPM [28]. 

 

Fig. 2. Acquired far-field SH intensity patterns via rQPM in (a, b, c) bulk and (d, e, f) 

waveguide samples (the FF wavelength, measured by an optical spectrum analyzer, is 

indicated in the legends). 

In order to acquire FF and SH far-field intensity profiles we positioned a 10x 

microscope objective by the sample output facet, with the latter 1.5mm away from the 

ideal object distance; we collected the image with a high resolution CCD camera. A 

distance > 1.5mm between lens and field profiles at the sample exit is large enough for 

the far-field condition to hold. In bulk measurements, as previously reported in Ref [28], 

the FF beam preserved its Gaussian shape during and after propagation, while the 

generated SH exhibited a set of finger-like spots, parallel to one another and to the z axis 

of the crystal, with intensities and distribution strongly depending on location and 

wavelength of the FF input (Fig. 2(a,b,c,)). During SHG via rQPM in slab waveguides, 

the symmetry described above for the bulk is broken because of the simultaneous 

presence of two modes at the SH. In particular, random features in the y-coordinate 

witness the random MTSR of the poled region (as in bulk), while intensity discontinuities 

along z are due to the interference between the generated TM0 and TM1 modes; since the 

latter exhibit different effective indices and transverse distributions, their overlap in the 

far field gives rise to z-modulated distributions for each input (FF) wavelength. The 
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combination of random features along y and far-field modal interference along z results in 

the complex patterns displayed in Fig. 2(d, e, f). 

3. Data analysis 

rQPM (i.e. QPM with randomness in MTSR) contributes several reciprocal lattice vectors 

in the Fourier spatial domain; hence, SH and FF are non-collinear either in bulk or in 

planar waveguide configurations. Using the far-field images we linked each SH peak with 

the angle φ between the wavevectors kω and k2ω at FF and SH, respectively. QPM occurs 

at first-order via the grating vector kG, with |kG| = 2π/ΛG and ΛG the average period of the 

random nonlinear coefficient along a specific direction of propagating SH (see Fig. 3). 

 

Fig. 3. Sketch of the momentum conservation for SHG via rQPM. 

Therefore, three-wave mixing momentum conservation (i.e. phase matching) k2ω 2kω 

- kG = 0 allows using the experimental data (peak positions, i.e., angles φ) to estimate the 

average period through the equation: 
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where FF  is the FF wavelength, n1 and n2 are the bulk (waveguide) LT refractive 

(effective) indices for the extraordinary (TM) polarization with electric field along z at FF 

and SH, respectively. In the guided-wave case, in particular, while n1 is the effective 

index of the TM0
FF

 mode at FF, n2 may refer to either TM0
SH

 or TM1
SH

 modes at SH. Bulk 

refractive indices at FF and SH were calculated from the Sellmeier equations for LT [41], 

while the effective indices at the two wavelengths were evaluated with a modal solver and 

the appropriate graded-index profile of the PE waveguide. 

We numerically solved Eq. (1) for the average period ΛG, using all data on angles φ 

for about 60 distinct input FF wavelengths between 957 and 963 nm in either bulk or 

waveguide samples. The resulting (unweighted) histogram provides information on the 

frequency of occurrence of each periodicity; the same information can be conveniently 

weighted by the SH conversion efficiency along the directions corresponding to the given 

periods. The presence of two TM guided modes at SH was exploited to improve the 

statistical analysis, because two different intensity distributions can be examined at each 

wavelength, thus roughly doubling the number of estimates. 

Figures 4 and 5 display raw and weighted results obtained for bulk and surface 

samples, respectively. Because of the narrow interval of FF wavelengths used in our 

experimental campaign we were able to access only the range of periodicities between 3.3 

and 5.5 μm. This is due to the connection between the addressable range of spatial 

periodicities and the tuning range of the FF laser used for the generation of the forward-

propagating SH, as previously discussed in Ref [29]. A period of 5.4μm corresponds to 

collinear QPM SHG for λFF = 960nm. The found bulk periodicity is consistent with what 

previously estimated in a similar LT sample [29]. 
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Fig. 4. (a) Histogram with the number of occurrences of values of ΛG between 3.0 and 

5.5μm when the input FF propagates in the bulk. (b) Same as in (a) but with number of 

occurrences weighted by SH conversion efficiency along the direction corresponding to a 

given period. 

 

Fig. 5. (a) Histograms with the number of occurrences of ΛG between 3.0 and 5.5μm in 

the slab waveguide. (b) Same as in (a) but with the number of occurrences is weighted 

with SH conversion efficiency along the direction corresponding to a given period. 

4. Conclusions 

In conclusion we investigated SHG via rQPM both in bulk LT and in PE waveguides. 

Measurements of SH intensity profiles in both cases were acquired and employed as a 

non-invasive tool for estimating the average QPM periodicity in the x-y distribution of 

the nonlinear coefficient. The presence of a surface guiding structure allowed us to obtain 

this information both from the bulk and the PE surface region. This statistical approach is 

a simple and non-invasive means for evaluating the distribution of inverted ferroelectric 

domains in poled ferroelectric crystals for QPM parametric mixing. 
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