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Abstract

We study the dynamics of a spin-1/2 particle interacting with a multi-spin environment, modelling
the corresponding open system dynamics through a collision-based model. The environmental
particles are prepared in individual thermal states, and we investigate the effects of a distribution of
temperatures across the spin environment on the evolution of the system, particularly how
thermalisation in the long-time limit is affected. We study the phenomenology of the heat exchange
between system and environment and consider the information-to-energy conversion process,
induced by the system—environment interaction and embodied by the Landauer principle.
Furthermore, by considering an interacting-particles environment, we tune the dynamics of the
system from an explicit Markovian evolution up to a strongly non-Markovian one, investigating the
connections between non-Markovianity, the establishment of system—environment correlations, and
the breakdown of the validity of Landauer principle.

1. Introduction

Non-Markovian open-system dynamics has recently received considerable attention [1, 2], including the
formulation of figures of merit for its characterization [3—8], and the first steps towards its experimental
assessment [9—14]. While a full understanding of the origins of non-Markovianity [ 15, 16], and the formulation
of a universal characterization of is implications are the objects of current investigations [ 17-21], the community
interested in open system dynamics has recently recognised the relevance of non-Markovianity for the
assessment of the properties of non-equilibrium quantum systems [22—25]. In particular, the role of memory
effects (which are believed to be a key cause of the emergence of non-Markovian effects) in logically irreversible
processes has recently attracted some attention [26, 27] in light of the relevance that Landauer principle has for
information processing at both the classical and quantum level [28, 29, 34]. The relevance of the principle at the
quantum scale has been largely debated, with contributions both at the theoretical [24, 26, 27, 30, 59, 32—35] and
the experimental level [36-38].

In this work, we shed further light on the interplay between environmental memory effects and logical
irreversibility in non-equilibrium processes. We construct a collisional model of the open-system dynamics of a
spin-1/2 particle, of which figure 1 is an example, using and extending significantly a framework that was also
used recently to investigate non-Markovianity [39, 40]. Our model consists of a sequence of discrete-time
collisions, each ruled by a Heisenberg Hamiltonian, between the system and one environmental particle ata
time. For non-interacting environmental particles all prepared in the same state, the system undergoes a
homogenization dynamics [41]: in the long-time limit corresponding to a large number of collisions, the

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Non-Markovian dynamics. We study the dynamics of a spin-1/2 particle, the system S, undergoing a sequence of
interactions with similar spin-1/2 environment particles. At each step we work with a dynamical cell composed by the system and two
environment particles. Here we sketch the first two iterations of the protocol. The boxes represent the dynamical cell, double arrows
represent collisions through Heisenberg interaction and dashed contours are correlations. (a) The dynamical cell contains S and
particles E, and E,, all initially uncorrelated. Here S interacts with E;. (b) The system and E, are now correlated; E; interacts with E,.
(c) All the three particles in the cell are correlated; E is traced away and removed from the cell. (d) The process is iterated: the cell
contains now S, E, and E; and here S collides with E,. Correlations between the two are carried over from the previous step. (e)
Collision E,—Es. (f) Particle E, is traced away; to iterate the dynamics, E, will then be added to the cell.

system’s state is asymptotically driven towards the initial preparation of the environmental particles.
Such homogenization is relatively robust against state fluctuations across the multi-particle environment
induced, for instance, by a spatially inhomogeneous temperature.

For an environment of interacting particles, instead, the effective dynamics that the system undergoes can be
tuned broadly from a fully Markovian to a highly non-Markovian regime. The crossover from Markovianity to
non-Markovianity has long been object of investigation, both experimentally [42] and theoretically [43], with
particular attention to non-Markovian effects due to a hierarchical environment [44, 45], the role of a non-
Markovian memory-keeping environment in harnessing the quantum memory stored in a qubit [46, 47] and the
ability to control the (non-)Markovian character of the dynamics of a composite system by tuning the internal
couplings [48, 49].

In our study case, collisions occurring between environmental subsystems have a twofold effect: on the one
hand, they induce system—environment correlations resulting in memory effects that allow the environment to
retain information on the state of the system at previous steps of its discrete-time evolution; on the other hand,
they enable a feedback process whereby information is coherently brought back into the state of the system, thus
steering its state in a distinguished way with respect to the corresponding homogenization dynamics. We unveil
the implications that such a rich dynamics has for logical irreversibility, assessing the break down of Landauer
principle [28] as the non-Markovian character of the system’s evolution is enhanced. In particular, we show a
causal link between the system—environment correlations and the opening up of temporal windows in the time
evolution of the system within which Landauer bound is no longer valid.

A connection between correlation revivals and non-Markovianity was also reported in [ 13, 54, 55],
although in these works the authors investigate the dynamics of correlations within a composite system
interacting with a local environment. Furthermore, it is worth mentioning that a breakdown of the II Law of
Thermodynamics in the form of the Clausius inequality due to system—environment quantum correlations has
also been evidenced in harmonic systems coupled to a bath of harmonic baths [56-58], and that in the context of
generalizations of the IT Law for systems strongly coupled to a reservoir, [59—61], the observed violations are only
apparent.

The remainder of this work is structured as follows: in section 2 we summarize some key results on quantum
non-Markovianity; in section 3 we introduce our collision model, its thermodynamics and the formulation of
the Landauer principle for non-equilibrium quantum systems. Section 4 presents the results obtained with the
fully Markovian dynamics, in particular the emergence of homogenization, while in section 5 we investigate the
non-Markovian regime and show how non-Markovianity, local violations of the Landauer principle and
correlations are causally connected. Section 6 draws our conclusions and presents some open questions that will
be addressed in future works.
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2. Quantum non-Markovianity

2.1. Definition and measure
The approach we use to define and measure quantum non-Markovianity, from [3], employs the trace distance
[50] between two quantum states p, and p,

Dpy p) =3lor = palls ol = Try/olp, ¢))

which is a metric in the space of density matrices. Two properties are particularly relevant: (a) the trace distance
is a measure of the distinguishability between states and (b) it is contractive under positive trace preserving
quantum dynamical maps, even if not completely positive. Let then { ®; } be a family of quantum dynamical
maps, p, and p, two initial statesand p, ,)(t) = P; p, ) the corresponding evolved states. The dynamics given
by the process ® is Markovian if, for any pair of initial states, the trace distance D (p, (t), p, (t)) decreases
monotonically forall ¢+ > 0. Conversely, a quantum dynamical process @ is said to be non-Markovian if there
exists a pair of initial states for which the trace distance between the evolved states is increasing in some time
intervals. In other words, there exists two states p, and p, and some time ¢ > 0 atwhich 8,D (p, (t), p, (1)) is
strictly positive. A non-Markovian process can thus increase the distinguishability between two initially different
states: the environment has some memory effect on the system dynamics. This fact can be used to quantify non-
Markovianity. Denoting o (¢) = 9,D (p,(t), p,(t)), the degree of non-Markovianity N of the quantum
dynamical process ® is

N@) = max [ Low] + o). @)
{pppy} Y0 2

The integrand is non-null only in the intervals where the derivative is positive. Then a maximization over all

pairs of initial states is performed, and it was shown in [51] that any two states maximising A/ belong to the

boundary of the state space and are orthogonal. Finally, as exposed in section 3, our dynamics is implemented in

discrete time steps, therefore we compute the measure N by substituting the derivative o () with the difference

of the trace distance at stepsnand n— 1, D Prw P2) — DP1y_ 1> Pop_1)-

2.2.Non-Markovianity and system—environment correlations

One important feature of the dynamics is the connection between system—environment correlations (hereafter
referred to simply as correlations) and the manifestation of non-Markovianity. In [52] the authors provided alink
between the behaviour of the derivative o (¢) and system—environment correlations quantified by means of the
matrix 5E (¢) == pSE(t) — pS(t) @ pf(t),in the form of an upper bound for o (t) depending explicitly on

X°E (t). The result connects non-Markovianity with the emergent distinguishability between initially identical
environment states, and with the creation of correlations. In that work, the authors provide the example of an

N + 1spin-1/2 particle system, and find a connection between the time evolution of the trace distance and that
of correlations, quantified by the mutual information between system and environment. Trace distance and
correlations evolve in a periodic and synchronised fashion, both exhibiting a non-monotonic behaviour
incompatible with a Markovian dynamics. A similar observation is reported in [39], and in our model we also
observe this feature, as shown in section 5, and extend the connection between trace distance and correlations to
include also the Landauer bound. In the work [53] a tighter connection between the trace distance derivative and
correlations was provided, in the form of both an upper and a lower bound on o (¢).

3. Dynamical model and thermodynamics

3.1. Basic setup and notation
The system and a generic environment particle are denoted by S and E respectively, and described by local spin-
1/2 Hamiltonians

HsE) = s(e)02/2, Ws(e) > 0. 3)

The environmental particles are initially prepared in the thermal state p; = et / Z attemperature T, where

B = 1/kT is the inverse temperature and Z = Tr[e "] is the corresponding partition function (we use units
such that the Boltzmann constant s takes value 1 from now on). As discussed in section 4, we allow for
fluctuations in the preparation of the environmental particles. The choice of thermal states is consistent with the
necessity of a well-defined temperature of the environment.

The dynamics proceeds through a sequence of interactions, or collisions, and we first consider a process in
which the system interacts each time with a new environment particle, implementing the idea of a large,
memoryless thermal bath. The system—environment interaction is ruled by the Heisenberg Hamiltonian and
implemented through the unitary Vs
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i i
Hine = Jse (05 0E + 050b + 050b), Ve = eXPI:_gHimT]y 4)

where 7 is the interaction time. We call Hy = Hs + Hg the free Hamiltonian of system and environment, so
that Uy = exp(— %Ho To) gives the corresponding free evolution, occurring for a time 7y between two consecutive
collisions. Starting with the environment particle in the pre-collision state pﬁre = py> the system is brought from
stepntostep n + 1through the process

Py @ pre = pasy = UoVise(p) @ pp ) VE UG, Q)

and then the new marginal states pf 1= Tl pffr Jand pﬁost = Trs[ pfi ] are computed.

3.2. Thermodynamics

From the marginal states we compute the von Neumann entropy S, = —Tr ( pf In pf), the variation * of the
system energy and the exchanged heat at step n
AU, =Tr[Hs(py — py )l AQu=Tr[Hp(pfy, — Pl (6)

If [Hine, Hol = 0 the interaction does not conserve the total energy of the physical system here at hand. The
difference W, := AQ,, — AU, can thus be interpreted as work, either poured into or extracted from the system
by the unitary operation Vsg. The case of energy-conserving interactions is realized in the resonance
condition &, = @k.

We can check the validity of the Landauer bound AQ > AS at each collision. In [27], the principle is given
foundation in a framework of quantum statistical mechanics: welet AS = S,,_; — S,, be the entropy decrease of
the system, and we call AQ the heat-exchange introduced in (6). The bound then holds if:

(1) No other physical systems is involved;
(2) The environment is initially in a thermal state;
(3) The system and the environment are not initially correlated;

(4) The dynamics proceeds through a joint unitary evolution.

We shall see in section 5 that inter-environment interactions, implemented as described below, can induce
the presence of correlations between the system and an environmental particle before they interact directly, thus
contradicting assumption (3) and allowing for violations of the bound.

3.3. Implementation of the non-Markovian dynamics

Let us now switch on the inter-environment interactions, which we alternate to the system—environment ones.
The discrete-time evolution is achieved thanks to the iteration of a dynamical cell comprising the system and two
environment particles. We now go through the nth iteration of the scheme, with reference to figure 1
exemplifying the first two steps. At the beginning, the dynamical cell contains S, E,,and E,, ;. The S—E,,
collision occurs via the unitary operation Vsg in (5). From now on, we absorb the evolution times 7 and 7, into
the respective rates, so that we now consider dimensionless quantities such as Jsz = Jsp7, W = @; .7 and
analogous ones. Then, E, and E, , | interact through a unitary operation Vgg similar to Vsg, where the
dimensionless inter-environment coupling constant Jgg can be different from Jgg. The three particles in the
dynamical cell can now be all correlated. The updated marginal states are computed, and thus the
thermodynamical quantities. In particular, at each step we compute the marginal state of the environment
particles before the S—E,, and after the E,~E,, | ; interaction, and thus the exchanged heat

AQ, = Tr[(Hy ® HE)(p%OSEt o PY G +1)]. In order to iterate the dynamics, E,, is now traced out, we compute

the two-particle marginal state pg%it_l and a fresh environmental particle E,, ; 5, prepared in the thermal state p;,
comes into the cell:
post post — . pre
pSEHEn+1 - pSEn+1 ® pd - pSEnJrlEnAZ. (7)

The whole process is then iterated.

One of our goals is to investigate the features of the dynamics from a fully Markovian to a completely non-
Markovian regime, for which it is useful to express the operator Vsg in the form of a partial Swap, using the
following result from [41]

4 Consistency between the information theoretical and the thermodynamical contexts bridged by the Landauer principle calls for choosing
the natural logarithm, thus quantifying the entropy in nats.

4



NewJ. Phys. 18 (2016) 123018 M Pezzutto et al

' ' ' 0.04 T T T T T
I-O'ﬁ ws=3,w, =1
0.02 1
0.8 w0 =3 ] N Bo=1,04=005
----- D(ps.0E) 0,000 R e -
] . e

0.6} we =1 _ % ot -
B\ —— F(ps.,Pe) 2 IO — BAU
04F\, Bo=1 ] ~0.02} 4 ]
; — BAQ
02p ™, ] -o04f AW
009 50 00150 300 0 20 40 60 80 100 120 140
n n

Figure 2. Markovian process. Here we show the main features of the system dynamics in interaction with a Markovian environment.
In both panels, the horizontal axis shows the number of collisions 7. All plotted quantities are dimensionless. (a) Homogenization
witnessed by the monotonic behaviour of the distance D (pg, pg) and the fidelity F (ps, pg) to the average environment state py. (b)
Evolution of the system’s (dimensionless) energy change SAU, the exchanged heat with the environment SAQ, and the work SW in
the presence of noise. Environment particles are prepared in thermal states with inverse temperature (3 chosen from a Gaussian

(Bo, 0p) distribution. We take the initial system state |+ )s and the coupling constant Jsg = /32, to guarantee conditions of weak S—
E coupling. The system and environment proper frequencies are ws = 3 and wg = 1 respectively.

e Fexp [% ® 0t oy ® 0+ 0 W az>] = e ¥(cos ¢ Iy + ising Uyy),

where Uy, is the two-particle Swap operator: Uy, (|1h1) ® |15) = [tb,) & [tby) forall |4y), |1,) in C? The partial
Swap acts on any 2-particle state by leaving it unchanged with probability cos? ¢ and swapping it with
probability sin? ¢. We can now write

Ve = e % [cos(2]sg) T + isin(2Jsg) Usl, (8)

and tune the operator from no interaction (Jsg = 0) up to a complete Swap (Jsgp = 7/4).

4. Observation of homogenization in the Markovian dynamics

Here we expose the results produced by the dynamics with no inter-environment interactions. If the
environmental particles are all prepared in the same state pj, the dynamics produces homogenization: the system
reaches asymptotically the very same state in which the environment particles are prepared, pg — p;as
illustrated in” figure 2(a). This could appear to be counterintuitive at first, as one would expect the system to
thermalize to the state exp[— SHs]/ Zs. However, the dynamics is effectively governed by a global time-
dependent Hamiltonian, and the system experiences an active driving. Homogenization occurs even for small
fluctuations of the environmental states, as shown in figure 2(b). For each collision, we take (3 from a Gaussian
distribution, centred in 3, and with amplitude og. We call p, the average environmental state. The behaviour of
the asymptotic fluctuations in the system appears to depend strongly on the entity of those occurring at the
environment level. For small fluctuations in the environmental states, the asymptotic fluctuations increase
almost linearly. However, for larger values of 03 aless regular and more chaotic behaviour emerges, as shown in
figure 3(a). Moreover, the quantitative trend followed by the system’s fluctuations appear to depend strongly on
the energy spacings w; and w.. In order to characterize such dependence and change of trend more
quantitatively, we have estimated, through a Monte-Carlo approach, the area over which the cloud of points in
figure 3(a) is distributed (see figure 3(b)). This provides an estimate of the spread of the distribution in the
different dynamical situations that we have addressed. For small frequencies, the spread depends more heavily
on w, than on w;, while for high frequencies it decreases in both cases. This effect is linked to the fact that, in such
conditions, the interaction Hamiltonian becomes weaker than the free Hamiltonian. To summarise, the
repeated interaction of the system with a Markovian environment produces homogenization, at least as far as the
noise level in the environment is contained. For increasing noise, however, homogenization is lost and the
asymptotic dynamics becomes less predictable.

5. Non-Markovianity, correlations and the Landauer bound

Here we present the results for the dynamics with interacting environment, up to the complete Swap between
environmental particles. This case is equivalent to having the system interacting repeatedly with one single

5 Indeed, the equilibration condition [Hiy, ps ® pg] = 0 issatisfied onlyif pg = p;.
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Figure 3. Breaking down of homogenization. (a) Asymptotic fluctuations o; of the system’s Bloch vector (black/darker points) and
trace distance D (pg, py) from the average environment state (red/lighter points), plotted against the fluctuation op in the
environmental state. (b) Each point is achieved by estimating the area of the distribution of points in o,-versus- 03 graphs similar to the
example given by the black dots in panel (a). All quantities plotted in dimensionless units.

Figure 4. Non-Markovianity witnessed by non-monotonicity of the trace distance D (p;, p,) between two evolved states, against the
number of collisions #. A purely Markovian dynamics causes D (p,, p,) to decrease monotonously, while any increase of it can only be
caused by non-Markovianity in the dynamics. Our model allows for this when inter-environment interactions are present. We chose
|+)s and | —)s as the two initial states, which maximise the degree of non-Markovianity A (2). For the black, dotted curve we have
taken the inter-environment coupling constant Jgz = 0, corresponding to Markovian evolution; for the blue, continuous one we
have Jgz = 107/43, which results in an intermediate case. Finally, the gray, dashed curve is for Jgz = 7/4,1.e. acomplete Swap, and
thus strongly non-Markovian dynamics. The S—E coupling constant is Jsg = 7 /32 for weak coupling, then 3 = 1and the system
and environment proper frequencies are w;, = 3 and w, = 1 respectively.

environment particle. The asymptotic behaviour is the same as in the Markovian case, as non-Markovianity
seems to affect only the transient before equilibration. The full Swap case embodies an exception: the system
does not homogenize and the dynamics exhibits a periodic trend that is repeated indefinitely.

Figure 4 shows the trace distance between two different states evolving in time. In our case, the initial states
that maximize the degree of non-Markovianity AV, given by (2),are |[+£) = (|0) %+ |1)/+/2, up toaglobal phase
factor. Figure 5 presents the behaviour of the Landauer bound formulated both in terms of the (discrete) flux
BAQ and the change in entropy AS, and of the cumulative quantities

Qi=2AQ, 8= Y AS =S — S ©)
I=1 =1

The negativity of BAQ, — AS, implies the violation of the principle, which occurs repeatedly in the non-

Markovian case. Such violation is closely connected to the presence of correlations between the system and E,,

before their direct interaction. The mutual information

I(ps, pg) = S(ps) + S(pp) — S(psp)

gives a measure of the correlations, whose presence is in explicit contradiction with one of the hypotheses behind
the validity of the Landauer principle [27]. Nonetheless, the cumulative quantity 5Q, — S, remains positive at
all times. Our analysis shows that the changes in entropy AS,, oscillate in time much more than SAQ,;: such
oscillations are responsible for the point-like violation of Landauer bound.

Figure 6 summarizes the main results of this work. At the beginning the dynamics is Markovian, then the
interactions build up correlations which grow strong enough to cause a shift to the non-Markovian regime. As

6
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Figure 5. Landauer bound checked by plotting the difference BAQ — AS (panel (a)) between the instantaneous heat and entropy
exchanges, and the difference SQ — S (panel (b)) between the respective cumulative quantities (9), thus checking the bound from the
beginning of the process up to step n. All quantities plotted against the number of collisions n. Whenever SAQ — ASor fQ — S
become negative, the bound is violated. We chose the inter-environment coupling constant as Jgz = 0 (black, dotted), Jgz = 107/43
(blue, continuous), and Jgz = /4 (grey, dashed), for a Markovian, intermediate and strongly non-Markovian dynamics respectively.
The other parameters used in these simulations are the same as in figure 4. In the Markovian case, both the instantaneous and the
cumulative bound are always satisfied. Non-Markovianity in the dynamics however can cause the instantaneous bound to be violated,
while the cumulative one is still always satisfied.

the dynamics gets more and more non-Markovian and the trace distance increases, correlations diminish until
they become negligible, at which point the dynamics returns within the Markovian regime, and the pattern
repeats itself. The trace distance (discrete) derivative, the instantaneous Landauer bound and the (discrete) time
derivative of mutual information proceed in a striking synchronous behaviour. The connection between

BAQ — ASand AI (ps, pg) can be understood intuitively as both are well approximated by the derivative of
the von Neumann entropy S, the leading contribution to both in this parameter regime. However, a deeper and
more complete theoretical explanation of our findings is still missing.

6. Concluding summary and remarks

We have studied the open-system dynamics undergone by a spin-1,/2 particle through a sequence of discrete-
time collisions with the elements of a spin environment. The asymptotic behaviour of the dynamics shows
homogenization when the environmental particles are all in the same thermal state. This behaviour is
maintained when the state of the environmental particles fluctuates weakly across their ensemble. For more
significant fluctuations, however, homogenization is broken.

By allowing for inter-environment interactions, we have introduced memory effects in the dynamics of the
system, which shows features of non-Markovianity. We have investigated the connection between the
emergence of such behaviour, the creation of system—environment correlations, and the observed instantaneous
violations of the Landauer bound for the system particle. The feedback of excitations from the environment to
the system enabled by the inter-environment interactions results in the building up of system—environment
correlations and invalidates one of the assumptions of the quantum formulation of Landauer principle, thus
causing its break down. We observed a striking synchronous behaviour between the instantaneous emergence of
non-Markovianity in the dynamics, the establishment of system—environment correlations and the mentioned
violations of the Landauer bound. The three interconnected behaviours are clearly originated by acommon
origin, which will be the subject of our forthcoming investigations.
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Figure 6. Non-Markovianity, correlations and Landauer bound. Left panels: in these plots non-Markovianity and correlations are
represented respectively by the derivative of D (p,, p,) and by the mutual information I (ps, py). The synchronous behaviour of the
three plotted quantities is evident, hinting at their interconnectedness and common cause. Right panels: in these plots the check on the
—BAQ + AS, and we take the derivative Al (ps, pg) of the mutual information, to
emphasize the connection between the three quantities examined. We have taken the inter-environment coupling constant Jgz = 0
for (a) and (b), Jzr = 107 /43 for (c) and (d) and Jgr = 7/4 for (e) and (f), resulting in an increasingly non-Markovian dynamics.

The parameters used in this simulations are as in figure 4.
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