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1  |  INTRODUC TION

Lung cancer (LC) remains a formidable health challenge, ranking as 
the second most common cancer by incidence and the leading cause 
of cancer-related mortality according to recent statistics.1 Despite 
significant technological advancements over the past decades, tis-
sue biopsy has largely remained the diagnostic gold standard since 
the late 1990s.2 However, the National Lung Screening Trial (NLST) 
of 20113 illuminated a path forward, demonstrating a 20% reduction 
in LC mortality with the adoption of low-dose computed tomography 

(LDCT) over chest radiography for population screening. Although 
LDCT has become a widely accepted method for early-stage LC de-
tection in numerous countries, its high false-positive rate has im-
posed substantial time and resource burdens on national healthcare 
systems (NHS).

In response, institutions such as the International Society of 
Liquid Biopsy (ISLB)4 have begun exploring liquid biopsy (LB) for its 
potential to revolutionize LC detection. LB offers a promising alter-
native to classical diagnostic methods, boasting reduced invasive-
ness, cost and turn-around times (TAT) times,5 while maintaining 
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Abstract
The transformative role of artificial intelligence (AI) and multiomics could enhance 
the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). 
Despite advances, the transition from tissue biopsies to more sophisticated, non-
invasive methods like LB has been impeded by challenges such as the heterogeneity 
of biomarkers and the low concentration of tumour-related analytes. The advent of 
multiomics – enabled by deep learning algorithms – offers a solution by allowing the 
simultaneous analysis of various analytes across multiple biological fluids, present-
ing a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and 
multi-source approaches, this review showcases how AI and multiomics are identify-
ing clinically valuable biomarker combinations that correlate with patients' health sta-
tuses. However, the path towards clinical implementation is fraught with challenges, 
including study reproducibility and lack of methodological standardization, thus ne-
cessitating urgent solutions to solve these common issues.
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high diagnostic and prognostic accuracy.6 This method has become 
particularly relevant for detecting new-onset diseases and assessing 
recurrence risks.7 The past decade has seen a surge in the identi-
fication of biomarkers like circulating tumour cells (CTCs), circulat-
ing free DNA/RNA (cfDNA/RNA) and extracellular vesicles (EVs), 
among others.8,9 These developments have given rise to ‘liquidom-
ics’ – a term encapsulating the vast potential of LB biomarkers.6

The advent of a new ‘omic’, namely ‘multiomics’,10 marks a signifi-
cant leap forward in this field. Enabled by sophisticated deep learning 
algorithms, multiomics approaches allow for the simultaneous anal-
ysis of various analytes, offering insights previously unattainable. 
This shift towards integrating genomic, epigenomic, transcriptomic, 
proteomic, metabolomic and lipidomic data, alongside clinical pa-
rameters, and imaging, heralds a new era in LC diagnosis and treat-
ment.11–13 The capability to analyse multiple biomarkers across 
various biological fluids (e.g. blood, saliva, urine, faeces, pleural fluid 
and cerebrospinal fluid) underscores the versatility of LB, presenting 
a paradigm shift in cancer diagnostics.6,14,15

Yet, the transition from experimental success to clinical imple-
mentation has been tempered by challenges, including the inter-
pretation of complex datasets, the heterogeneity of information 
obtainable from various biosources, and, above all, the low concen-
tration of tumour-related analytes present in the various biosources, 
which often borders on the lower limit of sensitivity of current lab-
oratory methods, although even here there are improvements given 
by new ultra-sensitive methods such as ddPCR, NSG and BEAMing.14 
The potential of multiomics lies in its ability to aggregate a broad 
spectrum of analytes, promising to overcome these hurdles through 
algorithm optimization and method standardization.

This review seeks to consolidate the burgeoning evidence sup-
porting the multiomics approach in LB for LC. By synthesizing stud-
ies that test various markers simultaneously, we aim to provide a 
comprehensive overview of the early successes and ongoing chal-
lenges in this field. Our goal is not only to highlight the promise of 
multiomics LB but also to outline the steps necessary for its integra-
tion into clinical practice, thereby contributing to the ongoing evolu-
tion of lung cancer diagnostics and treatment.

2  |  METHODS

On 18 March 2024 and 19 March 2024, various computer searches 
were conducted on PubMed, ScienceDirect and CochraneLibrary; the 
strings used were as follows:

•	 (“Lung Neoplasms”[Mesh] OR “Carcinoma, Non-Small-
Cell Lung”[Mesh] OR “NSCLC”[tiab] OR “Small Cell Lung 
Carcinoma”[Mesh] OR “SCLC”[tiab]) AND Liquid Biopsy AND 
(multianalyte OR multi-analyte OR multimarker OR multi-marker 
OR multi-source OR multi-target)

•	 “Lung cancer” AND “Liquid Biopsy” AND (multi-omics OR multi-
analyte OR multi-analyte OR multi-marker OR multi-source OR 
multi-target)

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“Extracellular Vesicles” 
OR EV OR Exosome OR TDX) AND (CTC OR “Circulating Tumor 
Cell”))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“Extracellular Vesicles” 
OR EV OR Exosome OR TDX) AND (“circulating tumor DNA” OR 
ctDNA))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“Extracellular Vesicles” 
OR EV OR Exosome OR TDX) AND (“circulating free DNA” OR 
cfDNA))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“Extracellular Vesicles” 
OR EV OR Exosome OR TDX) AND (“Tumor Educated Platelets” 
OR TEP))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((CTC OR “Circulating 
Tumor Cell”) AND (“circulating tumor DNA” OR ctDNA))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((CTC OR “Circulating 
Tumor Cell”) AND (“circulating free DNA” OR cfDNA))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((CTC OR “Circulating 
Tumor Cell”) AND (“Tumor Educated Platelets” OR TEP))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“circulating tumor 
DNA” OR ctDNA) AND (“circulating free DNA” OR cfDNA))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“circulating tumor 
DNA” OR ctDNA) AND (“Tumor Educated Platelets” OR TEP))

•	 “Lung Cancer” AND “Liquid Biopsy” AND ((“circulating free DNA” 
OR cfDNA) AND (“Tumor Educated Platelets” OR TEP))

The inclusion criteria subsequently used for screening were the 
presence of free full text, English or Italian language, and the pres-
ence of research on LB (either clinical studies or reviews) that dealt 
with the simultaneous use of different molecules, analytes and/or 
sources. Beyond these, additional articles in the possession of the 
authors or found in the bibliographies of the included articles are 
added.

3  |  RESULTS

3.1  |  ‘Multi-marker’ approach

In our exploration of the multiomics landscape, we first investigate 
the ‘multi-marker’ approach. This strategy enables the simultane-
ous analysis of virtually all molecules within our analyte, offering 
a comprehensive snapshot of its molecular composition. An illus-
trative example of this approach's potential is seen in the study 
of extracellular vesicles (EVs). EVs are notable for their diverse 
cargo, including proteins, metabolites and various forms of RNA, 
both coding and non-coding. These entities play crucial roles in tu-
mour progression and the emergence of treatment resistance, as 
demonstrated in numerous studies.11,16 However, not all compo-
nents of a given analyte correlate with disease states to the same 
extent. For instance, research led by Purcell et  al.17 highlighted 
that in a cohort of 10 EGFR-positive NSCLC patients, protein con-
tent in EVs (EV-Prot) showed a 100% correlation with the samples 
analysed, whereas EV-derived RNAs displayed variable positivity 
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    |  3GOTTARDO et al.

rates, ranging from 60% to 78%, depending on the specific muta-
tion. This variability underscores the heterogeneity in composi-
tion, function and dynamics of EVs, making them prime candidates 
for multiomics investigations.

This principle extends beyond EVs. Platelets, for example, ac-
tively transform the cancer milieu, after a process known as ‘tumour 
education’, which lead to the acquisition of the ‘tumour-educated 
platelets (TEPs) phenotype’.8 This change is predominantly due to 
the absorption of tumour-derived molecules, encompassing both 
proteins and nucleotides, over their lifespan. Consequently, TEPs 
emerge as another valuable analyte for the multi-marker approach, 
given their dynamic interaction with the tumour environment and 
their molecular complexity.

Among the numerous studies investigating the molecular constit-
uents of platelets for correlations with LC, one particularly stands out. 
It analysed both circular RNAs and mRNAs within TEPs,18 finding that 
utilizing 28 mRNAs yielded an Area Under the Curve (AUC) of 0.81, 
which increased to 0.88 with the use of 21 circular RNAs. Remarkably, 
a tailored panel combining 6 mRNAs and 2 circular RNAs – derived 
through sophisticated bioinformatic algorithms – further enhanced 
the AUC to 0.92 for the cohort, and an impressive 0.96 for patients 
with early-stage disease. This finding illustrates the power of a multi-
marker approach, leveraging the intricate biochemistry of circulating 
biomarkers to achieve unparalleled diagnostic precision.

3.2  |  ‘Multi-analyte’ approach

Beyond merely combining the different molecules that constitute 
each analyte, multiomics introduces a pivotal strategy – the ‘multi-
analyte approach’. This method, often regarded as the quintessence 
of multiomics due to its extensive clinical research footprint, in-
volves assessing various combinations of biomarkers such as EVs, 
CTCs, ctDNA and others. The goal is to identify the most diagnosti-
cally significant combination of these biomarkers. For a comprehen-
sive view, [Table 1] presents a summary of the key studies that have 
been explored under this approach.

3.3  |  ‘Multi-source’ approach

The final facet of our exploration into multiomics approaches fo-
cuses on the ‘multi-source’ methodology, characterized by the in-
tegration of data derived from diverse tissues or distinct analytical 
natures. Indeed, LB is able to obtain valuable clinical information 
starting from different biological fluids, for example, blood, saliva, 
urine, faeces, pleural fluid, cerebrospinal fluid6,14,15; thus, thanks to 
AI, we can now merge all the information collected separately from 
all of the aforementioned biosources, to combine them together 
or with other clinical and/or molecular data. This strategy is em-
blematic of the transformative potential heralded by advancements 
in AI and machine learning within biomedical research. As previ-
ously highlighted,12 these technologies are refining the analysis of 

conventional LB experiments, yielding results that are not only more 
precise but also faster. The true innovation, however, lies in the al-
gorithms' capacity to interrelate data of wholly different types,29 
enabling a comprehensive evaluation of various parameters simul-
taneously. This approach facilitates clinical decisions that are more 
accurately aligned with a patient's overall health status, showcasing 
several emblematic cases identified in our research.

One pioneering instance of the multi-source approach involves 
the use of saliva for LB,13 a medium chosen for its accessibility 
despite traditionally exhibiting low sensitivity for cytological anal-
yses. Yet, molecular investigations of non-coding RNAs (ncRNAs) 
in saliva are showing promising outcomes, advocating for its in-
clusion in larger research cohorts.30–32 Notably, studies have suc-
cessfully combined saliva-derived miRNAs with CT scans33 and 
plasma miRNAs,34 exceeding the diagnostic efficacy achievable 
through single biosource analyses. However, these innovative 
methods currently face challenges related to standardization and 
the representativeness of study cohorts, delaying their integration 
into clinical practice.

Furthermore, attention has shifted towards analysing malignant 
pleural effusions (MPE) through LB.35 MPEs, often linked to lung 
cancer, especially NSCLC,36 are relatively easier to collect than neo-
plastic tissue samples and are rich in tumour markers37 that correlate 
well with solid biopsy results.38 The literature underscores the abun-
dance of crucial analytes like EVs, ncRNAs and notably cf/ctDNA 
within MPE samples, with cf/ctDNA appearing in higher concentra-
tions due to its release from tumour lesions.39 Despite the promising 
correlation of these markers with biopsy results in EGFR+ NSCLC 
cases,39–44 the approach's applicability is tempered by the variable 
presence of MPE in early-stage lung cancers38 and a slight increase 
in false positives in certain conditions (in particular, with chronic pul-
monary diseases35,45).

For all these reasons, a multi-source approach application of MPE 
was hypothesized: indeed, in the study by Kim and colleagues,46 the 
presence of EGFR mutations was evaluated in 54 plasma samples 
and 13 pleural fluid samples from patients with confirmed EGFR+ 
NSCLC diagnosis. The results showed that combining the two bio-
sources always yielded the best results, both via ddPCR and via NGS: 
in fact, although the specificity was always 100%, the sensitivity in 
detecting the two mutations ‘exon 19 deletion’ and ‘L858R’ went 
from 93% of the plasma cfDNA alone to 93.8% of the combined test 
via NGS, and 95.3% of the combined test via ddPCR; while for the 
‘T790M’ mutation the sensitivity with the plasma cfDNA alone was 
64.7%, with the combined test via ddPCR 88.2% and with the com-
bined test via NGS 93.3%.

Lastly, the analysis of cerebrospinal fluid (CSF) in LB presents a 
still experimental frontier. One study utilized CSF alongside ctDNA 
and plasma EV-RNA to characterize brain metastases in LC pa-
tients,47 illuminating the clonal heterogeneity and identifying po-
tential molecular targets for therapy. Such approaches promise to 
revolutionize diagnosis and monitoring, potentially obviating the 
need for invasive brain biopsies and heralding a new era of personal-
ized and minimally invasive cancer care.
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TA B L E  1  - Included clinical studies about the ‘multi-analyte’ approach.

Article Setup Result

19 Single tube liquid biopsy with CTCs, EVs & 
ctDNA
(Cohort: 97 stage IIIB-IV NSCLC)

Survival plots for single versus grouped biomarkers in NSCLC patients 
show lower p-values for the latter graph (0.001) than for the former one 
(0.009).

20 CTCs, ctDNA & classical circulating markers
(Cohort: 99 LCs + 12 benign lesions)

Diagnostic Accuracy:
•	 CEA + CYFRA-21-1 + NSE = 67.6%
•	 CTCs = 63.1%
•	 ctDNA = 69.4%
•	 CEA + CYFRA-21-1 + NSE + CTCs = 82.9%
•	 CEA + CYFRA-21-1 + NSE + ctDNA = 82.9%
•	 CTCs + ctDNA = 86.5%
•	 CEA + CYFRA-21-1 + NSE + CTCs + ctDNA = 89.2%

21 CTCs, cf/ctDNAs, CTECs (Circulating 
Tumour-derived Endothelial Cells) & classical 
circulating markers
(CTCs + CTECs cohort: 24 HC + 31 benign 
lesions +29 LCs; cf/ctDNA cohort = 8 benign 
lesions +20 LCs)

AUC values:
•	 CTCs = 0.815
•	 CTECs = 0.793
•	 Total CTCs + total CTECs = 0.826
•	 Small CTCs + small CTECs = 0.898
•	 Triploid CTCs + triploid CTECs = 0.872
No correlations between ct/cfDNA and other biomarkers, except for some 
clinical parameters (tumour size and maximum tumour diameter) and with 
CYFRA-21-1 concentration.

22 CTCs & cfDNA
(Final cohort: 6 HC + 23 NSCLC EGFR+)

Concordance between tissue biopsy and combination of CTCs and cfDNA
•	 True negatives = 6/6
•	 Concordant mutation status = 13/23
•	 Discordant mutation status = 10/23
N.B.: very old tissue specimens, collected from 1 to 7 years before blood 
sampling!

23 CTCs & cfDNA
(Cohort: 50 advanced NSCLC)

Variables with p-values ≤0.05 in multivariate analysis:
PFS
•	 Baseline CTC count, CellSearch (≥1 vs. 0, n = 30) = 0.006
•	 Sex (male vs. female, n = 50) = 0.04
•	 Number of metastasis (>2 vs. ≤ 2, n = 50) = 0.006
•	 Smoking (yes vs. no, n = 50) = 0.03
•	 Combined changes in CTC and cfDNA levels, Group B (CTCs <1 and a 

high cfDNA level or CTCs ≥1 and a low cfDNA level or CTCs ≥1 and a 
high cfDNA level, n = 18) = 0.009

OS
•	 Baseline CTC count, CellSearch (≥1 vs. 0, n = 30) = 0.01
•	 Number of metastasis (>2 vs. ≤2, n = 42) = 0.001
•	 Smoking (yes vs. no, n = 42) = 0.02
•	 Combined changes in CTC and cfDNA levels, Group 3 (CTCs ≥1 and a 

high cfDNA level, n = 8) = 0.01
•	 Combined changes in CTC and cfDNA levels, Group B (CTCs <1 and a 

high cfDNA level or CTCs ≥1 and a low cfDNA level or CTCs ≥1 and a 
high cfDNA level, n = 18) = 0.05

24 CTCs & cfDNA
(Cohort: 25 stage III-IV NSCLC)

PFS prediction:
•	 CTCs count at T0, p-value = 0.1872
•	 CTCs cluster count at T0, p-value = 0.0711
•	 cfDNA levels at T0, p-value = 0.1662
•	 cfDNA levels at T1, p-value = 0.0684
•	 cfDNA T0 + cfDNA T1 + CTCs cluster T0, p-value = 0.0022

25 CTC & cfDNA
(Cohort: 49 stage I-IIIA NSCLC +22 HC)

In multivariate analysis for Recurrence-Free Survival (RFS), the only variable 
with a p-value ≤0.05 was ‘At least one mutation in plasma-ct DNA (yes vs. 
no)’, with p-value = 0.015

26 EVs & cfDNA
(Cohort: 20 stage III-IV NSCLC)

Concordance between tissue biopsy and combination of EVs & cfDNA
•	 Sensitivity = 83.3% (5/6)
•	 Specificity = 100% (14/14)
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4  |  CONCLUSIONS

The integration of AI and multiomics is revolutionizing LB, en-
hancing diagnostic and prognostic capabilities beyond what was 
previously achievable. By employing multi-marker, multi-analyte 
and multi-source approaches, we are on the cusp of identifying 
biomarker combinations that truly resonate with clinical utility, 
reflecting a comprehensive correlation with patients' health sta-
tuses. This leap forward promises not only to justify the devel-
opmental costs of such technologies through improved analytical 
precision and reduced TATs, but also to elevate treatment out-
come metrics, as pursued with (now gladly widespread) molecular 
tumour boards (MTBs),48 or as (yet commonly) evaluated in cost–
benefit analyses (CBAs).49,50

What is more, next generation technical advancements are 
state-of-the-art laboratory technologies that aim to overcome the 
limitations of current single-gene testing techniques: these, such as 
Bias-Corrected Targeted NGS or eTAm-Seq,51,52 indeed aim to ob-
tain ‘ultra-deep’ sequencing, a type of molecular sequencing capa-
ble of multiplexing and capturing up to the least represented of the 
genomic variants present within our starting sample, thus achieving 
sensitivity rates hitherto unattainable with current single-gene test-
ing methods. Being able to unite multiple such technologies through 
AI (as done, e.g. by de Wit et al.18 with their single tube LB assay) 
would thus enable the capture of every molecular variation in the 
patient's circuloma, allowing this to be correlated immediately with 
the clinical outcome of treatment, or with a recurrence of the dis-
ease, or with early diagnosis, and so on.

Yet, declaring victory prematurely would be unwise. The path 
forward is tempered by the ongoing need for rigorous, large-
scale studies. A glaring challenge highlighted by recent literature 
on novel LB methodologies, particularly those leveraging AI, is 
the inconsistency in study reproducibility and a pervasive lack 
of methodological standardization, both in the laboratory and 
computationally.

Therefore, it is the earnest hope of this review's authors that 
the initiation of numerous multi-centre studies will address these 
challenges. Such studies should not only explore diverse combi-
nations of variables (spanning software, hardware, sample types 
and pathologies) but also insist on the standardization of labora-
tory and computational protocols across all participating centres. 
Achieving this level of uniformity is crucial for producing results 
that are not only informative, but critically, reliable and compara-
ble. If we succeed in this endeavour, AI and multiomics are poised 
to secure their rightful place in the panorama of contemporary 
clinical practice.
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Article Setup Result

27 EVs + CTC
(Cohort: 54 stage III-IV NSCLC)

Multivariate analysis for OS
•	 PD-L1+ sEV concentration, p-value = 0.008
•	 Presence of CTCs, p-value <0.001
•	 Number of previous treatment lines, p-value = 0.026
•	 Squamous cell/basaloid carcinoma, p-value = 0.003
Multivariate analysis for PFS
•	 PD-L1+ sEV concentration (p-value = 0.044):

•	 Patients without CTCs, p-value = 0.007
•	 Patients with CTCs, p-value = 0.935

•	 Number of previous treatment lines, p-value = 0.047
•	 Squamous cell/basaloid carcinoma, p-value = 0.019

28 EV ncRNA + plasmatic ncRNA + classical 
circulating markers
(Validation cohort: 75 HC + 47 LUAD +62 
LUSC)

AUC in validation cohort = 0.973
Notably, plasmatic ncRNA CTA-384D8.35 was the greatest contributor, 
followed by exosome ncRNA CTA-384D8.35 and Exosome ncRNA SFTA1P, 
and finally, NSE, SCC and log10CEA contributed equally. All those markers 
were used to build a predictive nomogram.

TA B L E  1  (Continued)
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