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ABSTRACT
In the past few years, blockchain technology has emerged in numerous smart grid applications,
enabling the construction of systems without the need for a trusted third party. Blockchain
offers transparency, traceability, and accountability, which lets various energy management system
functionalities be executed through smart contracts, such as monitoring, consumption analysis,
and intelligent energy adaptation. Nevertheless, revealing sensitive energy consumption information
could render users vulnerable to digital and physical assaults. This paper presents a novel method
for achieving a dual balance between privacy and transparency, as well as accountability and
verifiability. This equilibrium requires the incorporation of cryptographic tools like Secure Mul-
tiparty Computation and Verifiable Secret Sharing within the distributed components of a multi-
channel blockchain and its associated smart contracts. We corroborate the suggested architecture
throughout the entire process of a Demand Response scenario, from the collection of energy data
to the ultimate reward. To address our proposal’s constraints, we present countermeasures against
accidental crashes and Byzantine behavior while ensuring that the solution remains appropriate
for low-performance IoT devices.

INDEX TERMS IoT, Blockchain, Privacy, Accountability, Verifiability, Secure Multiparty Compu-
tation

I. INTRODUCTION

TO create a sustainable society, various renewable
energy sources, such as wind power, photovoltaic

(PV), etc., must be progressively included in the electri-
cal grids. However, the unpredictability of these sources,
compared to traditional ones, raised new challenges for
grid operators that are becoming increasingly difficult to
solve as the percentage of renewable energy in the grid
increases. In this scenario, Smart Grids are playing a key
role in managing this transition, as can be seen from
the number of technological solutions that have been
proposed and adopted in recent years. In fact, efficient
management of the energy produced and consumed is
only possible thanks to the timely analysis and control
of the system achieved through Internet technologies [1].

In fact, renewable energy sources, in particular, pho-
tovoltaic (PV), have allowed small communities or even
individuals to generate their own electricity and poten-

tially sell the surplus to other communities or to the
network itself [2]. But the roles can be reversed and
those who produce energy at some times can take it
from the grid at other times. The volume of generated
transactions is difficult to manage with traditional tech-
niques and several works have proposed and successfully
applied the blockchain to handle such complexity in
a distributed way [3] [4]. In this scenario, blockchain
technology has proven its applicability beyond digital
currencies due to its inherent characteristics that allow
the development of tamper-resistant, traceable, highly
reliable, and decentralised systems [4]. The primary
application of blockchain in smart grids has been to
enable consumers and prosumers to trade electricity
without the intervention of a third party. However,
in a broader vision, blockchain can be used beyond
energy trading, allowing Grid Operators to implement
balancing policies or optimisation strategies that can
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improve the sustainability of the network as a whole.

A. DISTRIBUTED GRID MANAGEMENT
Endeavors, exemplified in [5]–[9], have been directed
towards proposing decentralized grid management solu-
tions employing Blockchain technology. However, these
works have demonstrated complexity in execution and
susceptibility to a range of security and privacy con-
cerns. Consider, for example, the Demand Response
(DR) technique proposed in [8], [6] and [5]: it is a
popular solution which allows one to lower or postpone
the demand/injection of energy in response to technical
issues in the network. The process is in principle quite
simple: the grid operator asks users to reduce or increase
their load within a given time frame in the future; if they
do that, they are rewarded. DR is particularly important
for the integration of renewable energy in the electrical
grid because it allows the operator to control the energy
absorbed and cope with temporary shortages of energy
produced in order to optimise energy production. To
implement DR, the grid operator needs to determine
how to divide the energy reduction/increase among end
users, and this information depends on the history of
consumption of each user, called customer baseline [8].
Specifically, the processes of monitoring consumption,
deriving the consumption baseline of the customer,
calculating the per-user energy demand and the reward
based on actual consumption of the users [9] go far
beyond basic energy trading but can be implemented on
the blockchain using Smart Contracts as a Decentralised
Application (dApp) [10]. Many functions within grid
service provisioning exhibit comparable characteristics
and challenges to those encountered in the field of
Demand Response. Specifically, these functions require
the gathering of measurements and data from both the
network and users. This data is then used to identify
needs, solicit the optimal grid service, and compensate
end users accordingly.

B. SECURITY AND PRIVACY
The advantages inherent in such a decentralized ap-
proach, when compared with a centralized one, primarily
encompass accountability, transparency, trust, and the
system’s capacity for thorough auditing. However, the
primary drawback of this approach lies in the realm of
user privacy, as highlighted for example in [11]. This
concern gains significance due to the inherent sensitivity
of prosumers’ energy consumption data, a vital compo-
nent that pertains to their personal patterns of energy
utilization and production, as noted in the study by [12].
The potential exposure of such intricate details could not
only lead to breaches of individual confidentiality but
might also entail broader implications, ranging from se-
curity risks to the possibility of exploiting consumption
habits for targeted marketing or even more malicious
purposes. As a result, finding a delicate equilibrium

between data-driven insights and preserving the privacy
rights of users becomes an essential consideration in
the continued development and implementation of this
decentralized model.

Recently, to ensure both privacy and accountability
in the blockchain, several works are proposing the use of
Privacy Enhancing Technologies (PETs) such as Secure
Multiparty Computation (SMC), which allows peers to
perform a joint calculation of sensitive data without
any privacy leakage [13], [14]. The foundational cryp-
tographic methods for such systems include Homomor-
phic Encryption (HE), Secret Sharing (SS), and Zero-
Knowledge Proof (ZKP) schemes. These techniques en-
able the creation of secure solutions adaptable to various
scenarios, ensuring exceptional levels of security and
privacy, as highlighted in [15]. The price to pay is
the complexity of the system that sometimes limit its
widespread applicability. Furthermore, the findings in
[16] appear to indicate that incorporating privacy fea-
tures into blockchain could potentially compromise ac-
countability, a fundamental factor driving the adoption
of this technology. Consequently, the system’s ability to
ensure transparency, fraud detection, identification, and
other functionalities may be diminished. As a result, the
previously perceived suitability of blockchain as an ideal
solution for smart grid systems might be cast into doubt,
prompting questions about the practical utility of this
technology in such a context.

C. GOALS AND CONTRIBUTIONS
The primary objective of this study is to demonstrate
the feasibility of utilizing blockchain for efficient exe-
cution of distributed management procedures within a
smart grid, extending well beyond mere energy trad-
ing bookkeeping. In pursuit of this objective, we have
devised a system framework that combines PETs with
blockchain technology, thereby ensuring both security
and privacy, while retaining all the advantageous fea-
tures inherent to blockchain. Specifically the main con-
tributions of the paper are:

• we devise a solution enabling blockchain smart
contracts to utilize secure multiparty computation
(SMC) for executing logical and mathematical op-
erations on encrypted data;

• we emphasize the challenges that emerge when
employing SMC in relation to reliability and trans-
parency. Consequently, we present suitable crypto-
graphic techniques that empower nodes to validate
both the dependability and precise implementation
of the procedure;

• we prove the effectiveness of the proposed system
applying the solution to DR (Demand Response)
and demonstrating its ability to protect users’
privacy while retaining blockchain features (trans-
parency, fraud detection, identification);
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• we provide a comprehensive security analysis, con-
sidering all possible adversaries and investigating all
possible threats to the various entities comprising
the proposed solution;

• we experimentally evaluated the computational cost
of privacy-preserving techniques integrated in the
solution to assess its feasibility.

The paper is organised as follows: Section II presents
the related work, Section III describes the reference
scenario and the system model, Section IV describes the
proposed security architecture and Section V presents
the results of the experimentation. Finally conclusions
are drawn.

II. RELATED WORK
The literature on blockchain privacy is vast (please refer
to [30] for a general overview), so in this section we will
focus on smart grid scenarios. In Table 1 we summarise
the difference between the various approaches involving
blockchain, privacy, and smart grids. The interested
reader can find a more detailed survey in [31].

A. PRIVACY IN BLOCKCHAIN
In the context of smart grids, blockchain has been
studied in the literature mainly with a focus on en-
ergy trading applications. Since blockchain identifiers
are inherently anonymous by their own nature, such
application already provides a certain degree of privacy
to the users. However, in some cases, it may not be
enough to protect users from linkability attacks. These
attacks involve correlating blockchain data with external
sources to discover the individual user associated with
a blockchain identifier [17]. For this reason, additional
techniques have been proposed such as address fuzzifi-
cation, data/route hiding [6], or data perturbation to
protect against malicious data miners [17].

In [16], a system for decentralised energy trading
using blockchain and anonymous messaging streams
is presented. The authors adopted multi-signatures to
ensure the authenticity of transactions, and anonymous
messaging streams to protect the privacy of participants.
Other works use modern encryption techniques to en-
sure user privacy. For example, in [19], a system for
privacy-preserving data aggregation using homomorphic
encryption is devised. Instead, in [20], the authors use
attribute-based encryption (ABE) to protect the privacy
of participants, and blockchain to ensure the security of
transactions. In [21] Galois field are adopted to protect
the privacy of data while [22] proposes asymmetric
confidentiality to allow energy consumers to encrypt
their energy consumption data before uploading it to the
blockchain, so that only authorised entities can decrypt
it.

Interesting solutions have been proposed in the con-
text of blockchain-based measurement sharing using
smart marketplaces: [23] proposes a system for sharing

smart grid measurements while preserving the privacy
of the data owners using differential privacy to allow
data owners to share their data without revealing too
much about themselves. In [24] a lightweight privacy-
enabled message exchange mechanism is presented and
in [25] the technique is extended using a protocol for
anonymity and intractability of transaction data with
cryptographic Proof-of-Authority, RSA and Chinese re-
minder threorem.

It is noteworthy that there are several existing
solutions for centralized tamper-proof systems, such
as LedgerDB [32], a centralized blockchain-like ledger
database with tamper-evident and non-repudiation ca-
pabilities, and VeDB [33], a high-performance software-
and hardware-enabled DBMS. While centralized sys-
tems have higher performance, we focus on distributed
systems because they do not require a single credible
central authority.

B. GRID MANAGEMENT PROCEDURES
Most of the application of blockchain in smart grid focus
on energy trading, as also shown in table 1. In the last
rows of the same table we summerize the works that
use it for DR management. In [5] a blockchain-based
system called Guardian for secure demand response
management in smart grid systems is proposed. The
system uses a smart contract to automate the demand
response process and ensure that all participants are
treated fairly. Guardian was implemented and evaluated
in a real-world testbed, and the results showed that
it can significantly improve the efficiency and security
of demand response management. In [28], the authors
propose a blockchain-based system for demand response
that provides security and trust between the different
participants in the system. The system uses a private
blockchain to ensure that only authorised participants
can access the data, and it uses a smart contract to
automate the demand response process. The system
was evaluated in a simulation study and the results
have shown that it can improve the efficiency of de-
mand response management. In [12], a system for en-
ergy transactions in demand response is presented. It
uses a public blockchain to record energy transactions
and zero-knowledge proofs to protect the privacy of
participants. The work in [11] proposes a system for
demand response that certifies the quality of demand
response services. The system uses a smart contract
to store the data about the demand response services
and a reputation system to evaluate the quality of the
services. The system was implemented and evaluated
in a real-world testbed, and the results have shown
that it can improve the transparency and reliability
of demand response management. In [27] a framework
for aggregation and remuneration in demand response
is described. The framework uses a smart contract
to aggregate the demand response bids from different
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TABLE 1. Works addressing privacy in Blockchain-based Smart Grid

Ref Smart Grid Application PETs Threat Model
[16] Energy trading Multi-signatures, anonymous messaging

streams
Data forgeability, double spending, network
takeover and wallet security attacks

[17] Energy trading Private key mechanism Linking attacks by malicious miners
[18] Energy trading Group Signatures and covert channel autho-

rization
Authorization attacks used to illegally dis-
tributing electricity

[19] Energy trading Homomorphic encryption and data aggrega-
tor

Honest but curious aggregator

[20] Energy trading Attribute-based encryption Attack on user data confidentiality
[21] Energy trading Custom with permutation–substitution pub-

lic key cryptosystem
Attack on user data confidentiality

[22] Energy trading Group signature Attack on user data confidentiality
[23] Measurement sharing Differential Privacy Attack on user data confidentiality

[24] [25] Measurement sharing Cryptographic Proof-of-Authority (PoA),
RSA

Controlling communication channels, captur-
ing session IDs, launching identity-related at-
tacks and transactional data privacy attacks

[26] Tariff decisions Oblivious transfer; data transformation with
distance-preserving embedding

Reveal other information than the minimum
distance between the customers’ load profile
forecast and the template load profiles of the
utility provider

[5] DR management Data minimization with miner selection Invalid transactions stored in the BC
[11] [27] DR management ABAC and hyperledger channels for for data

isolation
Attempts to break the confidentiality of user
data

[12] DR management ABAC and hyperledger channels for for data
isolation

Attempts to break the confidentiality of user
data

[28] DR management Data minimization with intermediator (Vir-
tual Nodes)

Not specific privacy threats; main concerns
are about correct contracts execution

[29] DR management Trivial Secret Sharing Malicious data miners, cheating users and
infrastructure nodes

participants, and it uses a payment channel to ensure
that the participants are paid fairly. In [29] authors pro-
pose a privacy-preserving blockchain solution to support
demand response in energy trading. The solution uses a
homomorphic encryption scheme to encrypt the demand
response data, and it uses a private blockchain to ensure
that only authorised participants can access the data.
The solution was evaluated in a simulation study, and
the results have shown that it can preserve the privacy
of the demand response data while still allowing for
efficient and secure energy trading.

C. POSITIONING
Sometimes security and privacy push in apparently
opposite directions: on the one hand, there is the need
to make the trading system transparent to allow audits
and all the stakeholders accountable for their trading; on
the other hand, there is the need to protect prosumers’
privacy. A key point is about the trust model: differ-
ently from cryptocurrencies, the electrical grid scenario
involves a tangible asset (i.e., the electrical energy) that
can be spoofed/faked at different levels, including the
origin of the data (usually the smart meter), therefore
invalidating any subsequent data processing. For this
reason, our approach consists in designing an architec-
ture that protects both the user and the grid operator
or aggregator against cheating on the declaration of
electricity demand/injection modulation.

To this aim, SMC techniques can come in handy.
SMC has been proposed on the blockchain [14], together

with Verifiable Secret Sharing (VSS), using the ledger
and a game-theoretical approach to reward (or punish)
the parties of the participants financially, encouraging
everyone to play by the rules. Authors underline the need
for SMC to be fair (either all parties get the output or
none) and robust (a malicious adversary cannot easily
mount a Denial of Service against the protocol) which
also motivates our work.

Note that SMC and blockchain are philosophically
antithetical technologies: in fact in blockchain by defi-
nition all nodes perform the same operations while in
SMC techniques each node has to perform a part of the
procedure. As will be described in detail, we use SMC
to count encrypted data in a similar way to [29], but we
guarantee the robustness of the procedure in a statistical
way overcoming the reported denial of service problems.

III. SYSTEM MODEL
A. SMART GRID
First, we present the reference system model and the
actors involved for the smart grid that is depicted in Fig-
ure 1. The physical level comprises users and prosumers
equipped with PV installations that can be organised
in energy communities. Usually, users are organized in
associations, called energy communities and can be rep-
resented by an aggregator. We have also highlighted the
so-called ’prevalent producers’ according to the Italian
transposition of the EU directive on Renewable Energy
II (RED II): consumers who have a significant photo-
voltaic system and a legal entity that receives incentives
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FIGURE 1. Smart Grid Reference System Scenario

for virtual or physical self-consumption. Figure 1 shows
industries which normally consume a significant share of
the grid’s energy and, therefore, can play an important
role in stabilising the grid as a whole. All prosumers
are connected to the main grid powered by both renew-
able and fossil-based energy sources (i.e., non-renewable
sources). The management of the high-voltage grid is
entrusted to Transmission System Operators (TSOs)
and while the distribution networks are managed by the
Distribution System Operators (DSOs). In the following,
for the sake of simplicity we will only consider refer to
them as Grid Operators.

The lower part of Figure 1 shows the data level of
the smart grid where IoT devices play a central role in
controlling and monitoring all physical elements. The
system includes the control center that is connected via
the communication network to all IoT devices including
the smart meters (SMs), sensors, gateways, etc. In fact,
both residential and commercial buildings are equipped
with devices that are able to control the local energy
loads. Such loads can be classified according to their
modulation capability in shiftable (e.g. pool pumps,
dryer or washers), adjustable (e.g., heating, ventilation
or air conditioning), or uninterruptible (e.g., lights or
refrigerators) [34].

B. DEMAND RESPONSE

Load modulation is an important asset for modern smart
grids that include renewable sources. In fact, traditional
grid operators continuously adapt the output power
according to the network load which, however, typically
varies slowly over time. On the contrary, when renewable
sources are considered the electricity production may
vary dramatically, e.g. due to the weather, and thus users
can help the operator in grid stabilisation by modulating
their loads either to prevent consumption peaks, to cope
with a weather-related energy shortage or to prevent
congestions.

Over the time, numerous DR techniques have been
designed, implemented and tested: using the smart grid
data plane, the DSO asks prosumers to reduce their load
in a given timeframe, emitting a DR request. Users may
meet such requests and can be rewarded accordingly.

DR programs and supporting technologies can be
extremely complex and a vast literature has been con-
solidated over the past 10 years. The generic workflow
mentioned in [8] will be presented below and depicted
in Figure 2. The DR procedure is enough complex to
highlight the critical aspects that blockchain technology
brings in these scenarios in terms of security and privacy,
as well as all the features of the architecture of the
proposed system.

The complete DR algorithm workflow is detailed in
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FIGURE 2. Demand Response workflow with a blockchain-based Energy Management System

the following:
1 the grid operator publishes an energy reduction

request, namely Demand(timespan, amount)
where timespan is the duration of the reduction
request and amount is how much energy reduction
is required;

2 for each user, a baseline Bi is periodically computed
calling the function ComputeBaseline(user).
The algorithms most commonly used to compute
the DR baselines are in the “X of Y” family [35]
that work as follows. Consider, for instance, a day
divided into 96 time slots of 15 minutes each. With
respect to a specific time slot (e.g., every day from
9:00 am to 9:15 am), a high X of Y baseline can
be obtained by averaging the X highest values of
consumption in the Y days preceding the DR event.
For example, the average of the highest X = 3
energy values measured in the last week (Y = 7) for
a given slot (9:00 am to 9:15 am). This is repeated
for all the time slots. The resulting baseline is thus a
dynamic set of values, one for each specific time slot,
that changes every day. In formulae, the baseline of
the i-th user is equal to the vector:

Bi := [p̄i
B,1, p̄

i
B,2, ..., p̄

i
B,h, ..., p̄

i
B,96]

with

p̄i
B,h :=

1

X

∑
j∈High(X,Y)

pi
B,h,j ∀h ∈ {1, ..., 96}

where pi
B,h,j is the j-th highest comsumption value

of the h-th time slot;
3 the reduction asked to each user is calculated

using ComputeRequestedReduction(user,
user_baseline, amount, user_quality).

For the sake of simplicity, we assume that the
quota required to each user depends only on the
ratio between the user’s baseline and the aggregated
baseline (sum of the baselines), namely Bi

Btot . In more
complex scenarios, this depends also on the user’s
rating, i.e., how the user contributed during past
DR events;

4 finally, when the timespan of the DR event is over,
the function ComputeActualReduction(user,
act_consumption, baseline) computes the
actual user reduction, given by the difference be-
tween the per-user request and its actual consump-
tion and recognizes a remuneration for the user.

Steps 2, 3, 4 can be automated in the blockchain-
based Energy Management System (EMS) using smart
contracts that implement the functions indicated above,
as described in [8], [36], [37].

C. BLOCKCHAIN ARCHITECTURE
We want to implement the described DR workflow
using Blockchain with most of the operations performed
automatically by smart contracts (SC). The considered
scenario implies that at the users’ premises an EMS
device is installed. The device hosts a client application
that is able to run a SC for reading/writing data on
the blockchain. Measurement data can be acquired by
the channel 2 of the Smart Meter used for registering
energy consumption. Consumption data sent by the SM
may be subject to audit by the DSO. This ensures that
these data are considered reliable.

In the architecture, on one hand, we want to preserve
the privacy of the user but, on the other, we want to
make the user accountable (i.e., they must not cheat).
For this reason, we propose an approach with multiple
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FIGURE 3. Architecture of the multi-channel blockchain solution
supporting the EMS functions

channels depicted in Figure 3: one channel that is
available to all the involved actors (public) and several
other channels that are visible only to subsets of actors
(private).

The concept of Blockchain channels is supported
naively by several Blockchains such as Hyperledger Fab-
ric or Multichain. However, it can also be implemented
using multiple blockchain instances, instead of channels,
jointly with an Inter-Blockchain Communication (IBC)
protocol. In the remainder of the paper, for the sake
of simplicity, we will only consider the case of a multi-
channel blockchain. We assume that there is a private
channel between each prosumer and the grid operator
(or aggregator). Each private channel runs a Smart
Contract SCi that can read/write data on this channel
and on the public one. The procedure is shown in Figure
4: users periodically publish their energy consumption
pi

B,h, while the smart contract is required to calculate
the total baseline Btot. The total energy demand Dtot is
distributed to each user proportionally pro-quota (Di),
according to their contribution to the total customers
baseline. Finally the reward is calculated as a difference
between the demanded energy consumption and the
actual one as |Di − pi

B,h|.

IV. SECURE MULTIPARTY COMPUTATION ARCHITECTURE
A. THREAT MODEL
In traditional network systems, consumption data is
private between the operator and the customer or the op-
erator uses it for network management. When blockchain
is introduced to operate distributed and transparent
network management, the data of the various users must
be made public. Thus, the following threats arise that
we want to defend against:

1) users perform any kind of analysis on the data of
other users, trying to extract, for example, their
consumption profile; this is important because, by
analysing the energy consumption of a user, an at-
tacker could deduce his habits and use information
about his presence or absence to commit theft or
other criminal acts;

2) users can advertise bogus energy consumption; this
misconduct could be used for personal gain or
service disruption;

3) infrastructural elements can behave maliciously
blocking network operations or producing output
non-compliant with the expected processing.

Adversaries have free access to the BC’s public chan-
nel, and can therefore read its entire contents. If the
attacker is a malicious prosumer, it cannot alter the
value acquired by the SM as it can be verified by the
DSO, but can fake the values during the first phase
of SMC; if it is an infrastructural node, the attacker
can either not participate in the SMC process or fake
the results. In the latter case, our solution allows us
to handle a number of attackers depending on the
threshold required by the cryptographic schemes used
(more details on cryptographic schemes are described
in Sections IV-B and IV-C).To be able to deal with
the aforementioned threats, in the following we are
going to introduce cryptographic techniques into our
blockchain architecture that enable us to deal with the
aforementioned threats.

B. PEDERSEN VERIFIABLE SECRET SHARING
Pedersen Verifiable Secret Sharing (VSS) [38] is a cryp-
tographic technique that allows a secret to be shared in a
secure way by splitting it into n shares and to reconstruct
it just by using t (≤ n) of these. In addition, it allows
the parties receiving the shares to verify that they are
consistent, detecting malicious dealers and/or cheating
parties. It is based on Shamir Secret Sharing [39] for
the creation/distribution of shares and the threshold
mechanism for the reconstruction of the secret, and
makes use of commitments for the verifiability aspect.
A more exhaustive description of this cryptographic
scheme is detailed in Section IV-C, where the Elliptic
Curve-based version is used.

We use VSS to protect against cheating prosumers
and malicious privacy peers, as discussed in subsection
IV-C.

C. RESILIENT SECURE MULTIPARTY SOLUTION
Building the consumption baseline of the users is one of
the basic steps for DR programs to derive the individual
reduction request (ComputeRequestedReduction).
To this aim, DR algorithms need both the baseline of the
single user (sensitive data) and the sum of the baselines
of all the involved users (Btot), that, in this context, can
be considered a non-sensitive (aggregated) data.

To calculate Btot without revealing the individual
baseline to other users or a trusted central authority, we
resort to a SMC algorithm running between prosumers
and privacy peers, i.e. infrastructural elements selected
at the beginning of the DR event to execute the private
computation. Note that the privacy peers can be even
the prosumers involved in the DR event.

The algorithm is explained by the simplified example
shown in Figure 5 that reports the case with N = 3
prosumers, P1, P2 and P3, n = 3 privacy peers, PP1, PP2
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FIGURE 4. The proposed mechanism with two users: after the baseline calculation, DR takes place. The reward is then calculated on a per user basis as
the difference between the user demand request Di and the actual energy consumption pi

B,h.

and PP3, and t = 2. It can be divided into three steps:
the first executed by each prosumer, the second by at
least t privacy peers, and the last by any peer. Before the
algorithm is executed, the following security parameters
must be known to each participant (prosumers, privacy
peers):

• the elliptic curve and the order q of its related finite
field,

• two curve points G and H, such that H = z∗G with
z ∈ Z+,

• the threshold values t and n.
In order to better and more effectively understand

the operating process in the following, after the generic
description of the operations to perform, the application
of these to the example in Figure 5 is depicted.

Prosumer’s operations
During the first step, the i-th prosumer performs the
following operations:

1) generates two (t-1)-degree random polynomials,

yi(x) := si + a1,ix + a2,ix2 + ...+ at−1,ixt−1 mod q

zi(x) := ri + b1,ix + b2,ix2 + ...+ bt−1,ixt−1 mod q

where si := Bi;
2) generates the share for the j-th privacy peer as a

triple, (xj, yj,i, zj,i), where yj,i and zj,i are yi(xj) and
zi(xj) respectively;

3) privately sends the shares to the n privacy peers;
4) publishes the commitments:

Ci,0 := si ∗ G + ri ∗ H

Ci,1 := a1,i ∗ G + b1,i ∗ H

Ci,2 := a2,i ∗ G + b2,i ∗ H

...

Ci,t−1 := at−1,i ∗ G + bt−1,i ∗ H

With reference to the example in Figure 5, without
loss of generality, consider peer P1. Since t = 2 and
n = 3, it generates two random polynomials of degree
1, y1(·) and z1(·), from which 3 shares are generated,
(x1, y1,1, z1,1), (x2, y2,1, z2,1) and (x3, y3,1, z3,1), and pri-
vately distributed to privacy peers PP1, PP2 and PP3.
Finally, the commitments C1,0 and C1,1 are published.
Similarly, the same holds for the other two prosumers.

Privacy peer’s operations
During the second step, the j-th privacy peer performs

the following operations:
1) for each received share, (xj, yj,i, zj,i), checks its

validity by verifying the following equality

Ci,0 + xj ∗ Ci,1 + x2
j ∗ Ci,2 + ...+ xt−1

j ∗ Ci,t−1

?
= yj,i ∗ G + zj,i ∗ H

2) if all the shares are valid, publishes the sum of the
received shares

(xj,
∑

i∈prosumers

yj,i,
∑

i∈prosumers

zj,i)

.
With reference to the example in Figure 5, without

loss of generality, consider PP1. Since t = 2 and n = 3,
it can check the validity of each of the 3 shares received,
(x1, y1,1, z1,1), (x1, y1,2, z1,2) and (x1, y1,3, z1,3), simply by
verifying that

C1,0 + x1 ∗ C1,1
?
= y1,1 ∗ G + z1,1 ∗ H

C2,0 + x1 ∗ C2,1
?
= y1,2 ∗ G + z1,2 ∗ H
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C3,0 + x1 ∗ C3,1
?
= y1,3 ∗ G + z1,3 ∗ H

Finally, if all 3 shares are valid, their sum, (x1, y1,1 +
y1,2 + y1,3, z1,1 + z1,2 + z1,3), is published. Similarly, the
same applies to the other two privacy peers.

Computation of the sum of the baselines
Finally, using any t of the sums published, Btot can

be calculated simply by applying the Lagrange Inter-
polation on the points (xj, yj,i) of the polynomial yi(·).
Being an aggregation, this value is far less privacy-
sensitive with respect to individual user energy con-
sumption and, in some cases, may be publicly disclosed
for transparency.

D. SECURITY ANALYSIS
To be effective against the threats described in Section
IV-A, our solution requires that private channels are
present, that the consumption measurements acquired
by the SM are trusted, and that the number of malicious
prosumers does not exceed the threshold t chosen for the
Pedersen algorithm to run. By making use of private
channels and Pedersen VSS in public channels, it is
possible to efficiently prevent one user from "spying" on
the data of others without affecting the operational per-
formance of the system. In fact, it is easy to demonstrate
that the only way to retrieve any data about a specific
user is by collusion of at least t users who received
a share of those specific data. Table 2 summarises
the protection provided by our solution against several
threats.

Protection against malicious prosumers
Consider two scenarios: i) a prosumer providing wrong

shares to some privacy peers, ii) a prosumer lying about
the real baseline. In the first scenario, the prosumer Pi

has generated a proper polynomial yi(·), using the actual
baseline, and provides incorrect shares using fake points
of the curve. To do so, she has to provide points out
of curve. Thanks to the commitments Ci,0, ..., Ci,t−1,

Threat Protection Strategy

Attacks against the privacy of Blockchain private channels
prosumer’s metering data

Attacks against the privacy of Shamir Secret Sharing and
prosumer’s baseline Blockchain private channels

Cheating prosumer (fake shares) Pedersen Commitments

Cheating prosumer (fake secret) Pedersen Commitments with
DSO’s ground truth verification

Privacy Peer failure Shamir Secret Sharing

Malicious Privacy Peer Pedersen Commitments

TABLE 2. Protection against privacy and security threats

privacy peers can verify the validity of these points and
detect the malicious prosumer. In the second scenario,
the prosumer Pi has generated a fake polynomial yi(·)
and provides correct shares using the points of the curve.
This time, privacy peers have no way to detect the
malicious prosumer, since the verification is successful.
However, the DSO can ask the prosumer for the random
value ri used for the polynomial zi(·) and, since it also
knows G, H and her baseline Bi, it can verify

Bi ∗ G + ri ∗ H ?
= Ci,0 (1)

and detect the malicious prosumer.

Protection against cheating privacy peers
Suppose that a privacy peer PPj provides an incorrect

sum of shares, (xj, yj,1+yj,2+yj,3, zj,1+zj,2+zj,3). Again,
thanks to the commitments, each participant can verify
the validity of the sum and detect the cheating privacy
peer. It is only necessary to verify C1,0+C2,0+C3,0+x1

j ∗
C1,1+x1

j ∗C2,1+x1
j ∗C3,1+...+xt−1

j ∗C1,t−1+xt−1
j ∗C2,t−1+

xt−1
j ∗C3,t−1

?
= (yj,1+yj,2+yj,3)∗G+(zj,1+zj,2+zj,3)∗H.

V. PERFORMANCE EVALUATION
In this section, we evaluate the robustness of the system
in terms of the resistance to node or message failure, and
the computation complexity required by the adopted
cryptographic algorithms.

A. RESISTANCE TO FAILURE
The possible failure can happen due to node failure or
errors during message transmission. The first case is
simpler to analyse: if a prosumer fails (e.g., its hardware
is broken), it will simply not be accounted for in the
overall baseline. On the contrary, if a privacy peer would
fail, the system will be resistant if at least t out of n
continue to work because of the properties of Shamir
Secret Sharing. The second case, transmission failure,
requires a bit more calculations. Indeed, because of the
security construction, it only needs that a single message
from a prosumer to a privacy peer is lost to invalidate all
the data acquired by this privacy peer that, therefore,
must be excluded from the computation of the sum.
To help the correct sizing of the system, we want to
express the reliability of the system Rsys in relation
to the probability of error of the message. Considering
that each of the n privacy peers must receive a message
from each of the N prosumers and indicating with p the
probability that this message will be correctly received
(assumed i.i.d.), we can easily calculate the probability
that a privacy peer will receive the right set of data as

ProbPP = pN

On average, we can readily say that if n×ProbPP ≥ t,
the system will work most of the time. In general terms,
the reliability of the system works is given by

Rsys = 1− F(t − 1; n,ProbPP)
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FIGURE 5. Example of the SMC algorithm to compute the aggregated baseline without disclosing the individual ones with 3 users and a 2-out-of-3
threshold.

FIGURE 6. Reliability of the system for N = 100 prosumers, n = 10 privacy
peers and varying the number of required privacy peers t and the
probability p of having a message delivered.

where F(a; b,p) is the binomial cumulative distribution
function for a successes over b trials with success prob-
ability p. Then, using the Hoeffding inequality, we can
limit the total resiliency of the system as:

Rsys ≥ 1− e−2n(pN− t−1

n )
2

Figure 6 shows the reliability of the system Rsys

for N = 100 prosumers, n = 10 privacy peers and
varying the number of required privacy peers t and the
probability p of having a message delivered. As we can
see, the system performs well with a probability of error
of the order of 10−3, which is fairly acceptable in many
data networks.

FIGURE 7. Number of messages exchanged in a network with N peers
and n privacy peers.

B. SCALABILITY
Figure 7 shows the number of messages exchanged in a
network with N peers and n privacy peers. As expected,
doubling the number of privacy peers results in the same
effect on the number of messages exchanged.

C. COMPUTATIONAL EFFICIENCY
Now we wonder whether the computational complexity
is compatible with the commodity hardware used in an
Energy Management System. To answer this fundamen-
tal question, we run a set of tests using a Raspberry
Pi 3 model B+ (SoC Broadcom BCM2835 single-core
ARM11 and 512MB of RAM). We used the Elliptic
Curve Cryptography (ECC) module of pycryptodome1,

1https://pycryptodome.readthedocs.io/
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one of the most popular cryptographic library in Python,
and the curve P-256, a NIST-recommended elliptic curve
on a finite field Fq. The pycryptodome ECC python
module overrides the arithmetic operands, making it
straightforward to implement from scratch all the opera-
tions described in Section IV-C, and run the tests with a
growing number of privacy peers (n = 10, 30, 50, 70, 100)
and varying the ratio of required peers t/n. For example,
if we have n = 100 privacy peers and t/n = 0.5, only 50
out of 100 privacy peers are needed to reconstruct the
secret. Figure 8 shows the computational time required
to create the polynomials (Prosumer’s operations step
1), while Figure 9 shows the time needed to create a
single share (Prosumer’s operations step 2). In both
cases, the time is perfectly compatible with the hardware
and the scenario; also in the extreme case of n = 100
privacy peers and the threshold t = 90, it requires less
than 3 ms to execute the operations.

Verification operations are conversely far more compu-
tational intensive. Figures 10 and 11 show, respectively,
the time required to create the commitments (Pro-
sumer’s operations step 4) and to use them to validate a
share (Privacy Peer’s operations step 1). Especially, the
creation of the commitments (in charge of the prosumer)
is computationally very demanding because of multiple
operations on the points of the elliptic curve. However,
if one considers a single multiplication of the points of
the elliptic curve, the time required is around 6 ms, not
particularly significant.

Figure 11 shows the time required by a privacy peer to
verify a share coming from one single peer. Therefore, it
is important to note that this time has to be multiplied
by N, the number of peers involved in the DR event.

The performance evaluated so far describes only the
operation needed to check the validity of the shares, that
is, verify if the shares belong to the curve declared with
the commits. However, as described in Section IV, we
also considered some other threats. To protect against a
prosumer that lies about her baseline, the grid operator
can compute the check described in equation 1 at the
price of two multiplications and a sum of the points of
the elliptic curve. Thus, the computation time is similar
to the one reported in Figure 10 divided by t.

Finally, the time to verify the honest behaviour of a
privacy peer is equal to the computational time to verify
a share (Figure 11), multiplied by the number of received
shares.

VI. RESULT DISCUSSION
On one hand, the performance evaluation highlights the
feasibility of building a system on commodity hardware
to achieve privacy and resilience. On the other hand,
the verification part shows several issues that can be
critical when scaling t or N. According to the targeted
sustainable delay, the timing can be improved using
concurrency or by upgrading the computational capacity

FIGURE 8. Computational time to create the polynomials

FIGURE 9. Computational time to create a share

FIGURE 10. Computational time to create the commitments

of the nodes. Notably, verification of the shares can
also be done offline or on-demand in case of anomalies.
Hence a large number of prosumers could not represent
a critical issues for the timing of the operations.

Similarly to [11], [27], we use blockchain channels,
such as those available with Hyperledger Fabric, which
natively partition the individuals who can access the
published information, e.g., establishing one channel for
each grid operator-market operator-customer group, and
another general channel to which all the customers of the

VOLUME 11, 2023 11



Loreti et al.: Privacy and Transparency in Blockchain-based Smart Grid Operations

TABLE 3. Comparison of the DR management solutions

[28] [12] [29] [40] [41] [42] Proposed
Solution

Components and Tech-
niques

Private
Blockchain,
Aggregator

Blockchain,
Aggregator,
ZK-Proof

Blockchain
and Secret
Sharing

Federated
Learning

Pseudonyms,
Aggregator

Homomorphic
(Paillier),
Aggregator

Blockchain
and SMC

Blockchain Yes Yes Yes No No No Yes
Privacy of prosumer’s
measurement data

Yes Yes Yes Yes Yes (weak) Yes Yes

Privacy of user’s base-
line

N/D Yes Yes Yes Yes (weak) Yes Yes

Protection against
cheating prosumer

N/D Yes Yes No No No Yes

Baseline calculation N/D Difference Average AI Average Average Average
Fault tolerance N/D N/D No No No No Yes
Protection against ma-
licious internal node

N/D N/D No No No No Yes

FIGURE 11. Computational time to validate a share

network take part. However, such an approach suffers
from the impossibility of deriving a network-wide calcu-
lation such as the sum of all the prosumers’ baselines,
which, if computed naively, involves the disclosure of the
baselines of all the users to a central trusted authority.

A. COMPARISON WITH OTHER DR MANAGEMENT
SOLUTIONS
The presented solution from the computational point of
view results in a performance degradation compared to
solutions that do not provide the same level of privacy.
For this reason, we performed a comparison with feature-
based literature solutions that we present in Table 3.

Some of the works presented in Section II were em-
ployed in the comparison, along with three additional
works that, despite not utilizing blockchain, prioritize
the security and privacy of the system as their require-
ment. All solutions provide privacy protection for mea-
surement data. Specifically, authors in [28] use a private
blockchain to ensure that only authorised participants
can access the data and smart contracts to automate
the demand response process. The solution proposed in
[12] uses off-chain storage to save measurement data,
zero-knowledge proofs to protect the privacy between
aggregators and prosumers, and a public blockchain to

record measurements fingerprints and energy transac-
tions. Both solutions involve aggregators, and, due to
architectural decisions, issues such as privacy of the
baselines and reliability of any components needed are
not taken into account. [40] is based on federated learn-
ing to estimate user baselines: where data is processed
locally and the aggregator nodes perform the inference
to ensure privacy-preserving baseline computation. In
[41], the authors transmit the consumption profile us-
ing pseudonyms along with public and private keys.
The demand/response provider carries out the counts
without knowledge of the sender’s identity. However,
the achieved privacy in this case is weak as it does
not guarantee unlinkability (see [17]). Finally, [42] en-
sures privacy through the employment of homomorphic
transformations and Paillier-based techniques. Instead,
in [29] and in the proposed solution, due to the choice
of using baselines as the basic building blocks of the
demand response scheme and the absence of aggregators,
these problems arise automatically. In particular, trivial
secret sharing in [29] allows the baseline privacy and
the detection of cheating prosumers, but not the fault
tolerance and the detection of malicious nodes within
the architecture. On the other hand, using more ad-
vanced Secure Multiparty Computation schemes, such
as Pedersen Verifiable Secret Sharing, makes it possible
to guarantee the latter two properties as well.

Analysing the solutions shown in Table 3, starting
from the leftmost one and moving to the right, each
successive solution introduces a certain computational
and performance overhead compared to the previous
one.

VII. CONCLUSION
In this paper, we presented a multi-channel blockchain
architecture for Smart Grids, that integrates privacy-
preserving technologies to guarantee prosumers’ privacy
while allowing the grid operator to implement network-
wide optimisation policies, such as Demand Response,
that require sensitive user data. The use of private
channels allows the user’s privacy to be guaranteed,
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while smart contracts by means of Shamir Secret Sharing
and Pedersen Commitments allow the user to operate
on certified and non-repudiable data in an oblivious
manner. In addition, the proposed system also guar-
antees the user about the reliability and security of
the infrastructure. We show how the parameters can
be adjusted to target a trade-off between the system’s
resistance to data loss (robustness) and the privacy
introduced by encryption. Furthermore, we tested the
proposed cryptographic techniques on devices to assess
the sustainability of the proposed architecture in the IoT
domain.

REFERENCES
[1] K. Mahmud, B. Khan, J. Ravishankar, A. Ahmadi, and P. Siano,

“An internet of energy framework with distributed energy re-
sources, prosumers and small-scale virtual power plants: An
overview,” Renewable and Sustainable Energy Reviews, vol. 127,
p. 109840, 2020.

[2] R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, and
K. Shehzad, “Prosumer based energy management and sharing in
smart grid,” Renewable and Sustainable Energy Reviews, vol. 82,
pp. 1675–1684, 2018.

[3] M. B. Mollah, J. Zhao, D. Niyato, K.-Y. Lam, X. Zhang, A. M.
Ghias, L. H. Koh, and L. Yang, “Blockchain for future smart
grid: A comprehensive survey,” IEEE Internet of Things Journal,
vol. 8, no. 1, pp. 18–43, 2020.

[4] N. Ul Hassan, C. Yuen, and D. Niyato, “Blockchain technolo-
gies for smart energy systems: Fundamentals, challenges, and
solutions,” IEEE Industrial Electronics Magazine, vol. 13, no. 4,
pp. 106–118, 2019.

[5] A. Jindal, G. S. Aujla, N. Kumar, and M. Villari, “Guardian:
Blockchain-based secure demand response management in smart
grid system,” IEEE Transactions on Services Computing, vol. 13,
no. 4, pp. 613–624, 2020.

[6] A. Kumari, R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar,
“When blockchain meets smart grid: Secure energy trading in
demand response management,” IEEE Network, vol. 34, no. 5,
pp. 299–305, 2020.

[7] S. A. Chaudhry, H. Alhakami, A. Baz, and F. Al-Turjman,
“Securing demand response management: A certificate-based
access control in smart grid edge computing infrastructure,”
IEEE Access, vol. 8, pp. 101235–101243, 2020.

[8] P. Gallo, E. R. Sanseverino, G. L. Restifo, G. Sciumè, and
G. Zizzo, “Demand response for integrating photovoltaic plants
in lampedusa island,” in 2021 IEEE International Conference on
Environment and Electrical Engineering and 2021 IEEE Indus-
trial and Commercial Power Systems Europe (EEEIC/I&CPS
Europe), pp. 1–6, IEEE, 2021.

[9] D. Mariano-Hernández, L. Hernández-Callejo, A. Zorita-
Lamadrid, O. Duque-Pérez, and F. S. García, “A review of
strategies for building energy management system: Model predic-
tive control, demand side management, optimization, and fault
detect & diagnosis,” Journal of Building Engineering, vol. 33,
p. 101692, 2021.

[10] A. M. Antonopoulos and G. Wood, Mastering ethereum: building
smart contracts and dapps. O’reilly Media, 2018.

[11] G. Sciumè, E. J. Palacios-García, P. Gallo, E. R. Sanseverino,
J. C. Vasquez, and J. M. Guerrero, “Demand response service
certification and customer baseline evaluation using blockchain
technology,” IEEE Access, vol. 8, pp. 139313–139331, 2020.

[12] C. D. Pop, M. Antal, T. Cioara, I. Anghel, and I. Salomie,
“Blockchain and demand response: Zero-knowledge proofs for
energy transactions privacy,” Sensors, vol. 20, no. 19, 2020.

[13] J. Zhou, Y. Feng, Z. Wang, and D. Guo, “Using secure
multi-party computation to protect privacy on a permissioned
blockchain,” Sensors, vol. 21, no. 4, p. 1540, 2021.

[14] H. Gao, Z. Ma, S. Luo, and Z. Wang, “Bfr-mpc: a blockchain-

based fair and robust multi-party computation scheme,” IEEE
Access, vol. 7, pp. 110439–110450, 2019.

[15] IEEE, The Survey on the development of Secure Multi-Party
Computing in the blockchain, 2021.

[16] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in de-
centralized energy trading through multi-signatures, blockchain
and anonymous messaging streams,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 5, pp. 840–852,
2016.

[17] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, “Privacy-preserving
energy trading using consortium blockchain in smart grid,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3548–
3558, 2019.

[18] K. Gai, Y. Wu, L. Zhu, L. Xu, and Y. Zhang, “Permissioned
blockchain and edge computing empowered privacy-preserving
smart grid networks,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 7992–8004, 2019.

[19] P. Singh, M. Masud, M. S. Hossain, and A. Kaur, “Blockchain
and homomorphic encryption-based privacy-preserving data ag-
gregation model in smart grid,” Computers and Electrical Engi-
neering, vol. 93, p. 107209, 2021.

[20] Z. Guan, X. Lu, W. Yang, L. Wu, N. Wang, and Z. Zhang,
“Achieving efficient and privacy-preserving energy trading based
on blockchain and abe in smart grid,” Journal of Parallel and
Distributed Computing, vol. 147, pp. 34–45, 2021.

[21] B. Banerjee, A. Jani, and N. Shah, “Asymmetric confidentiality
in blockchain embedded smart grids in galois field,” Frontiers in
Blockchain, vol. 4, 2021.

[22] X. Chen, J. Shen, Z. Cao, and X. Dong, “A blockchain-based
privacy-preserving scheme for smart grids,” in Proceedings of
the 2020 The 2nd International Conference on Blockchain Tech-
nology, pp. 120–124, 2020.

[23] N. Fotiou, I. Pittaras, V. A. Siris, G. C. Polyzos, and P. Anton,
“A privacy-preserving statistics marketplace using local differ-
ential privacy and blockchain: An application to smart-grid
measurements sharing,” Blockchain: Research and Applications,
vol. 2, no. 1, p. 100022, 2021.

[24] B. M. Yakubu, M. I. Khan, N. Javaid, and A. Khan, “Blockchain-
based secure multi-resource trading model for smart market-
place,” Computing, vol. 103, pp. 379–400, 2021.

[25] B. M. Yakubu, M. I. Khan, A. Khan, A. Anjum, M. H. Syed,
and S. Rehman, “A privacy-enabled, blockchain-based smart
marketplace,” Applied Sciences, vol. 13, no. 5, p. 2914, 2023.

[26] F. Knirsch, A. Unterweger, G. Eibl, and D. Engel, Privacy-
Preserving Smart Grid Tariff Decisions with Blockchain-Based
Smart Contracts, pp. 85–116. Cham: Springer International
Publishing, 2018.

[27] M. L. Di Silvestre, P. Gallo, E. R. Sanseverino, G. Sciume, and
G. Zizzo, “Aggregation and remuneration in demand response
with a blockchain-based framework,” IEEE Transactions on
Industry Applications, vol. 56, no. 4, pp. 4248–4257, 2020.

[28] A. C. Tsolakis, I. Moschos, K. Votis, D. Ioannidis, T. Dimitrios,
P. Pandey, S. Katsikas, E. Kotsakis, and R. García-Castro, “A se-
cured and trusted demand response system based on blockchain
technologies,” in 2018 Innovations in Intelligent Systems and
Applications (INISTA), pp. 1–6, 2018.

[29] L. Bracciale, P. Loreti, E. Raso, G. Bianchi, P. Gallo, and E. R.
Sanseverino, “A privacy-preserving blockchain solution to sup-
port demand response in energy trading,” in Proceedings of 2022
IEEE Mediterranean Electrotechnical Conference (MELECON),
pp. 719–724, 2022.

[30] J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T.
Moreno, and A. Skarmeta, “Privacy-preserving solutions for
blockchain: Review and challenges,” IEEE Access, vol. 7,
pp. 164908–164940, 2019.

[31] L. Bracciale, E. Raso, P. Gallo, E. R. Sanseverino, G. Bianchi,
and P. Loreti, “Privacy in blockchain-based smart grids,” in 2022
Workshop on Blockchain for Renewables Integration (BLORIN),
pp. 37–41, IEEE, 2022.

[32] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, and W. Yan,
“Ledgerdb: A centralized ledger database for universal audit and
verification,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 3138–3151, 2020.

VOLUME 11, 2023 13



Loreti et al.: Privacy and Transparency in Blockchain-based Smart Grid Operations

[33] X. Yang, R. Zhang, C. Yue, Y. Liu, B. C. Ooi, Q. Gao, Y. Zhang,
and H. Yang, “Vedb: A software and hardware enabled trusted
relational database,” Proceedings of the ACM on Management
of Data, vol. 1, no. 2, pp. 1–27, 2023.

[34] S. Lee and D.-H. Choi, “Energy management of smart home
with home appliances, energy storage system and electric vehicle:
A hierarchical deep reinforcement learning approach,” Sensors,
vol. 20, no. 7, p. 2157, 2020.

[35] M. S. Martinez and R. Hamilton, “Role of demand response
baselines in estimating participant impacts,” EUEC, 2013.

[36] P. Gallo, E. R. Sanseverino, G. L. Restifo, G. Sciumè, and
G. Zizzo, “Demand response for integrating photovoltaic plants
in lampedusa island,” in 2021 IEEE International Conference
on Environment and Electrical Engineering and 2021 IEEE
Industrial and Commercial Power Systems Europe (EEEIC /
I CPS Europe), pp. 1–6, 2021.

[37] A. Augello, P. Gallo, E. R. Sanseverino, G. Sciabica, and
G. Sciumè, “Tracing battery usage for second life market with
a blockchain-based framework,” in 2021 IEEE International
Conference on Environment and Electrical Engineering and
2021 IEEE Industrial and Commercial Power Systems Europe
(EEEIC / I CPS Europe), pp. 1–6, 2021.

[38] T. P. Pedersen, “Non-interactive and information-theoretic se-
cure verifiable secret sharing,” in Annual international cryptol-
ogy conference, pp. 129–140, Springer, 1991.

[39] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[40] Y. Chen, C. Chen, X. Zhang, M. Cui, F. Li, X. Wang, and S. Yin,
“Privacy-preserving baseline load reconstruction for residential
demand response considering distributed energy resources,”
IEEE Transactions on Industrial Informatics, vol. 18, no. 5,
pp. 3541–3550, 2022.

[41] Y. Gong, Y. Cai, Y. Guo, and Y. Fang, “A privacy-preserving
scheme for incentive-based demand response in the smart grid,”
IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1304–1313,
2016.

[42] H. Yu, J. Zhang, J. Ma, C. Chen, G. Geng, and Q. Jiang,
“Privacy-preserving demand response of aggregated residential
load,” Applied Energy, vol. 339, p. 121018, 2023.

PIERPAOLO LORETI has been Professor of
Telecommunications at the University of
Rome Tor Vergata since 2021 and a Re-
search Fellow at the same university since
2006. Throughout his career, he has collabo-
rated with various public and private research
consortiums and companies, participating in
numerous European and national projects in
both research and coordination roles. To date,
he has authored over 80 peer-reviewed articles

published in reputable journals and presented at international confer-
ences. His expertise encompasses a range of topics including wireless
and mobile networks, IoT systems and platforms, framework design,
analytic modeling, and performance evaluation through simulation
and test-bedding.

LORENZO BRACCIALE is an Assistant Profes-
sor at the University of Rome Tor Vergata, in
the Department of Electronic Engineering. His
primary research interests are in distributed
systems, with a focus on machine learning and
data privacy. This includes distributed pro-
grammable networks, eHealth systems, and
the application of Privacy Enhancing Tech-
nologies.

EMANUELE RASO is a PhD student of the de-
partment of Civil Engineering and Computer
Science Engineering at the University of Rome
Tor Vergata, where he received his MS in
Computer Science Engineering in 2019. His re-
search activities are focused on Cybersecurity,
particularly on Applied Cryptography, Data
Privacy and Confidentiality. He has worked as
a researcher for the EU H2020 "BRP4GDPR"
project.

GIUSEPPE BIANCHI is Full Professor of Net-
working at the University of Roma Tor Ver-
gata since January 2007. His research activ-
ity includes IP networking, Wireless LANs,
privacy and security, traffic monitoring, and
is documented in about 180 peer-reviewed
international journal and conference paper,
accounting for more than 11.500 citations and
a H-index of 29 (Scholar Google). He’s co-
inventor in 7 filed patents. He’s editor for

IEEE/ACM Transactions on Networking, area editor for IEEE Trans-
actions on Wireless Communication and editor for Elsevier Computer
Communication.

PIERLUIGI GALLO received the M.S. degree in
electronic engineering and the Ph.D. degree
in electrical, electronic, and telecommunica-
tion engineering, mathematics, and automa-
tion from the University of Palermo, Palermo,
Italy, in 2002 and 2015, respectively. He has
been an Assistant Professor with the Uni-
versity of Palermo since November 2010. He
participated to national and international re-
search projects, as a Work Package or Tech-

nical Leader. He coordinates the Security, Network Applications and
Positioning Laboratory, University of Palermo. He is the CEO and
Founder of SEEDS srl, an academic spinoff on agri-food traceability
with blockchain. His research interests include wireless medium access
control layer, indoor localisation, cybersecurity, blockchain, and their
applications in several fields, including smart grids and agri-food
traceability.

ELEONORA RIVA SANSEVERINO received the
master’s and Ph.D. degrees in electrical en-
gineering from the University of Palermo,
Palermo, Italy, in 1995 and 2000, respec-
tively, both in electrical engineering. She is
a Full Professor in power systems with the
University of Palermo, Palermo, Italy. She is
a Scientific Coordinator of various industrial
research projects with research organisations
and companies. She is also responsible of

many research and teaching cooperation agreements with foreign
institutions. These include European institutions, such as Aalborg
University, Aalborg, Denmark, and Chalmers University, Gothenburg,
Sweden, and non-European institutions such as Electric Power Uni-
versity and the Institute of Energy Science both in Hanoi, Vietnam.
She authored more than 250 papers on international journals and
conference proceedings and edited books and book chapters. Prof.
Sanseverino is the Editor-in-Chief of the UNIPA Springer Series.

14 VOLUME 11, 2023


