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a b s t r a c t

Amethod is presented to compute the stochastic response of single-degree-of-freedom (SDOF) structural
systems with fractional derivative damping, subjected to stationary and non-stationary inputs. Based on
a few manipulations involving an appropriate change of variable and a discretization of the fractional
derivative operator, the equation of motion is reverted to a set of coupled linear equations involving
additional degrees of freedom, the number of which depends on the discretization of the fractional
derivative operator. As a result of the proposed variable transformation and discretization, the stochastic
analysis becomes very straightforward and simple since, based on standard rules of stochastic calculus,
it is possible to handle a system featuring Markov response processes of first order and not of infinite
order like the original one. Specifically, for inputs of most relevant engineering interest, it is seen that
the response second-order statistics can be readily obtained in a closed form, to be implemented in any
symbolic package. The method applies for fractional damping of arbitrary order α (0 ≤ α ≤ 1). The
results are compared to Monte Carlo simulation data.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus [1–3] lends itself to a wide range of applica-
tions in science and engineering. Applications inmechanicsmainly
involve fractional derivatives, now generally recognized as well-
established tools to model the constitutive behavior of viscoelas-
tic materials. Preliminary investigations in this field trace back to
the work by Gemant [4], the first to propose a fractional derivative
model for viscoelasticity, and by Scott-Blair andGaffyn [5]. Later, at
the beginning of the 1980s, Bagley and Torvik [6–8] showed that, in
order to capture the frequency-dependence of damping properties
in viscoelastic materials, fractional derivatives are more appropri-
ate than classical linear models such as the Kelvin–Voigt model,
based on which the frequency-dependence is generally overes-
timated. Further insight into the potential of fractional deriva-
tives as applied to viscoelasticity modeling has been then given
by a number of studies in the last three decades [9–14]. In this
context, structural engineering applications have been also inves-
tigated. Specifically, fractional derivatives have been applied to
model viscoelastic dampers [15–18] for vibration and seismic iso-
lation; analytical results have been found in a good agreementwith
the experimental ones by Makris and Constantinou [19,20].

∗ Corresponding author. Tel.: +39 091 23896724; fax: +39 091 6568 407.
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Various strategies have been pursued to compute the deter-
ministic response of single- or multi-degree of freedom systems
with a fractional derivative damping. They involve the Laplace
transform [7,8], the Fourier transform [21], numerical meth-
ods [15,22,23] or an eigenvector expansion [24,25].

For analysis purposes of systems with a fractional derivative
damping, in recent years significant research effort has been
devoted also to computing the response to stochastic excitations.
In this context, a frequency domain approach has been pursued
by Spanos and Zeldin [26] and by Rudinger [27]. Alternatively,
based on the Laplace transform the system response has been given
a time-domain Duhamel integral expression [28] that involves
pertinent Green’s functions; the latter are available in a closed
form for certain values of the fractional derivative order α [2]. A
similar approach, where the Duhamel integral is derived based on
the Fourier transform of the equation of motion, has been later
developed by Kun et al. [29]. Further, the response of a system
involving two fractional derivatives has been recently addressed
by Huang et al. [30], who derived a Duhamel integral expression
by using the Laplace transform in conjunction with the weighted
generalized Mittag-Leffler function.

It is now worth remarking that the time-domain methods in
Refs. [28–30] provide both stationary and non-stationary response
statistics. However, the related analytical expressions do become
relatively simple for a Gaussian white noise input only. In themost
general case, instead, they involve two-fold integrals in the input
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Fig. 1. Linear SDOF system with a fractional derivative damping.

correlation functions, for which only a numerical solution can be
sought.

As further, relevant developments in the stochastic analysis
of systems with a fractional derivative damping, here also a
few recent studies concerning nonlinear systems have to be
mentioned. In this regard contributions are due to Huang and
Jin [31] and to Spanos and Evangelatos [32]. The first used a
classical stochastic averaging procedure for SDOF systems with
strongly nonlinear restoring forces and a fractional derivative light
damping, subjected to a Gaussian white noise [31]. The second
proposed a general frequency domain solution based on statistical
linearization; results have been presented for a Duffing oscillator
with a fractional derivative damping, subjected to aGaussianwhite
noise [32].

This paper will focus on linear systems with a fractional
derivative damping, subjected to stationary and non-stationary
inputs. It will be shown that, for fractional damping of arbitrary
order α (0 ≤ α ≤ 1), the equation of motion can be reverted to a
set of coupled linear equations. The latter is built by discretizing
the fractional derivative operator, where an appropriate change
of variable has been previously introduced. For inputs of most
relevant engineering interest, the derived set of linear equations
leads to closed-form expressions for the response second-order
statistics. It is worth pointing out that, using the proposed variable
transformation and discretization, the stochastic analysis of the
fractional viscoelastic system becomes straightforward and simple
since, relying on standard rules of stochastic calculus, it is possible
to handle a system whose responses are Markov processes of first
order and not of infinite order like the original one. The advantages
of the proposed method with respect to alternative frequency
domain [26,27] and time-domain methods [28–30] will be then
presented throughout the paper.

2. Response of fractionally-damped systems

Let the governing equation of motion of a linear SDOF system
equipped with a viscoelastic device be given in the form

mẍ (t) + Cα


Dα

0+x

(t) + kx (t) = f0 (t) , (1)

where m is the mass, k is the stiffness, Cα is the damping co-
efficient, f0 (t) is the forcing function and


Dα
0+x


(t) is the Rie-

mann–Liouville (RL) fractional derivative governing the damping
forces. The system is depicted in Fig. 1: that is, a mass grounded by
a linear elastic spring and a fractional derivative damping element.

For 0 ≤ α ≤ 1 and for x (0) = 0 (quiescent system at t = 0),
the RL fractional derivative reads [33]
Dα

0+x

(t) =

1
Γ (1 − α)

 t

0

ẋ (τ )

(t − τ)α
dτ ; 0 ≤ α ≤ 1. (2)

Recognize that, for a quiescent system at t = 0, the fractional
derivative in Eq. (2) coincides with Caputo’s fractional derivative.
Also, it is known that the values α = 0 and 1 model the pure solid
and the pure fluid state, respectively.

Based on the following relations:

1
Γ (1 − α)

= Γ (α)
sin (απ)

π
; Γ (α) =


∞

0
e−zzα−1dz, (3)

first it is noted that the fractional derivative (2) can be written as
Dα

0+x

(t) =

sin (απ)

π

 t

0


∞

0
e−zzα−1 ẋ (τ )

(t − τ)α
dz dτ . (4)

By setting [34]

z = (t − τ) y2; dz = 2 (t − τ) y dy, (5)

Eq. (4) can be then rewritten as
Dα

0+x

(t) = µα


∞

0

 t

0
e−y2(t−τ)ẋ (τ ) dτy2α−1dy, (6)

where µα = 2 sin (απ) /π .
Next, denote by uy (t) the Duhamel integral in Eq. (6)

uy (t) =

 t

0
e−y2(t−τ)ẋ (τ ) dτ . (7)

For uy (0) = 0, uy (t) can be thought of as the response of the
following differential equation:

u̇y (t) + y2uy (t) = ẋ (t) ; uy (0) = 0. (8)

The latter governs the response of the Maxwell half oscillator in
Fig. 2, having stiffness coefficient equal to y2 and a unit damping
coefficient, forced by the velocity response of the system in Fig. 1.
From Eq. (8) it follows that the RL fractional derivative of x (t),
given in Eq. (6), can be rewritten as
Dα

0+x

(t) = µα


∞

0
uy (t) y2α−1dy. (9)

On the other hand, recognize that Eq. (9) can be reverted to the
discrete form
Dα

0+x

(t) ≈ µα

∞
j=1

uyj (t) y2α−1
j 1y, (10)

where yj = j1y and, due to Eq. (8), uyj (t) is the response of the
first order differential equation

u̇yj (t) + y2j uyj (t) = ẋ (t) ; j = 1, 2, . . . ,∞. (11)

At this stage, Eq. (1) can be reverted to the following set of linear
ordinary differential equations:

ẍ (t) + cαµα

∞
j=1

uyj (t) y2α−1
j 1y + ω2

0x (t) = f (t) ;

u̇yj (t) + y2j uyj (t) = ẋ (t) , j = 1, 2, . . . ,∞,

(12)

where cα = Cα/m, ω0 =
√
k/m and f (t) = f0 (t) /m. For

numerical purposes, obviously a finite number n of terms shall be
retained in the first equation of (12). This leads to the linear system

ż = Dz + v f (t) , (13)

where

zT =

x ẋ uy1 uy2 · · · uyn


(14)

is the vector of state variables, Eq. (15) given in Box I is the
coefficient matrix and

vT =

0 1 0 0 · · · 0


(16)

is the forcing column vector. Obviously, any time-domain numer-
ical integration scheme can be applied to compute the response of
system (13).
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D =


0 1 0 0 · · · 0
−ω2

0 0 −cαµαy2α−1
1 1y −cαµαy2α−1

2 1y · · · −cαµαy2α−1
n 1y

0 1 −y21 0 · · · 0
0 1 0 −y22 · · · 0
· · · · · · · · · · · · · · · · · ·

0 1 0 0 0 −y2n

 (15)

Box I.

Fig. 2. Maxwell half oscillator forced by the velocity response of the system in Fig. 1.

3. Stochastic response of fractionally-damped systems

If the excitation is a stochastic process, the response statistics
of system (1) can be computed by applying standard tools
of stochastic calculus to system (13). This will be pursued in
the following where, as customary, symbols denoting stochastic
processes will be labeled with capital letters; that is, f (t) will be
replaced by F (t) , z (t) by Z (t).

Then, let Z (t) be the response vector of system (13) to a
stochastic input F (t). The latter is assumed to have, for simplicity,
zero mean. Based on the coordinate transformation

Z (t) = 8Q (t) , (17)

where 8 is the matrix of the eigenvectors of matrix D in Eq. (15),
Eq. (13) may be rewritten in the form

Q̇ = 3Q + 8−1vF (t) , (18)

where

3 = 8−1D8 (19)

is the diagonal matrix whose non-zero elements 3jj are the
eigenvalues of system (13). It may be easily verified that, for
cα > 0, only two eigenvalues are complex (and conjugate) while
the remaining are real and approximately equal to the diagonal
elements y2j in matrix D, that is 3jj ≈ y2j .

For system (18) the time-dependent matrix of the second-
order response statistics, 4 (t) = E


QQT , can be computed by

integrating the uncoupled Lyapunov moment equations

4̇ (t) = 34 (t) + 4 (t) 3 + G (t) , (20)

with G (t) being

G (t) = 8−1vE

F (t)QT (t)


+ E [Q (t) F (t)]


8−1v

T
. (21)

Upon solving Eq. (20) for 4 (t), the variances of the displacement
and the velocity response of the original system (1) can be finally
written, respectively, as

σ 2
XX (t) =

n
j,k

81j81k4jk (t) ; (22a)

σ 2
Ẋ (t) =

n
j,k

82j82k4jk (t) , (22b)

while the cross-covariance is given as

σ 2
XẊ (t) =

n
j,k

81j82k4jk (t) . (22c)

In Eqs. (22) 81j and 82j denote the j-th element of the first and
second row of matrix 8, while 4jk denotes the element at row j
and column k of matrix 4(t).

Closed-form solutions to the Lyapunov moment equations (20)
of the uncoupled system (18) do exist inmany cases of engineering
interest. For instance if F (t) = W (t), where W (t) is a Gaussian
white noise with two-sided power spectral density S0, that is
E [W (t)W (t + τ)] = 2πS0δ (τ ), for zero initial conditions it
readily follows that

4jk (t) =
Gjk

3jj + 3kk


e(3jj+3kk)t − 1


; j, k = 1, . . . , n, (23)

where Gjk is the element at row j and column k of the n× nmatrix

G = 2πS08−1v

8−1v

T
. (24)

Similarly, if F (t) is a uniformly-modulated white noise F (t) =

A (t)W (t), where A (t) is a time-dependent modulating function,
for which E [F (t) F (t + τ)] = 2πS0A2 (t) δ (τ ) holds, 4jk (t) is
given by

4jk (t) = e(3jj+3kk)t
 t

1
e−(3jj+3kk)τGjk (τ ) dτ

−

 0

1
e−(3jj+3kk)τGjk (τ ) dτ


; j, k = 1, . . . , n, (25)

where Gjk (t) are time-dependent elements of the matrix

G (t) = 2πS0A2 (t) 8−1v

8−1v

T
. (26)

It is recognized that closed-form solutions to Eq. (25) can be readily
found, for instance, for any amplitude modulating function A (t) of
exponential form, as generally encountered in seismic engineering
applications. Note also that, still for non-stationary inputs, further
closed-form solutions to the Lyapunovmoment equations (20) can
be derived as shown in the following Section 4.2.

It is now worth remarking that, based on alternative time-
domain methods existing in the literature, the response statistics
are generally obtained, at each time instant, upon computing
a two-fold integral involving the input correlation function
and appropriate kernel functions depending on the system
parameters [28–30]. In general, such two-fold integrals have to
be evaluated numerically. The proposed method, instead, upon
performing a preliminary modal analysis to set the uncoupled
Eqs. (18), provides the response statistics (22) in an analytical
form, based on the closed-form solutions to the Lyapunovmoment
equations (20). Note that the analytical form may allow one
to carry out, in a very efficient manner, a sensitivity analysis
on input parameters such as, for instance, the parameters of a
modulating function of the input (see Eq. (25) and Eq. (29) through
Eq. (32) in Section 4.2). On the other hand, as shown by the
numerical applications in Section 4, a limited number of additional
half-oscillators is generally required in system (13) to achieve a
reasonable accuracy. This may allow, on average, computational
savings up to 30% with respect to the time-domain methods in
Refs. [28–30].
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Finally, it has to be noted that the proposed method allows
one to describe both the stationary and non-stationary response;
obviously, if the stationary response is of interest, 4̇ (t) = 0∀ t
shall be set in Eq. (20). It is recognized that frequency domain
methods, although very efficient from a computational point of
view, can capture the stationary response only [26,27].

4. Numerical applications

Two examples are now considered to assess the accuracy of the
proposed method. First it will be applied to build the statistics of
the transient and stationary response to a Gaussian white noise,
then to build the statistics of the non-stationary response to a
uniformly-modulated non-stationary seismic input.

4.1. Response to white noise

Let F (t) = W (t) be a zero-mean Gaussian white noise of two-
sided power spectral density S0 = (2π)−1. As shown in Section 3,
in this case, the second-order response statistics can be computed
based on Eq. (22), where 4jk (t) is given by Eq. (23).

To implement the proposed method, the y-axis (see Eq. (10))
is discretized in two subintervals: the first is [0, 0.05] and is
divided into 200 equal steps; the second is [0.05, 20.0] and is
divided into 100 steps. Therefore, a total number n = 300 of
additional oscillators is considered to build system (13). The above
discretization parameters are selected to provide an accurate
description of the integrand function e−zzα−1 in Eq. (3), taking into
account that z = (t − τ) y2.

The following parameters are considered in Eq. (1): ω0 =

1.0; cα = 1.0; α = 0.3 and α = 0.5. For an individual sample
of the white noise input, Figs. 3 and 4 show the displacement
response as obtained by the proposed method (PM) and by
integrating Eq. (1) via the central difference method. Specifically,
to build the response by the PM Eqs. (13) are integrated based
on a fourth-order Runge–Kutta algorithm; to build the response
by the central difference method the fractional derivative is
reverted to a finite sum by using the Riemann–Liouville (RL)
approximation [35]. A very satisfactory agreement is found
between the two solutions, for both α = 0.3 and 0.5. Next,
Figs. 5 through 8 show the variances of the displacement and
velocity responses on the time interval [0, 20], as obtained by the
closed-form solutions (22) and by a digital simulation with 5000
samples, the latter being built by integrating Eq. (1) via the central
difference method in conjunction with an RL approximation of
the fractional derivative. Again, a very good agreement is found
across the whole time range of interest, for both α = 0.3
and 0.5.

4.2. Response to a non-stationary input

Next, let F (t) be a zero-mean non-stationary process belonging
to the class of Priestley’s oscillatory processes [36], that is

F (t) = A (t) F̄ (t) , (27)

where A (t) is a time-dependent amplitude modulating function
and F̄ (t) is a stationary process of two-sided power spectral
density S (ω).

In general, for the process F (t) the spectral representation [37]

F (t) ≈ A (t)
M
l=1


4S (ωl) 1ω cos (ωlt + ϕl) (28)

Fig. 3. Displacement response to a Gaussian white noise sample, for α = 0.3.

Fig. 4. Displacement response to a Gaussian white noise sample, for α = 0.5.

Fig. 5. Displacement variance under a Gaussian white noise, for α = 0.3.

can be adopted, where ϕl are M realizations of a random variable
uniformly distributed in [0, 2π ]. It can be seen that, if A (t) in
Eq. (27) is given the exponential form

A (t) = e−a1t − e−a2t , (29)

upon replacing Eq. (28) for F (t) in Eq. (18), closed-form solutions
can be found to the Lyapunov moment equations (20). They are
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Fig. 6. Velocity variance under a Gaussian white noise, for α = 0.3.

Fig. 7. Displacement variance under a Gaussian white noise, for α = 0.5.

Fig. 8. Velocity variance under a Gaussian white noise, for α = 0.5.

given as

E

Q 2
i


= r2i

2
m,q=1

(−1)m+q+1
M
l=1

4S (ωl) 1ω [h1 − h2 − h3] · h4;

i = 1, 2, . . . , n, (30)

and

E [QiQk] =

2
i,k=1
i≠k

rirk
2

m,q=1

(−1)m+q+1
M
l=1

4S (ωl) 1ω

× [h1 − h2 − h3] · h4; i ≠ k; i, k = 1, 2, . . . , n, (31)

where ri is the ith component of vector 8−1v; also, h1, h2, h3 and
h4 are the functions

h1

am, aq, λik, 3kk, ωl, t


= e−(am+aq)t (am + λik − 3kk)


aq + 3kk


×


−am − λik + 3kk − e(am+aq+λik)t


aq + 3kk


+ e(aq+λik)t


am + aq + λik


cos (ωlt)


; (32a)

h2

am, aq, λik, 3kk, ωl, t


= e(aq+3kk)t


am + aq + λik

 
aq − am + 23kk − λik


× ωl sin (ωlt) ; (32b)

h3

am, aq, λik, 3kk, ωl, t


= ω2

l


aq + e(am+aq+λik)t (am + λik − 3kk)

+ 3kk − e(aq+3kk)t

am + aq + λik


cos (ωlt)


; (32c)

h4

am, aq, λik, 3kk, ωl


=


2


am + aq + λik

 
(am + λik − 3kk)

2
+ ω2

l


×


aq + 3kk

2
+ ω2

l

−1
(32d)

for λik = 3ii + 3kk. Based on Eqs. (32), the response statistics (22)
can then be given a closed-form expression.

As in the previous case, the proposed method is implemented
by discretizing the y-axis (see Eq. (10)) in two subintervals: the
first is [0, 0.05] and is divided into 200 equal steps, the second
is [0.05, 20.0] and is divided into 100 steps. Therefore, again a
total number n = 300 of additional oscillators is considered to
build system (13). The following parameters are set in Eq. (1):
ω0 = 1.0; cα = 1.0 and α = 0.5; a1 = 0.25 and a2 = 0.5 are
selected for the amplitudemodulating function (28), while S (ω) is
given the form

S (ω) =
(ω/ωs)

2
1 − (ω/ωs)

22
+ (2ζω/ωs)

2
2 , (33)

where ωs = 12.0 and ζ = 0.4. In Eq. (28) for F (t) , 1ω = 0.05
and M = 600 are selected.

Figs. 9 and 10 show the variances of the displacement and
velocity response on the time interval [0, 40], as obtained by
the closed-form solutions (22) and by a Monte Carlo simulation
with 5000 samples, the latter being built by integrating Eq. (1)
via the central difference scheme with an RL approximation for
the fractional derivative [35]. A very satisfactory agreement is
encountered between the PM and the Monte Carlo solution, across
the whole time range of interest.

5. Conclusions

A method to compute the stochastic response of fractionally-
damped SDOF systems has been presented. The key idea is to
discretize the fractional operator based on an appropriate change
of variable. In this manner, the original equation of motion can be
reverted to a set of equations involving additional oscillators, the
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Fig. 9. Displacement variance under a non-stationary input, for α = 0.5.

Fig. 10. Velocity variance under a non-stationary input, for α = 0.5.

number of which depends on the adopted discretization. Examples
have been given of stationary and non-stationary stochastic
inputs for which the method leads to closed-form expressions
of the response second-order statistics, readily implementable in
any symbolic package. The numerical applications show that, in
general, a limited number of additional oscillators is required to
achieve accurate results as compared to Monte Carlo simulation
data.
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