1	Pretreatment strategies to enhance the biodegradability of waste activated sludge: Focusing on	
2	the conversion of refractory substances	
3		
4	Xuran Liu ^a , Dongbo Wang ^b , Zhijie Chen ^c , Wei Wei ^c , Giorgio Mannina ^d , Bing-Jie Ni ^{c,*}	ha formattato: Inglese (Stati Uniti)
5		
6 7	^a State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China	
8 9	^b College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P R China	
10 11	^c Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia	
12 13	^d Engineering Department – <u>Palermo</u> Universit <u>yà di Palermo</u> , Ed. 8 Viale delle Scienze, 90128 Palermo, Italy	
14		
15		
16		
17		
18		
19		
20	*Corresponding author:	
21	Prof. Bing-Jie Ni	
22	E-mail: bingjieni@gmail.com	ha formattato: Italiano (Italia)

23 Abstract

24	Anaerobic digestion (AD) is a low-cost technology widely used to divert waste activated sludge
25	(WAS) to renewable energy production, but is generally restricted by its poor biodegradability which
26	mainly caused by the endogenous and exogenous refractory substances present in WAS. Several
27	conventional methods such as thermal-, chemical-, and mechanical-based pretreatment have been
28	demonstrated to be effective on organics release, but their functions on refractory substances
29	conversion are overlooked. This paper firstly reviewed the presence and role of endogenous and
30	exogenous refractory substances in anaerobic biodegradability of WAS, especially on their inhibition
31	mechanisms. Then, the pretreatment strategies developed for enhancing WAS biodegradability by
32	facilitating refractory substances conversion were comprehensive reviewed, with the conversion
33	pathways and underlying mechanisms being emphasized. Finally, the future research needs were
34	directed to improve the circular bioeconomy of WAS management from the point of removing the
35	hindering barrier of refractory substances on WAS anaerobic biodegradability.
36	

Keywords: Waste activated sludge; Anaerobic digestion; Biodegradability; Refractory substances;

38 Pretreatment.

37

39 **1. Introduction**

40	Activated sludge process has been successfully applied to treat municipal and industrial	
41	wastewater for over a century. During this process, waste activated sludge (WAS) is generated in	
42	large quantities as an unavoidable by-product. The annual production of WAS is reported to reach 70	
43	million tons (80% moisture) by 2025, and this value will continue to increase as the population	
44	grows, water quality standards improve, and sludge treatment technologies slowly upgrade (Xu et al.,	
45	2022). Different from the construction waste, WAS contains huge amounts of organic substances	
46	such as protein and carbohydrate. Different from the food waste, WAS also concentrates some	
47	hazardous and noxious substances such as antibiotics, heavy metals, pathogenic bacteria, and	
48	microplastics. These properties make WAS both resources and pollutants (Xu et al., 2020b;	
49	Syafiuddin and Boopathy, 2021). Actually, the organic matter in sludge is not independent and they	
50	can interact with each other or with other inorganic compounds, leading to variations in the	
51	characteristics of the organic matter and even altering hydrolysis and biogas conversion (Gonzalez et	
52	al., 2018; Yan et al., 2022). Considering the goals to recover resources and to reduce carbon	
53	footprints during WAS management, cutting-edge research studies on traditional and novel processes	
54	driven by circular bioeconomy concept are undergoing (Mannina et al., 2022).	
55	Anaerobic digestion (AD), one of the such traditional process can simultaneously transfer organic	
56	substances into renewable energy production and weaken the concentration and toxicity of hazardous	
57	substances, might play a vital role in circular bioeconomy of WAS management (Liu et al., 2019e;	
58	Wang et al., 2018a). It was demonstrated that AD process can synchronously achieve the purposes of	
59	energy recovery, pathogen inactivation and pollutant degradation (Ariunbaatar et al., 2014; Chen et	
60	al., 2022). Biomass plays an important role as a zero-carbon renewable energy source, and its	

Commentato [GM1]: Mannina, G., Pandey, A., Sirohi, R., 2022. Current Developments in Biotechnology and 525 Bioengineering, Smart Solutions for Wastewater: Roadmapping the Transition to Circular 526 Economy. Elsevier Inc. ISBN: 9780323999205

61	utilization by AD will become one of the key strategies to realize the aim of carbon neutralization.
62	For all this, AD process is not driven by the mechanical and chemical energy but by the metabolic
63	activity of hydrolytic microbes, acid-producing bacteria, and CO2-dependent and/or acetate-
64	dependent methanogens, and is therefore susceptible to adverse factors such as control conditions,
65	functional microbial performance, etc. (Liu et al., 2021a; Zhu et al., 2021). In addition, its poor
66	biodegradability is mainly caused by the presence of endogenous and exogenous refractory
67	substances in WAS, which is particularly affected by the content and property of endogenous and
68	exogenous refractory substances (Xu et al., 2022; Fan et al., 2022).
69	Although several conventional methods such as thermal-, chemical-, and mechanical-based
70	pretreatment have been demonstrated to be effective for organics release, however none of them are
71	targeted (Carrere et al., 2010; Park et al., 2022; Balasundaram et al., 2022). This has led them to
72	become cost-intensive due to high energy and chemical requirements, as well as passive
73	environmental-consequences such as higher-net carbon dioxide emission. For instance, Xue et al.
74	(2015) found that thermal pretreatment promoted sludge solubilization and volatile suspended solids
75	(VSS) reduction greatly, but failed to improve methane production. Wilson and Novak (2009) also
76	observed that thermal treatment increased sludge hydrolysis, but when the temperature exceeds
77	180 °C, the Maillard effect occurred and refractory organic compounds were further produced, which
78	was detrimental to subsequent sludge treatment. In contrast to proteins and polysaccharides, the
79	endogenous and exogenous refractory substances are not only difficult to degrade but also toxic to
80	anaerobic functional microorganisms (Xu et al., 2022; Wu et al., 2020). It seems more urgent to
81	target these refractory substances, such as changing their structure to improve their bioavailability
82	and reducing their toxicity to functional microorganisms, which may also be more effective in

83 improving the efficiency of AD.

84	This paper firstly reviewed the presence and role of endogenous and exogenous refractory
85	substances in anaerobic biodegradability of WAS, especially on their inhibition mechanisms. Then,
86	the pretreatment strategies developed for enhancing WAS biodegradability by facilitating refractory
87	substances conversion were comprehensive reviewed, with the conversion pathways and underlying
88	mechanisms being emphasized. Finally, the future research needs were directed to improve the
89	circular bioeconomy of WAS management from the point of removing the hindering barrier of
90	refractory substances on WAS anaerobic biodegradability. The results obtained will provide a deeper
91	understanding of the inhibitory effects and mechanisms derived from the refractory substances in
92	WAS, and are expected to guide the development of effective strategies to mitigate the negative
93	effects of refractory substances in the future.
94	2. Refractory substances present in WAS
95	WAS are composed mainly of the cells of various microorganisms, extracellular polymeric
96	substances (EPS), adsorbed inorganic, organic substances and the majority of water (Cao et al.,
97	2021). Due to the complexity of wastewater influent and the diversity of biological treatment
98	processes, WAS generated from wastewater treatment plants (WWTPs) is of complex composition,
99	usually containing refractory residues of some biochemical and chemical-refractory compounds (Fig.
100	1), which reduce the biodegradability of WAS. Hence, it is vital to understand the refractory
101	substances (including endogenous and exogenous refractory substances) present in WAS, to provide
102	a necessary reference for further research of WAS.
103	2.1. Main endogenous refractory substances present in WAS
104	2.1.1. Lignocellulose

105 Lignocellulose, which originates from the residuals of exogenous materials (including latrine

5

106	waste, vegetable leftovers, and leaves) in the wastewater influents, accounts for about 40% at WAS
107	of the total organic matter (Li et al., 2018; Wilen et al., 2003). It mainly consists of lignin (0-40%)
108	and holocellulose (hemicellulose (0-85%) and cellulose (15-99%)) (Li et al., 2018). Among them,
109	both cellulose and hemicellulose have anaerobic biodegradability when they exist independently, and
110	hemicellulose is more easily hydrolyzed, while lignin is the main refractory substance and accounts
111	for about 16% of the total organic matter in WAS (He et al., 2022). These components in WAS are
112	usually interconnected by different kinds of bonds, forming a dense structure of cellulose-
113	hemicellulose-lignin complex, which has extreme resistance to the overall biodegradability of
114	lignocellulose and hinders the energy conversion of biosolids (Chandra et al., 2012; Feng and Lin,
115	2017).
116	Lignin has a very complex amorphic three-dimensional long-chain aromatic polymer composed of
117	p-coumaryl, coniferyl and sinapyl alcohol (three phenyl propane units), which are linked by various
118	bonds (Frommhagen et al., 2015; Xiao et al., 2020). Furthermore, as an impermeable/resistant layer,
119	lignin forms the structural support which forms a protective barrier against lignocellulosic biomass
120	and prevents the biodegradation of lignocellulose (Chandra et al., 2012). In general, lignin is more
121	difficult to biodegrade in anaerobic environment than in aerobic environment (Feofilova and
122	Mysyakina, 2016; Mishra and Wimmer, 2017). At present, some studies have reported that lignin
123	can affect the anaerobic biochemical process. For example, Mustafa et al. (2016) found that the
124	methane production was negatively affected by lignin from lignocellulosic biomass.
125	2.1.2. Humic substances

- 126 Humic substances are the highly transformed part of non-living natural organic matter
- 127 (Lipczynska-Kochany, 2018). Actual humic substances contained in the WAS are commonly

128	described as supramolecular associations of several relatively low molecular weight components,	
129	which are connected by hydrophobic interactions and hydrogen bonds (H-bonds), and whose content	
130	(15-42% of the total organic matter) depends mainly on the WWTPs (Table 1) (Liang et al., 2021;	
131	Lipczynska-Kochany, 2018). More specifically, Lurie and Rebhun (1997) indicated that humic	
132	substances are complex mixtures of polyaliphatic and polyaromatic compounds, the main	
133	components are alkyl or aromatic unit skeletons cross-linked by oxygen and nitrogen atoms of	
134	carboxyl, phenol and alcohol hydroxyl, ketone and quinone functional groups (Lipczynska-Kochany,	
135	2018).	
136	Based on water solubility, humic substances are classified into humic acids (HA), insoluble at	
137	acidic water (pH \leq 2) but soluble in alkaline conditions; fulvic acids, soluble at any pH levels in	
138	water; humin, insoluble at all pH levels in water (Sutton and Sposito, 2005). Humic substances have	
139	been identified as inhibitory compounds that critically inhibit the biodegradability or bioavailability	
140	of WAS (Azman et al., 2017).	
141	2.1.3. Alginate	
142	Alginate in EPS is a type of uronic acid, which is a major but often overlooked polymer associated	
143	with the difficult hydrolysis of WAS, accounting for approximately 7% w/w of the organic matter in	
144	WAS (Geng et al., 2021). Alginate is considered as a complete family of linear copolymers with	
145	different chemical structures containing blocks of (1,4)-linked β -d-mannuronate (M) and α -l-	
146	guluronate (G) residues (Lee and Mooney, 2012). Recent studies have reported that the gel-like	
147	materials in WAS which called structural extracellular polymeric substances (St-EPS) was formed by	
148	alginate isomers of glucuronic acid and polygalacturonic acid (Zhang et al., 2021). In addition,	

.

. .

149 exopolysaccharides are considered to be key elements in shaping biofilms and providing structural

150	supports to them, and are highly correlated with the structure of the sludge matrix (Felz et al., 2019).
151	While, hydrolysis of EPS in WAS is a rate-limiting step in AD, mainly depending on the resistance
152	of EPS to degradation (Dai et al., 2020). Thus, alginate-like EPS could be involved in the basic
153	structures of sludge, and closely associated wth the biodegradability of sludge.
154	2.2. Main exogenous refractory substances present in WAS
155	2.2.1. Polymer flocculants
156	Polymer flocculants are widely used in WWTPs to significantly improve the performance of
157	wastewater purification and sludge dewatering (Wei et al., 2018). In these processes, large amounts
158	of flocculants are highly enriched by WAS as exogenous pollutants during biological wastewater
159	treatment (Wang et al., 2018b). For example, cationic polyacrylamide (cPAM) concentrations have
160	been reported to be 2.5-10 g/kg of dry sludge in dewatered sludge due to the heavy use of cPAM in
161	the mechanical dewatering process (Liu et al., 2019d).
162	Among the widely used polymeric flocculants, polymer flocculants (e.g., chitosan and
163	polyacrylamide) can be partially degraded by anaerobic bacteria, but their degradation persistence
164	(the half-life of chitosan was about 61.4 days) is much higher compared to the inherent organic
165	matter (Liu et al., 2021a; Wang et al., 2018b). Consequently, such flocculants concentrated by WAS
166	may affect the series of bio-conversions including lysis, hydrolysis, acidogenesis, and
167	methanogenesis, and thus constitute a potential threat to the AD performance (Appels et al., 2008;
168	Luo et al., 2020). For example, 12 g/kg TSS cationic polyacrylamide reduced the maximum
169	methane production by 37.67% and prolonged the digestion time from 22 to 26 days (Wang et al.
170	(2018b). Poly ferric sulfate showed a similar phenomenon for AD of WAS. As the concentration of
171	poly ferric sulfate increased to 40 g/kg TS, the cumulative methane yield decreased to 56.7% of the

172	control, and the lag time prolonged by 237.0% (Liu et al., 2021c). Furthermore, the inhibition of
173	hydrogenotrophic methanogenesis by ferric polymeric sulfate was found to be much more severe
174	than that of acetotrophic methanogenesis. Liu et al. (2021a) found that chitosan at 8, 16 and 32 g/kg
175	TSS decreased methane production from 166.3 to 154.3, 139.5 and 115.8 mL/g VS.
176	2.2.2. Pharmaceuticals and personal care products
177	Pharmaceuticals and personal care products (PPCPs) such as antibiotics and antimicrobials are
178	highly accumulated in WAS due to heavy usage and persistence nature (Huang et al., 2019; Kim et
179	al., 2013). Currently, over half of the world's antibiotics used worldwide are used in livestock,
180	however, these antibiotics inevitably enter into sewage sludge through excretion due to the high
181	dosage concentration and the low absorption and utilization capacity of humans and animals (Le-
182	Minh et al., 2010). For example, Chlortetracycline (CTC), a class of tetracycline antibiotics, was as
183	high as 34.2 mg/kg TSS in WAS (Puicharla et al., 2014). Clarithromycin, a 14-membered ring
184	macrolide antibiotic, accumulated in WAS at concentration levels up to 67 mg/kg dry sludge
185	(Verlicchi and Zambello, 2015). In addition, it has been reported that >90% of triclosan can be
186	removed by adsorption or biodegradation during wastewater treatment, however most of it would
187	enter into the WAS and can be detected at concentrations as high as 0.028-37.189 mg/kg TSS (Butler
188	et al., 2012). Previous studies reported that about 79% of triclocarban (TCC) removed by WWTPs
189	was transferred to solids, and only about 18% of TCC was degraded by nitrification-denitrification
190	processes, leaving a residual of about 4.15 ± 0.77 kg/d in WAS (Lozano et al., 2013). Moreover, due
191	to the low biodegradability, antibiotics and antimicrobials enriched in WAS could affect the
192	reduction and resource recovery of WAS.

193 2.2.3. Polycyclic aromatic hydrocarbon

194	Polycyclic aromatic hydrocarbons (PAHs), the representative persistent organic pollutants with
195	two or more aromatic-fused rings, are commonly found in WAS. Typically, PAHs enter into WWTPs
196	with industrial wastewater, and are enriched in WAS after wastewater treatment due to
197	hydrophobicity (Larsen et al., 2009; Siebielska and Sidelko, 2015). Several typical PAHs including
198	naphthalene, acenaphthene, phenanthrene, anthracene, fluorene, and chrysene, were reported to be
199	detected in WAS at concentrations of 22.4, 17.6, 95.3, 6.1, 3.3, and 12.5 mg/kg dry sludge,
200	respectively (Luo et al., 2016).
201	The persistence of PAHs depends on various factors (e.g., concentration, structure, dispersibility,
202	bioavailability), but generally, the environmental persistence of PAHs is positively correlated with
203	their molecular weight, hydrophobicity, and toxicity (Bamforth and Singleton, 2005). Recent studies
204	have shown the potential for biodegradation of PAHs in sludge under anaerobic conditions.
205	Phenanthrene, a representative PAHs, was partially degraded (47.5%) by anaerobic fermentation at a
206	dose of 100 mg/kg dry sludge (Luo et al., 2016). However, the biodegradation of anaerobic PAHs in
207	sewage sludge is usually limited and its degradation rate depends on the active anaerobic bacterial
208	population (Larsen et al., 2009). Chang et al. (2003) found that compared to municipal sludge
209	samples, PAHs degradation rates in petrochemical sludge samples were usually faster, which may be
210	due to the presence of more PAH-degrading autochthonous microorganisms. Moreover, PAHs
211	degradation is also influenced by the conditions of methanogenic, sulfate-reducing and nitrate-
212	reducing (Chang et al., 2003).
213	3. Adverse effects of refractory substances on anaerobic biodegradability of WAS
214	AD has been widely used to recover energy from WAS, but the presence of exogenous and

215 endogenous refractory substances in WAS usually limits its application. Therefore, it is essential to

216 evaluate the impacts of these exogenous and endogenous refractory substances on AD of WAS,

- 217 especially their inhibition mechanisms (Fig. 2), to provide a theoretical basis for strategies to
- 218 enhance the biodegradation of WAS.
- 219 **3.1. Lignocellulose**

220 The components of lignocellulose (cellulose, hemicellulose, and lignin) have different effects on 221 AD. Li et al. (2018) found that cellulose has a higher biomethane potential than hemicellulose and 222 their co-digestion has a synergistic effect to produce more methane. However, lignin is almost 223 undegradable under anaerobic conditions and also reduces the production of methane from 224 holocellulose. The lignin content of lignocellulose is negatively correlated with methane production 225 from AD. It has been indicated that the methane potential of AD of phytoplankton with lower lignin concentration is high, and lignin above 100 g/kg VS causes a significant decrease in biochemical 226 methane potential (Triolo et al., 2012). He et al. (2022) found that in WAS anaerobic fermentation, 227 lignin inhibited methane production which reduced the consumption of short-chain fatty acids 228 229 (SCFAs), resulting in the accumulated SCFAs. 230 As mentioned above, although cellulose and hemicellulose are hydrolysable, they tend to be 231 covered by lignin in lignocellulose, forming a stable composite structure that not only prevents from 232 enzymatic attack, but also increases the mass transfer resistance of sludge, which reduces 233 bioconversion efficiency of lignocellulose (Li et al., 2021a). Therefore, understanding the 234 mechanisms of lignin on WAS anaerobic biodegradability becomes essential. Previous studies have 235 found that lignin could inhibit both hydrolysis and methanogenesis processes and that methanogenesis is more vulnerable to the adverse effects of lignin (He et al., 2022). In the anaerobic 236

237 conditions, lignin inhibits the hydrolysis process by the formation of a protective layer that prevents

238	enzyme entry, and by irreversibly/reversibly binding to the enzyme due to its inherent
239	hydrophobicity, affecting the protein structure of the enzyme (Ju et al., 2013). In addition, since its
240	possesses numerous quinone structures, lignin could receive the remaining electrons in the system,
241	which act as an active terminal electron acceptor, thus preventing the conversion of acetate to
242	methane (Li et al., 2018). In general, as shown in Fig. 2, the inhibition of lignin on WAS anaerobic
243	biodegradability is mainly caused by the pathways of improving mass transfer resistance,
244	ectoenzymes competition, endoenzymes active sites encroachment, and means electrons competition.
245	3.2. Humic substances
246	Humic substances such as HA, are refractory macromolecular organic compounds, and their
247	presence limits the conversion of organics to methane. Humic substances represent a high
248	proportion in WAS and have been shown to inhibit the hydrolysis of organics, for instance, Brons et
249	al. (1985) discovered that adding 250 mg per liter of humate inhibited protein hydrolysis. In
250	addition, several studies have reported that HA is an inhibitory compound for hydrolysis and
251	methanogenic processes in AD. For example, Liu et al. (2015) found that SHHA (a commercially
252	available HA) in WAS anaerobic fermentation at 1.0 g/g-sludge inhibited methane up to 97%, thus
253	the accumulation of SCFAs. Li et al. (2019a) observed in batch digestion experiments that biogas
254	production decreased with increasing HA, and an increase in HA:VSS to 15% resulted in a 35.1%
255	inhibition level of biogas production. Semi-continuous experiments of WAS anaerobic digestion
256	showed that HA could reduce methane production rate and prolong lag phase time (Li et al., 2019b).
257	The combined action of multiple factors led to the influence of HA on WAS anaerobic
258	biodegradation (Fig.2). From the perspective of sludge structure, HA could interact with sludge
250	nonticles to form a damage structure to anhance the stability of the ansaria matter structure in shudes

- 259 particles to form a dense structure to enhance the stability of the organic matter structure in sludge,

260	thus increasing the mass transfer resistance of sludge. Moreover, HA could change the spatial
261	configuration of extracellular organic substances, leading to a reduction in the active site of WAS,
262	thus enhancing the ectoenzymes competition (Xu et al., 2020a). From the perspective of enzymes,
263	HA could reduce the activity of key enzymes, such as α -amylase, protease, F_{420} enzyme, thereby
264	promoted competition between other co-cultured bacteria and functional bacteria (including
265	hydrolysis, acidogenesis, methanogenic bacteria) (Li et al., 2019b). In addition, HA has covalent
266	bonds and sweep flocculation interactions with the enzyme, and at high HA levels, the predominant
267	interactions irreversibly turn into covalent bonds, leading to a strong negative effect on hydrolysis
268	(Fernandes et al., 2015). From the perspective of electron transfer system, HA could play as a
269	terminal electron acceptor that receives electrons directly from acetate, thus improving the
270	ectoenzymes competition (Li et al., 2019a). Furthermore, HA could easily cross the outer cell
271	membrane of hydrogenotrophic methanogenic bacteria, destabilizing the cells and leading to cell
272	inactivation (Khadem et al., 2017).
273	3.3. Alginate
274	Alginate, a typical St-EPS component, is an important endogenous refractory substance in WAS.
275	Generally, EPS, the main organics (20%-50%) in WAS, contain carboxyl, hydroxyl and other
276	functional groups, which can combine with bivalent cations (Ca^{2+}) commonly found in wastewater,
277	and form stable EPS structure through aggregating and flocculating, resulting in slow hydrolysis of
278	WAS and low AD efficiency (Li et al., 2012; Qian et al., 2021). Notably, alginate has a GG block
279	(i.e., a dimer of G) that can act as an ionic bridge between divalent cations and other glyoxylates

- 280 (Geng et al., 2021). Although the effects of alginate on WAS anaerobic digestion has not been
- 281 systematically studied, it is found that anaerobic alginate hydrolytic bacteria (AHB) are rarely

282	enriched in anaerobic reactors, resulting in difficult conversion of alginate. Qian et al. (2021) found		
283	that the enrichment of alginate-degrading microbial consortium (ADC) which could excrete alginate		
284	lyase by Algibacter lectus and Bacteroides sp, can be used for highly selective fermentation of WAS.		
285	Zhang et al. (2019) showed that extracted EPS could be used by ADC for methane production with		
286	acetate as the main intermediate, resulting in a 115%-185% increase in methane production. It is		
287	worth noting that these studies on mixed culture promoting the conversion of alginate and isomer in		
288	St-EPS contribute to methane and/or SCFAs production from WAS as valuable biochemical		
289	products, but it is seldom reported.		
290	3.4 Polymer flocculants		
291	Flocculants, which are abundant in WAS due to their widespread use in wastewater management		
292	and sludge dewatering, but can adversely affect the AD efficiency. For example, cPAM has been		
293	found that not only decelerate the AD process, but also about 46% of this is degraded, and the major		
294	degradation products, including polyacrylic acid, acrylamide and acrylic acid, inhibit all dissolution,		
295	hydrolysis, acidogenesis and methanogenesis processes, thereby reduced methane production (Wang		
296	et al., 2018b).		
297	Research has reported that polymeric flocculants could alter sludge particle size and specific		
298	surface area, creating a "cage" effect to increase the mass transfer resistance between anaerobic		
299	bacteria/hydrolytic enzymes and the sludge matrix (Lin et al., 2017; Luo et al., 2020). A study on		
300	polymeric flocculants showed that chitosan could inhibit EPS secretion and reduce anaerobic		
301	bacterial activity by occupation of indigenous carbohydrate linkages sites (Liu et al., 2021a). The		
302	presence of cationic polyacrylamide and poly ferric sulfate significantly reduced the relative		
303	activities of protease, acetate kinase and coenzyme F420, resulting in the inhibition of methane		

304 production (Fig.2) (Liu et al., 2021c; Wang et al., 2018b). In addition, the presence of poly ferric 305 sulfate also increases the production of H₂S, which is toxic to methanogenic bacteria. 306 3.5 Pharmaceuticals and personal care products 307 Antibiotics and antimicrobial agents are known to be detrimental to microbial growth and 308 metabolism, and their presence may therefore adversely affect AD. Several studies have shown that 309 macrolide antibiotics could inhibit WAS anaerobic digestion. For example, it has been observed that 310 rhodopsin at 1000 μ g/L reduced the maximum cumulative methane yield from AD by 7.7% as well 311 as the methane production rate by 15.7% (Ni et al. (2020). The maximum methane production rate 312 was reduced by 46.2% with an increase in the clarithromycin concentration from 0 to 2000 mg/kg 313 (Huang et al., 2020). And the effect of other antibiotics such as triclosan on methane production 314 showed a dose-dependent effect. Triclosan at low concentrations had little effect on methane 315 production and as concentrations increased to 1000 and 1500 mg/kg TSS accumulated methane production decreased by 8% and 13.2%, respectively (Wang et al., 2020). Although norfloxacin and 316 sulfamethazine had little effect on methane yield, they depressed the methane production rate (Zhao 317 318 et al., 2019). Methane production was almost completely inhibited by benzalkonium chloride (a 319 non-oxidizing antimicrobial agent) at a level of 100 mg /L (Flores et al., 2015). 320 Among all kinds of microorganisms, methanogenic bacteria are more susceptible to these 321 contaminants. CTC could inhibit methanogenesis by increasing acetate kinase activity to stimulate 322 acidification and decreasing F420 activity in WAS anaerobic biochemical reactions (Tang et al., 323 2021b). Roxithromycin only significantly inhibited acidogenesis and methanogenesis processes in AD of WAS, while clarithromycin and triclosan had negative effects on hydrolysis, acidification, 324 acetic acid production and methanogenic processes (Huang et al., 2020; Ni et al., 2020; Wang et al., 325

326	2020). Roxithromycin may also bind to peptidyl transferase in 23S rRNA, blocking transpeptide			
327	action and mRNA translocation, inhibiting protein synthesis, thus affecting the normal growth of			
328	microorganisms (Sibert et al., 1979). Competition between bacteria and methanogenic bacteria is			
329	one of the reasons for methane inhibition by clarithromycin. In addition, many antimicrobial agents			
330	have hydrophobic/hydrophilic termini similar to those of surfactants (Luo et al., 2019). The			
331	extraordinary hydrophobicity of the cytoplasmic membrane of methanogens leads to their			
332	vulnerability to these contaminants (Luo et al., 2020). The proton motive force for ATP production			
333	in methanogenic archaea is also susceptible to negative effects, leading to significant inhibition of			
334	methane production. It is worth noting that PPCPs (such as roxithromycin and clarithromycin), have			
335	been shown to promote the proliferation of antibiotic resistance genes (ARGs) in WAS, and			
336	environmental risks need to be considered in practice (Zeng et al., 2021).			
	3.6 Polycyclic aromatic hydrocarbon			
337	3.6 Polycyclic aromatic hydrocarbon			
337 338	3.6 Polycyclic aromatic hydrocarbon Persistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in large			
337338339	3.6 Polycyclic aromatic hydrocarbon Persistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in large quantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, which			
337338339340	3.6 Polycyclic aromatic hydrocarbon Persistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in large quantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, which may affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit the			
337338339340341	3.6 Polycyclic aromatic hydrocarbon Persistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in large quantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, which may affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit the methanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAs			
 337 338 339 340 341 342 	3.6 Polycyclic aromatic hydrocarbon Persistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in large quantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, which may affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit the methanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAs to methane, and promoted acidification, resulting in increased production of SCFAs (Luo et al.			
 337 338 339 340 341 342 343 	3.6 Polycyclic aromatic hydrocarbonPersistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in largequantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, whichmay affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit themethanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAsto methane, and promoted acidification, resulting in increased production of SCFAs (Luo et al.(2016). Yang et al. (2019b) demonstrated that methane production decreased with increasing PCBs,			
 337 338 339 340 341 342 343 344 	3.6 Polycyclic aromatic hydrocarbonPersistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in largequantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, whichmay affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit themethanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAsto methane, and promoted acidification, resulting in increased production of SCFAs (Luo et al.(2016). Yang et al. (2019b) demonstrated that methane production decreased with increasing PCBs,and 100 mg PCB/kg DS significantly decreased methane production by 26.6%. PAHs could enhance			
 337 338 339 340 341 342 343 344 345 	3.6 Polycyclic aromatic hydrocarbonPersistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in largequantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, whichmay affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit themethanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAsto methane, and promoted acidification, resulting in increased production of SCFAs (Luo et al.(2016). Yang et al. (2019b) demonstrated that methane production by 26.6%. PAHs could enhancethe activity of key enzymes involved in acetate production (phosphotransacetylase and acetate)			
 337 338 339 340 341 342 343 344 345 346 	3.6 Polycyclic aromatic hydrocarbonPersistent organic pollutants (POPs) enter the WWTP with industrial wastewater, resulting in largequantities of POPs, including PAHs and polychlorinated biphenyls (PCBs) remained in WAS, whichmay affect anaerobic bacteria in (Feng et al., 2015). PAHs were discovered to inhibit themethanogenic process during the anaerobic fermentation of WAS, inhibited the conversion of SCFAsto methane, and promoted acidification, resulting in increased production of SCFAs (Luo et al.(2016). Yang et al. (2019b) demonstrated that methane production by 26.6%. PAHs could enhancethe activity of key enzymes involved in acetate production (phosphotransacetylase and acetatekinase) and increase the number of genes encoding them, thereby inhibited the conversion of SCFAs			

348 inhibition of methane yield from AD of WAS is still lacking, further research is needed in the future

- 349 (Yang et al., 2019b).
- 350 4. Pretreatment strategies for enhancing WAS biodegradability by facilitating refractory
- 351 substances conversion
- 352 In the field of sludge treatment, AD has the merits of reducing WAS production and recovering
- 353 methane as bioenergy, but this process is significantly affected by the poor biodegradability of WAS,
- 354 which pose a challenge for sludge reduction and stabilization. In recent years, to enhance the WAS
- 355 biodegradability, various pretreatment strategies for facilitating refractory substances conversion
- have been previously proposed (Fig.3) (Liu et al., 2019a; Akbay et al., 2021; Balasundaram et al.,
- 357 2022), which provide insights for improving the efficiency of WAS utilization in practical
- 358 engineering.
- 359 4.1. Physical-based pretreatment

360 4.1.1 Microwave pretreatment

- 361 Microwave pretreatment can effectively disintegrate sludge flocs and break cells, and achieve
- 362 higher degradation efficiency of refractory organic matter and excellent biomethane production. For,
- solution example, Liu et al. (2019a) utilized a 12-min microwave to treat PAM reactor and found that after 30
- days, the viscosity decreased significantly (from 6.97 ± 0.30 to 5.40 ± 0.21 mPa/s, 22.5%) and the
- 365 content of PAM's monomeric acrylamide in digester was only 0.37 ± 0.01 mg/L, which did not lead
- 366 to the accumulation of acrylamide in the digestion residues. This suggests that microwave
- 367 irradiation destroys the structure of PAM and makes PAM more easily biodegradable. Kor-Bicakei
- 368 et al. (2020) also found that microwave anaerobic digestion can also be used to reduce TCC levels in
- 369 biosolids.

370 **4.1.2 Ultrasound pretreatment**

371	Ultrasound generates mechanical shear force through cavitation to disrupt cell membranes and
372	release intercellular material in bulk solution. In addition, hydroxyl radicals based on cavitation can
373	decompose many toxic and refractory substrances into simpler forms, such as chlorinated
374	hydrocarbons, aromatic compounds, and textile dyes (Chawla et al., 2014; Tian et al., 2021).
375	However, total mineralization of these refractory contaminants is difficult to obtain by ultrasound
376	alone (Vajnhandl and Le Marechal, 2005). Zhang et al. (2022) used 20 kHz for pretreatment of
377	sewage sludge. However, such sonication conditions for sludge pretreatment did not result in
378	polyfluoroalkyl substances degradation. Conversely, the concentrations of perfluorooctanoic acid,
379	perfluoroheptanoic acid, and perfluorohexanoic acid sonication were increased in the liquid phase
380	after long time treatment (> 15 min). It may be that ultrasound reduced the sludge floc binding
381	capacity and promoted the release of these three perfluoroalkyl acids. Therefore, ultrasonication can
382	only improve the biodegradability of sludge by promoting floc breakage, but it does not work on
383	polyfluoroalkyl substances. This conclusion was also confirmed by Zhang and Li (2018).
384	Ultrasound effectively promotes the dissolution of antibiotics, but does not biodegrade the
385	fluoroquinolones that are refractory by themselves. The same is true for the changes of PAHs.
386	Sonication leached PAHs from sludge solids into liquid phase, but the sonication of PAHs was
387	negligible, just a simple phase transition (Oh et al., 2016).
388	4.1.3 Thermal hydrolysis pretreatment

Thermal hydrolysis (TH) promoted the biodegradation of WAS and released the refractory organic matter carried by the sludge to the WWTP. Slowly biodegradable or non-biodegradable steroids and aromatics are more than 50% dissolved in the digester of the sludge feed after being treated with TH

392	(Lu et al., 2018). It is generally believed that low temperature has little influence on the
393	biodegradability of sludge. Prorot et al. (2011) found biodegradability tests (TH below 100 °C) did
394	not show any improvement of the intrinsic biodegradability after the TH, only the increase of the
395	specific digestion rate was observed. Many researchers have reported optimal temperatures for TH
396	in 160 - 180 °C for max methane production (Jeong et al., 2019). Toutian et al. (2020) found the
397	poorly soluble COD increased with increasing TH temperature. Lu et al. (2018) found that with
398	increasing TH temperature (120 to 172 °C), the concentration of HA was observed to increase
399	significantly. It may be caused by a variety of sources, possibly including the release of HA from
400	sludge disintegration, the conversion of cellulose in the cell wall, the Maillard reaction and
401	polysaccharide hydrolysis. However, the possibility of caramelization of reducing sugars from
402	starch cellulose hydrolysis is very low. This suggests that TH treatment can significantly promote
403	the dissolution of soluble refractory organics in AD effluent, but its improvement biodegradability
404	has not been demonstrated. Generally, TH pretreatment can improve the biodegradability of
405	proteins, carbohydrates, lipids and hemicelluloses during AD, but the biodegradability of cellulose
406	and lignin was negligible because TH treatment cannot destroy cellulose crystal structure and
407	heterogeneity. However, thermal hydrolysis effectively reduced the abundance (> 94%) of almost all
408	subtypes of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). It is a
409	powerful technology for the reduction of tetracyclines, macrolides and lincosamides, which provides
410	the possibility for the transformation of refractory substances and deserves further research (Zhang
411	and Li, 2018).
412	4.2. Chemical-based pretreatment

4.2.1 Alkaline pretreatment 413

414	Most literature related to alkaline treatment enhances other sludge disintegration technologies			
415	by adding alkali to make sludge more susceptible to hydrolysis. Liu et al. (2021b) increased the			
416	PAM degradation rate to 80.1% by alkaline pre-fermentation. Alkaline pre-fermentation breaks up			
417	the firm "PAM sludge" flocs and reduces the molecular weight of PAM, making it more susceptible			
418	to microbial degradation (Fig.3). In addition, the lignin and various uronic acid substitutions can			
419	remove by alkaline solution on hemicellulose. The remaining biomass pretreated with 4% alkali for			
420	60 minutes showed 46.6% degradation of lignin with 83.2% increase in glucan content (Kaur et al.,			
421	2012). However, fluoroquinolones are hardly degraded during AD. The removal rate was lower than			
422	42.02%, and the residual fluoroquinolones were mainly adsorbed on the digested sludge. Because			
423	the limiting step in reducing fluoroquinolones is biodegradation, desorption of antibiotics does not			
424	improve conversion (Zhang and Li, 2018). But it's worth noting that during the alkaline pretreatment			
425	of sludge, microorganisms related to anaerobic digestion will deviate from the optimal growth			
426	conditions with the increase of system pH, and the structure of EPS will also become unstable with			
427	electrostatic action. Hence, the choice of pH for alkaline pretreatment is also critical.			
428	4.2.2 Ozonation			
429	Ozone, a strong oxidant, can be broken down into free radicals that react directly or indirectly			
430	with organics. Refractory substances in sludge can be hydrolyzed by exposing it to highly oxidizing			
431	conditions (ozone). As a result, stubborn organic matter will be oxidized to readily biodegradable			
432	substances that can be utilized by microorganisms. Li et al. (2021b) observed that ozonation could			
433	remove PAHs from sludge. In fact, PAHs adsorbed on the surface of sludge particles were released			
434	into the liquid phase during the initial stage of ozonation due to the dissolution of extracellular			
435	polymers. Then, the PAHs present in the liquid phase will be degraded again. This suggests that low			

436	O_3 concentrations may cause PAHs to be released into wastewater. Thus, the concentration of O_3		
437	should be strictly controlled (Lin et al., 2016a). Ozonation can also partially degrade some pollutants		
438	(Cheng and Hong, 2013). Wang et al. (2018c) found that ozone pretreatment can lead to efficient		
439	degradation of antibiotics in sludge (86.4 - 93.6%), mainly through desorption of the binding part of		
440	the sludge and subsequent oxidation of the dissolved part. However, this approach has some		
441	drawbacks. For instance, some refractory organic pollutants initially adsorbed on the sludge may be		
442	released into the wastewater during the sludge ozonation treatment, resulting in a reduce in effluent		
443	quality.		
444	4.2.3 Other chemical pretreatment		
445	Chemical pretreatment mainly utilizes chemical agents to interact with microorganisms and EPS		
446	by various mechanisms. It can not only improve AD performance, but also promote the		
447	transformation of refractory pollutants. For example, the addition of calcium peroxide (CaO ₂) could		
448	break the hydrolysis limit to recover resources such as SCFAs. Wang et al. (2019) found that CaO ₂		
449	pretreatment promoted the degradation of humus, lignocellulose and other typical refractory		
450	organisms (eg, triclocarban, norfloxacin, phenanthrene, diclofenac, and loxazone), which could		
451	alleviate the inhibitory effect of recalcitrant organics on anaerobic bacteria. Ping et al. (2018) found		
452	that a decrease in non-biodegradable humic substances and an increase in readily biodegradable		
453	tryptophan-like proteins after adding CaO ₂ . Humus-like substances may be oxidized by \cdot OH or \cdot O ₂ ⁻		
454	produced by CaO_2 . Another possible explanation is that the presence of CaO_2 can enhance the		
455	biosorption potential since multivalent cations (i.e., Ca) can form bridges with humic acid. Similar		
456	phenomena have been observed by many researches using chemical agents. Lu et al. (2022) reduced		
457	the content of non-biodegradable substances in total organics using ferric chloride-assisted nitrite		

458	pretreatment. Yuan et al. (2022) introduced the reducing/chelating agent ascorbic acid (H ₂ A) into a
459	conventional zero-valent iron (Fe ⁰)/persulfate (PS) process. The generated SO_4^- , O_2^- and OH were
460	found to degrade refractory organic matter (humus). The formation pathway of SO_4^- , O_2^- and $\cdot OH$
461	is as follows:

- $462 \quad \mathrm{Fe}^{0} + \mathrm{H}_{2}\mathrm{O} \to \mathrm{Fe}^{2+} + \mathrm{H}_{2}\uparrow \tag{1}$
- $Fe^{2+} + S_2O_8^{2-} \rightarrow Fe^{3+} + SO_4^{-} + SO_4^{2-}$ (2)
- $\operatorname{Fe}^{2+} + \operatorname{H}_2 A \to \operatorname{Fe}^{2+} \operatorname{H}_2 A_x$ (3)
- $Fe^{2+}H_2A_x + O_2 \rightarrow Fe^{3+}H_2A_y + O_2^-$ (4)
- $SO_4^- + H_2O \rightarrow OH + SO_4^{2-} + H^+$ (5)

467	Xu et al. (2021) pretreated WAS with KMnO ₄ at 0.1 g/g TSS, and SCFAs production was observed
468	to increase 7.4 times from WAS. KMnO4 reduced the species and concentrations of pollutants,
469	promoted the degradation of lots refractory substances such as humus and lignocellulose, and
470	provided more substances for the production of SCFAs. GC/MS analysis showed that KMnO4-
471	pretreated humic and lignocellulose produced several small molecular species (such as acids,
472	alkanes, and alcohol organics), some of which were shown to serve as substrates for the production
473	of SCFAs. Lv et al. (2021) found that adding exogenous N-acyl-homoserine lactones (AHLs) can
474	enhance the effectiveness of anaerobic granular sludge by promoting the transformation of refractory
475	organic matter. In addition, emerging organic pollutants (eg, carbamazepine and ibuprofen) often
476	accumulate in sludge. Thermally activated persulfate generated SO42- and OH, macrolide and
477	tetracycline antibiotics were efficiently decomposed by active radicals (> 80%), while quinolone
478	antibiotics were less efficient (Tang et al., 2021a). In addition, Wang et al. (2022) added sodium
479	percarbonate (SPC) to pretreat waste activated sludge. The activated SPC promoted the conversion

480	of organic substrates from non-biodegradable to biodegradable, which were further used by			
481	functional microorganisms involved in sludge AD for methane production. The pretreatment of SPC			
482	oxidation can be completed within 24 h, means that the SPC-based technology has better sludge			
483	treatment effect compared with other strategies like CaO2, KMnO4, etc. Therefore, economic			
484	strategies still need to be considered for practical application, some pretreatment methods can be			
485	seen in Table 2.			
486	Yang et al. (2019a) used peroxymonosulfate (PMS) as an additive to pretreat WAS, it was found			
487	that PMS pretreatment improved the bioavailability of released organics and degraded refractory			
488	organics such as cyclopentasiloxane, heptasiloxane and ethylene glycol. Previous studies reported			
489	that sulfite pretreatment may destroy the structure of HA in sludge, which mainly through			
490	sulfonation reaction. Liu et al. (2020a) used sulfite pretreat WAS, founding that the abundance of			
491	some microorganisms associated with refractory substances also increased during pretreatment,			
492	which is further conducive to the biodegradation of WAS. In addition, Liu et al. (2020a) found that			
493	the reactive derivatives from acidified-sulfite (e.g., H_2SO_3 , HSO_3^-) not only enhanced the abundance			
494	of bacteria associated with hydrolysis and acidification (e.g., Proteiniclasticum sp., Alkaliphilus sp.,			
495	Romboutsia sp., Tissierella sp.), but also induce and stimulate the growth of sulfite reducing bacteria			
496	(e.g., Desulfitispora sp., Desulfurivibrio sp.), which increase the conversion of organics (equations			
497	(6) and (7)), and further contributed to the resource utilization of WAS (Fig.3).			
498	$CH_3CH_2COO^- + SO_3^{2-} + 2OH^- \rightarrow S^{2-} + CO_3^{2-} + CH_3COO^- + 2H_2O$ (6)			
499	$CH_{3}CH_{2}CH_{2}COO^{-} + 2SO_{3}^{2-} + 4OH^{-} \rightarrow S^{2-} + 2CO_{3}^{2-} + CH_{3}COO^{-} + 4H_{2}O$ (7)			

. .

- 500 4.3. Biological-based pretreatment
- 501 Biological pretreatment is considered as an environmentally friendly technology which is

502	promoted increasingly, providing low-energy input, low-cost disposal and gentler operating
503	conditions. Microbial strains isolated from diverse resources can be applied alone or in combination
504	to break up stubborn polymer structures. For example, the enzymatic treatment of lignocellulosic
505	biomass mainly relies on microbially produced enzymes such as hemicellulase and cellulase. Yuan
506	et al. (2016) pretreated sludge with a microbial consortium (thermophilic microbial consortium
507	MC1), which can effectively improve the biodegradability of cotton stalks. Cellulose, hemicellulose
508	and lignin were significantly degraded by the microbial consortium MC1 after 14 hours. Vitamins
509	and hemicelluloses are converted into sugars. The monomers (sugars) are then converted into
510	volatile organic products. Zhang et al. (2019) enriched the alginate degradation complex (ADC)
511	using alginate as a substrate. Oligomeric alginate lyases were detected in 12 bacterial species by
512	metagenomics and identified to convert alginate to methane. Larsen et al. (2009) applied
513	Proteiniphilum acetatigenes for mesophilic anaerobic sludge digestion and observed a positive effect
514	of the introduced strain on the removal of PAHs. Boruszko (2017) supplied the same results in a
515	report. However, the effect of enzymatic reaction alone is limited, so it should be used in
516	combination with other pretreatment methods. The source of the enzyme has a significant impact on
517	the enzyme activity and type, limiting the stability of the enzyme in WAS. An efficient, stable and
518	inexpensive enzyme source needs to be further explored.
519	4.4. Combined pretreatment

520 4.4.1 Thermal-chemical combination

The synergistic effect of pyrohydrolysis and alkalinity can achieve better sludge floc disintegration and degradation of complex organic matter. For example, Liu et al. (2019c) pretreated WAS with hot alkali and found that not only the large and hard flocs were broken and the degradation of PAM was

524	improved, but also the accumulation of acrylamide was avoided. Additionally, during TH			
525	pretreatment, several reactions between proteins and reducing sugars occur, producing maillard			
526	reaction products (MRPs), which resist degradation under both anaerobic and aerobic conditions.			
527	Besides, several adverse biological effects are even induced by some compounds of MRPs, including			
528	genotoxicity, cytotoxicity, and antimicrobial activity. Geng and Zhou (2022) developed a method to			
529	decrease refractory MRP of WAS without affecting solubility. 10 mg/L FeCl ₃ increased the			
530	solubility of WAS after TH pretreatment, and the refractory residues decreased. FeCl3 enhanced the			
531	biodegradability and methane production of WAS after TH pretreatment (10.4 \pm 0.8% increase in			
532	yield). The specific analysis is mainly attributed to Fe ³⁺ triggering the Fenton-like reaction, leading			
533	to the enhanced biodegradability of TH pretreatment solution, and the enrichment of microbial			
534	communities related to protein degradation and methane production.			
535	In addition to the high temperature, freezing has also been recently reported to improve sludge			
536	flocs biodegradation performance. Liu et al. (2020b) found that the degradation of humic acid-like			
537	substrates could be significantly promoted by nitrite-based freezing pretreatment. It supposed that			
538	EPS and cells were destroyed though the formation of ice crystals during this nitrite-based freezing			
539	process. Simultaneously, the "excess" protons in acidic sludge mixture and extra nitrite would be			
540	removed from ice crystals and concentrated into liquid-like ice grain boundaries (i.e., freeze			
541	concentration effect), causing a dramatic decrease in pH and increase in nitrite concentration, under			
542	which conditions a large number of reactive derivatives of nitrite (e.g., free nitrous acid (FNA),			
543	NO2 ⁻ , NO, N2O3) was produced (Equation 8). And those reactive derivatives could as oxidizing			
544	species to facilitate the degradation of refractory compounds such as humic substrates,			

pharmaceuticals, and PPCPs, thus the bio-degradability of solubilized substrates were improved Liu 545

546	et al. <u>(</u> 2020b).	ha formattato: Italiano (Italia)
547	$2NO_2^- + 2H^+ \longleftrightarrow HNO_2 + HNO_2 \longleftrightarrow N_2O_3 + H_2O \longleftrightarrow NO + NO_2^+ + H_2O $ (8)	ha formattato: Italiano (Italia)
548	4.4.2 Ultrasonic-chemical Combination	
549	The ultrasonic-chemical treatment has been shown to be effective in interfering with the chemical	
550	structure of organic toxic contaminants and converting them into soluble substrates. For example,	
551	Zhao et al. (2020) investigated the influence of ultrasound irradiation combined with ozone (US/O ₃)	
552	for oxidative pretreatment on the levofloxacin-pressured AD digesters. US/O3 provides \cdot OH that	
553	facilitates oxidative ring opening of levofloxacin and oxidation of other bio-macromolecules in	
554	WAS. Sufficient ·OH will promote oxidative ring opening, resulting in the formation of large	
555	amounts of short-chain acids, and the conversion of N-containing groups to $\mathrm{NH_4^+}$. This reaction	
556	illustrates the enhanced biodegradability after US/O3 pretreatment. Ultrasonic treatment in	
557	combination with FNA has also been found to provide a positive synergistic effect on sludge	
558	breakdown and enhancement of the transformation of the released organic matter from non-	
559	biodegradable to biodegradable (Niu et al., 2019). Lin et al. (2016b) found that the ultrasonic-Fenton	
560	method could not only degrade the PAHs on the sludge surface, but also degrade the cavities and	
561	intracellular substances of the sludge. In addition, Shao et al. (2018) used ultrasound combined with	
562	linear alkyl benzene sulfonate (LAS) to control the re-flocculation of flocs for the treatment of	
563	digested sludge rich in refractory organics. The surfactant linear alkyl benzene sulfonate (LAS) was	
564	added immediately after sonication to avoid re-flocculation of dispersed flocs. The SCOD of	
565	sonication was found to be higher than that of pristine digested sludge due to the release of a large	
566	amount of refractory organics and the degradation of VS. However, this experiment only proves the	
567	dissolution of refractory chemical substances, and whether the conversion is not discussed.	

568 5. Challenges and feature perspectives

569	AD as a method to realize safe disposal and resource recovery of WAS, a by-product of activated
570	sludge processes, contributes significantly to the goal of global carbon neutrality. Compared to other
571	treatment methods (including landfills, composting and incineration), AD is a welcome and stable
572	method, due to its low energy footprint, low cost, and moderate performance (Deena et al., 2022;
573	Kunatsa and Xia, 2022). However, the application of AD is often limited by low biodegradability
574	due to the presence of endogenous and exogenous refractory substances in WAS. It has been
575	reported that these refractory substances at the environmentally relevant concentrations have
576	adversely affected the anaerobic degradability of sludge. The reasons for these influences can be
577	summarized as follows: (1) improved mass transfer resistance, (2) enhanced ectoenzymes
578	competition, (3) endoenzymes active sites encroachment, (4) electrons competition, (5) cytotoxicity.
579	Corresponding, some strategies to improve the performance of AD have been developed. For
580	example, microwave pretreatment could improve the degradability of refractory pollutants, and thus
581	improving the performance of sludge AD. The sulfite pretreatment could enhance the conversion of
582	refractory substances and reduce the toxicity of anaerobic functional microorganisms. These studies
583	investigated the influence behavior and mechanism of these refractory substances on sludge AD and
584	provided an insight into the improvement of sludge degradability.
585	To improve the biodegradability of WAS which restricted by endogenous and exogenous
586	refractory substances, a significant number of strategies have been developed. However, some
587	improvements and measures are still required to be further explored to pave the way for efficient,
588	economic and environmental large-scale application of AD for WAS treatment:

589 1). The quantitative methods of typical refractory substances in sludge are relatively mature, but

590	the basic data of their existence forms in sludge, which are closely related to their effect on sludge
591	anaerobic degradability and anaerobic functional microorganisms, is still limited. At present, most of
592	the studies on their anaerobic degradability and the role of anaerobic functional microorganisms are
593	mostly based on model compounds, which may be different from actual situations. Therefore, the
594	following research should pay more attention to their form of existence and structure.
595	2). Previous studies on the anaerobic degradability of refractory substances and their effects on
596	anaerobic functional microorganisms are mostly based on a single model compound. However, there
597	are many co-existing refractory substances in the actual system, such as the co-existence of HA and
598	organic flocculants, antibiotics and organic flocculants. Thus, the results obtained previously are not
599	representative and cannot reflect the real situation. Therefore, the follow-up work should pay
600	attention to the co-existing environmental pollutants.
601	3). At present, characterization methods of sludge anaerobic degradability all rely on biochemical
602	methanogenic potential (BMP) test, which has been used for more than 30 years and has fundamental
603	problems such as long experimental period, large experimental error and strict experimental
604	conditions. In recent years, a series of methods, such as UV-vis spectral method and the three-
605	dimensional excitation-emission matrix fluorescence combined with fluorescence regional
606	integration method, have been used to reflect the biodegradability of dissolved substances. However,
607	these studies have some limitations, such as whether the anaerobic degradation can be truly reflected.
608	Therefore, it is urgent to develop more efficient characterization methods of sludge anaerobic
609	degradability. While, the combination of BMP and fluorescence methods may be a research
610	direction.

611 4). Although some approaches for refractory substances have been developed, most of them are

612	not specific. In addition to promoting the conversion of refractory substances in sludge, these
613	methods also have influence on the original organic or inorganic substances, such as proteins and
614	polysaccharides. As a result, the efficiency of these preprocessing methods has been affected,
615	resulting in most of them are cost-intensive because of the high-energy and chemical-requirements,
616	and passive environmental-consequences such as higher-net carbon dioxide emission. Therefore, it
617	is necessary to develop more targeted pretreatment methods based on in-depth analysis of the action
618	mechanism of these refractory substances, so as to enhance the AD performance of sludge, as well as
619	improve the circular bio-economy of WAS management.
620	6. Conclusion
621	This paper reviews several pretreatment methods and process control technologies to enhance the
622	AD of WAS from the perspective of promoting refractory substances or pollutants conversion. The

main mechanisms include: 1) Improving the transformation of sludge substrates by physicochemical method, to provide more available substrates for anaerobic microorganisms, and mitigate the toxicity of refractory substances or pollutants on anaerobic microorganisms; 2) Improving the abundance of functional microorganism, to enhance the biotransformation of refractory substances or pollutants. This study provides a new insight into the development of sludge treatment technology for sludge reduction and stabilization.

629 Acknowledgments

This study was financially supported by the project of National Natural Science Foundation of
China (52000063) and Natural Science Foundation of Hunan Province of China (2021JJ40080). Prof
Bing-Jie Ni acknowledges the support of the Australian Research Council (ARC) through project
DP220101139. Dr Wei Wei acknowledges the support of the ARC through project DE220100530.

634 References

635	1.	Akbay, H.E.G., Dizge, N., Kumbur, H. 2021. Enhancing biogas production of anaerobic co-
636		digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal,
637		and hybrid pretreatment. Bioresource Technol., 340, 125688.
638	2.	Appels, L., Baeyens, J., Degreve, J., Dewil, R. 2008. Principles and potential of the anaerobic
639		digestion of waste-activated sludge. Prog. Energ. Combust., 34(6), 755-781.
640	3.	Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.L. 2014. Pretreatment methods to
641		enhance anaerobic digestion of organic solid waste. Appl. Energy, 123, 143-156.

- Azman, S., Khadem, A.F., Plugge, C.M., Bec, S., Zeeman, G. 2017. Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl. Microbiol. Biot., 101(2), 889-901.
- 5. Balasundaram, G., Vidyarthi, P.K., Gahlot, P., Arora, P., Kumar, V., Kumar, M., Kazmi, A.A.,
 Tyagi, V.K. 2022. Energy feasibility and life cycle assessment of sludge pretreatment methods
 for advanced anaerobic digestion. Bioresource Technol., 357, 127345.
- 6. Bamforth, S.M., Singleton, I. 2005. Bioremediation of polycyclic aromatic hydrocarbons:
 current knowledge and future directions. J. Chem. Technol. Biot., 80(7), 723-736.
- 7. Boruszko, D. 2017. Research on the influence of anaerobic stabilization of various dairy sewage
 sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective
 microorganisms. Environ. Res., 155, 344-352.
- Brons, H.J., Field, J.A., Lexmond, W.A.C., Lettinga, G. 1985. Influence of humic acids on the hydrolysis of potato protein during anaerobic digestion. Agricultural Wastes, 13(2), 105-114.
- Butler, E., Whelan, M.J., Sakrabani, R., van Egmond, R. 2012. Fate of triclosan in field soils
 receiving sewage sludge. Environ. Pollut., 167, 101-109.
- Cai, Q.Y., Mo, C.H., Wu, Q.T., Zeng, Q.Y., Katsoyiannis, A., Ferard, J.F. 2007. Bioremediation
 of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge by different
 composting processes. J. Hazard. Mater., 142(1-2), 535-542.
- 11. Cao, B.D., Zhang, T., Zhang, W.J., Wang, D.S. 2021. Enhanced technology based for sewage
 sludge deep dewatering: A critical review. Water Res., 189, 116650.
- 12. Carey, D.E., Zitomer, D.H., Hristova, K.R., Kappell, A.D., McNamara, P.J. 2016. Triclocarban
 Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure.
 Environ. Sci. Technol., 50(1), 126-134.
- Carrere, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenes, J.P., Steyer, J.P., Ferrer, I. 2010.
 Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater.,
 183(1-3), 1-15.
- 669 14. Chandra, R., Takeuchi, H., Hasegawa, T. 2012. Methane production from lignocellulosic
 670 agricultural crop wastes: A review in context to second generation of biofuel production. Renew.
 671 Sust. Energ. Rev., 16(3), 1462-1476.
- Chang, B.V., Chang, S.W., Yuan, S.Y. 2003. Anaerobic degradation of polycyclic aromatic
 hydrocarbons in sludge. Adv. Environ. Res., 7(3), 623-628.
- 16. Chawla, C., Sarkar, S., Ali, S., Rehmann, L., Nakhla, G., Ray, M.B. 2014. Anaerobic
 digestibility of estrogens in wastewater sludge: Effect of ultrasonic pretreatment. J. Environ.
 Manage., 145, 307-313.

- 17. Chen, G., Wu, W., Xu, J., Wang, Z.W. 2022. An anaerobic dynamic membrane bioreactor for
 enhancing sludge digestion: Impact of solids retention time on digestion efficacy (vol 329,
 124864, 2021). Bioresource Technol., 344, 124864.
- 18. Cheng, C.-J., Hong, P.K.A. 2013. Anaerobic digestion of activated sludge after pressure-assisted
 ozonation. Bioresour. Technol., 142, 69-76.
- 19. Dai, K., Zhang, W., Zeng, R.J., Zhang, F. 2020. Production of chemicals in thermophilic mixed
 culture fermentation: mechanism and strategy. Crit. Rev. Env. Sci. Tec., 50(1), 1-30.
- 20. Datta, R., Kelkar, A., Baraniya, D., Molaei, A., Moulick, A., Meena, R.S., Formanek, P. 2017.
 Enzymatic Degradation of Lignin in Soil: A Review. Sustainability, 9(7), 1163.
- Deena, S.R., Vickram, A.S., Manikandan, S., Subbaiya, R., Karmegam, N., Ravindran, B.,
 Chang, S.W., Awasthi, M.K. 2022. Enhanced biogas production from food waste and activated
 sludge using advanced techniques-A review. Bioresource Technol., 355, 127234.
- Fan, Q.W., Fan, X.J., Fu, P., Li, Y., Zhao, Y.X., Hua, D.L. 2022. Anaerobic digestion of wood
 vinegar wastewater using domesticated sludge: Focusing on the relationship between organic
 degradation and microbial communities (archaea, bacteria, and fungi). Bioresource Technol.,
 347, 126384.
- Felz, S., Vermeulen, P., van Loosdrecht, M.C.M., Lin, Y.M. 2019. Chemical characterization
 methods for the analysis of structural extracellular polymeric substances (EPS). Water Res., 157,
 201-208.
- Feng, L.Y., Luo, J.Y., Chen, Y.G. 2015. Dilemma of Sewage Sludge Treatment and Disposal in
 China. Environ. Sci. Technol., 49(8), 4781-4782.
- Feng, Q.J., Lin, Y.Q. 2017. Integrated processes of anaerobic digestion and pyrolysis for higher
 bioenergy recovery from lignocellulosic biomass: A brief review. Renew. Sust. Energ. Rev., 77,
 1272-1287.
- 26. Feofilova, E.P., Mysyakina, I.S. 2016. Lignin: Chemical Structure, Biodegradation, and Practical
 Application (a Review). Appl. Biochem. Microbiol., 52(6), 573-581.
- Fernandes, T.V., van Lier, J.B., Zeeman, G. 2015. Humic Acid-Like and Fulvic Acid-Like
 Inhibition on the Hydrolysis of Cellulose and Tributyrin. Bioenerg. Res., 8(2), 821-831.
- Flores, G.A.E., Fotidis, I.A., Karakashev, D.B., Kjellberg, K., Angelidaki, I. 2015. Effects of
 Benzalkonium Chloride, Proxel LV, P3 Hypochloran, Triton X-100 and DOWFAX 63N10 on
 anaerobic digestion processes. Bioresour. Technol., 193, 393-400.
- Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W.A., Koetsier, M.J., van
 Berkel, W.J.H., Gruppen, H., Kabel, M.A. 2015. Discovery of the combined oxidative cleavage
 of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol.
 Biofuels, 8, 101.
- 30. Geng, Y.-K., Zhou, Y. 2022. Reduction of refractory Maillard reaction products by Fe3+ during
 thermal hydrolysis pretreatment and enhanced sludge biodegradability. J. Hazard. Mater., 430,
 128400.
- 31. Geng, Z.Q., Qian, D.K., Hu, Z.Y., Wang, S., Yan, Y., van Loosdrecht, M.C.M., Zeng, R.J.X.,
 Zhang, F. 2021. Identification of Extracellular Key Enzyme and Intracellular Metabolic Pathway
 in Alginate-Degrading Consortia via an Integrated Metaproteomic/Metagenomic Analysis.
 Environ. Sci. Technol., 55(24), 16636-16645.
- 32. Gonzalez, A., Hendriks, A.T.W.M., van Lier, J.B., de Kreuk, M. 2018. Pre-treatments to enhance
 the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol.

721 Adv., 36(5), 1434-1469.

- 33. He, D.D., Zheng, S.L., Xiao, J., Ye, Y.H., Liu, X.R., Yin, Z., Wang, D.B. 2022. Effect of lignin
 on short-chain fatty acids production from anaerobic fermentation of waste activated sludge (vol
 212, 118082, 2022). Water Res., 215, 118248.
- 34. Hu, Y.S., Hao, X.D., Wang, J.M., Cao, Y.L. 2016. Enhancing anaerobic digestion of
 lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Waste
 Manage., 49, 55-63.
- 35. Huang, X.D., Liu, X.R., Chen, F., Wang, Y.L., Li, X.M., Wang, D.B., Tao, Z.L.T., Xu, D., Xue,
 W.J., Geng, M.Y., Yang, Q. 2020. Clarithromycin affect methane production from anaerobic
 digestion of waste activated sludge. J. Clean. Prod., 255, 120321.
- 36. Huang, X.D., Xu, Q.X., Wu, Y.X., Wang, D.B., Yang, Q., Chen, F., Wu, Y., Pi, Z.J., Chen, Z., Li,
 X.M., Zhong, Q. 2019. Effect of clarithromycin on the production of volatile fatty acids from
 waste activated sludge anaerobic fermentation. Bioresour. Technol., 288, 121598.
- Jeong, S.Y., Chang, S.W., Ngo, H.H., Guo, W., Nghiem, L.D., Banu, J.R., Jeon, B.-H., Nguyen,
 D.D. 2019. Influence of thermal hydrolysis pretreatment on physicochemical properties and
 anaerobic biodegradability of waste activated sludge with different solids content. Waste
 Manage., 85, 214-221.
- 38. Ju, X.H., Engelhard, M., Zhang, X. 2013. An advanced understanding of the specific effects of
 xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour.
 Technol., 132, 137-145.
- 39. Kaur, U., Oberoi, H.S., Bhargav, V.K., Sharma-Shivappa, R., Dhaliwal, S.S. 2012. Ethanol
 production from alkali- and ozone-treated cotton stalks using thermotolerant Pichia kudriavzevii
 HOP-1. Ind Crops Prod, 37(1), 219-226.
- Khadem, A.F., Azman, S., Plugge, C.M., Zeeman, G., van Lier, J.B., Stams, A.J.M. 2017. Effect
 of humic acids on the activity of pure and mixed methanogenic cultures. Biomass Bioenergy, 99,
 21-30.
- Kim, H., Hong, Y., Park, J.E., Sharma, V.K., Cho, S.I. 2013. Sulfonamides and tetracyclines in livestock wastewater. Chemosphere, 91(7), 888-894.
- 42. Kor-Bicakci, G., Abbott, T., Ubay-Cokgor, E., Eskicioglu, C. 2020. Occurrence and fate of
 antimicrobial triclocarban and its transformation products in municipal sludge during advanced
 anaerobic digestion using microwave pretreatment. Sci. Total Environ., 705, 135862.
- 43. Kunatsa, T., Xia, X.H. 2022. A review on anaerobic digestion with focus on the role of biomass
 co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource
 Technol., 344, 126311.
- 44. Larsen, S.B., Karakashev, D., Angelidaki, I., Schmidt, J.E. 2009. Ex-situ bioremediation of
 polycyclic aromatic hydrocarbons in sewage sludge. J. Hazard. Mater., 164(2-3), 1568-1572.
- 45. Lee, K.Y., Mooney, D.J. 2012. Alginate: Properties and biomedical applications. Prog. Polym.
 Sci., 37(1), 106-126.
- 46. Le-Minh, N., Khan, S.J., Drewes, J.E., Stuetz, R.M. 2010. Fate of antibiotics during municipal
 water recycling treatment processes. Water Res., 44(15), 4295-4323.
- 47. Li, H.S., Wen, Y., Cao, A.S., Huang, J.S., Zhou, Q., Somasundaran, P. 2012. The influence of
 additives (Ca²⁺, Al³⁺, and Fe³⁺) on the interaction energy and loosely bound extracellular
- polymeric substances (EPS) of activated sludge and their flocculation mechanisms. Bioresour.
 Technol., 114, 188-194.

- 48. Li, J., Hao, X.D., van Loosdrecht, M.C.M., Luo, Y.Q., Cao, D.Q. 2019a. Effect of humic acids
 on batch anaerobic digestion of excess sludge. Water Res., 155, 431-443.
- 49. Li, J., Hao, X.D., van Loosdrecht, M.C.M., Yu, J.L., Liu, R.B. 2019b. Adaptation of semi continuous anaerobic sludge digestion to humic acids. Water Res., 161, 329-334.
- 50. Li, P.F., Liu, D., Pei, Z.J., Zhao, L.X., Shi, F.M., Yao, Z.L., Li, W.Z., Sun, Y., Wang, S., Yu, Q.Y.,
 Chen, L., Liu, J. 2021a. Evaluation of lignin inhibition in anaerobic digestion from the
 perspective of reducing the hydrolysis rate of holocellulose. Bioresour. Technol., 333, 125204.
- 51. Li, W., Li, C., Zhu, N., Yuan, H., Shen, Y. 2021b. The extent of sludge solubilization allows to
- estimate the efficacy of ozonation for removal of polycyclic aromatic hydrocarbons (PAHs) in
 municipal sewage sludge. J. Hazard. Mater., 413, 125404.
- 52. Li, W.W., Khalid, H., Zhu, Z., Zhang, R.H., Liu, G.Q., Chen, C., Thorin, E. 2018. Methane
 production through anaerobic digestion: Participation and digestion characteristics of cellulose,
 hemicellulose and lignin. Appl. Energy, 226, 1219-1228.
- 53. Liang, T., Elmaadawy, K., Liu, B.C., Hu, J.P., Hou, H.J., Yang, J.K. 2021. Anaerobic
 fermentation of waste activated sludge for volatile fatty acid production: Recent updates of
 pretreatment methods and the potential effect of humic and nutrients substances. Process Saf
 Environ, 145, 321-339.
- 54. Lin, C., Liao, J., Wu, H., Wei, C. 2016a. Mechanism of Ozone Oxidation of Polycyclic Aromatic
 Hydrocarbons During the Reduction of Coking Wastewater Sludge. Clean-Soil Air Water,
 44(11), 1499-1507.
- 55. Lin, L., Li, R.H., Yang, Z.Y., Li, X.Y. 2017. Effect of coagulant on acidogenic fermentation of
 sludge from enhanced primary sedimentation for resource recovery: Comparison between FeCl3
 and PACl. Chem. Eng. J., 325, 681-689.
- 56. Lin, M., Ning, X.-a., An, T., Zhang, J., Chen, C., Ke, Y., Wang, Y., Zhang, Y., Sun, J., Liu, J.
 2016b. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with
 ultrasound and Fenton processes: Effect of system parameters and synergistic effect study. J.
 Hazard. Mater., 307, 7-16.
- 57. Lipczynska-Kochany, E. 2018. Humic substances, their microbial interactions and effects on
 biological transformations of organic pollutants in water and soil: A review. Chemosphere, 202,
 420-437.
- 58. Liu, K., Chen, Y.G., Xiao, N.D., Zheng, X., Li, M. 2015. Effect of Humic Acids with Different
 Characteristics on Fermentative Short-Chain Fatty Acids Production from Waste Activated
 Sludge. Environ. Sci. Technol., 49(8), 4929-4936.
- 59. Liu, X., Du, M., Yang, J., Wu, Y., Xu, Q., Wang, D., Yang, Q., Yang, G., Li, X. 2020a. Sulfite
 serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid
 production from waste activated sludge. Chem. Eng. J., 385, 123991.
- 60. Liu, X., Huang, X., Wu, Y., Xu, Q., Du, M., Wang, D., Yang, Q., Liu, Y., Ni, B.-J., Yang, G.,
 Yang, F., Wang, Q. 2020b. Activation of nitrite by freezing process for anaerobic digestion
 enhancement of waste activated sludge: Performance and mechanisms. Chem. Eng. J., 387,
 124147.
- 605 61. Liu, X., Xu, Q., Wang, D., Wu, Y., Fu, Q., Li, Y., Yang, Q., Liu, Y., Ni, B.-J., Wang, Q., Yang, G.,
- Li, H., Li, X. 2019a. Microwave pretreatment of polyacrylamide flocculated waste activated
 sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresour. Technol., 290,
 121776.

ha formattato: Italiano (Italia)

809	62. Liu, X., Xu, Q., Wang, D., Wu, Y., Yang, Q., Liu, Y., Wang, Q., Li, X., Li, H., Zeng, G., Yang, G.
810	2019b. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids
811	accumulation during long-term anaerobic fermentation of waste activated sludge. Water Res.,
812	155, 142-151.
h	

- 63. Liu, X., Xu, Q., Wang, D., Yang, Q., Wu, Y., Li, Y., Fu, Q., Yang, F., Liu, Y., Ni, B.-J., Wang, Q.,
 Li, X. 2019c. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated
 sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation.
 Bioresour. Technol., 281, 158-167.
- 64. Liu, X.R., Du, M.T., Lu, Q., He, D.D., Song, K., Yang, Q., Duan, A.B., Wang, D.B. 2021a. How
 Does Chitosan Affect Methane Production in Anaerobic Digestion? Environ. Sci. Technol.,
 55(23), 15843-15852.
- 65. Liu, X.R., Fu, Q.Z., Liu, Z.Y., Zeng, T.J., Du, M.T., He, D.D., Lu, Q., Ni, B.J., Wang, D.B.
 2021b. Alkaline pre-fermentation for anaerobic digestion of polyacrylamide flocculated sludge:
 Simultaneously enhancing methane production and polyacrylamide degradation. Chem. Eng. J.,
 425, 131407.
- 66. Liu, X.R., Wu, Y.X., Xu, Q.X., Du, M.T., Wang, D.B., Yang, Q., Yang, G.J., Chen, H., Zeng,
 T.J., Liu, Y.W., Wang, Q.L., Ni, B.J. 2021c. Mechanistic insights into the effect of poly ferric
 sulfate on anaerobic digestion of waste activated sludge. Water Res., 189, 116645.
- 67. Liu, X.R., Xu, Q.X., Wang, D.B., Wu, Y.X., Yang, Q., Liu, Y.W., Wang, Q.L., Li, X.M., Li, H.L.,
 Zeng, G.M., Yang, G.J. 2019d. Unveiling the mechanisms of how cationic polyacrylamide
 affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste
 activated sludge. Water Res., 155, 142-151.
- 68. Liu, X.R., Xu, Q.X., Wang, D.B., Yang, Q., Wu, Y.X., Li, Y.F., Fu, Q.Z., Yang, F., Liu, Y.W., Ni,
 B.J., Wang, Q.L., Li, X.M. 2019e. Thermal-alkaline pretreatment of polyacrylamide flocculated
 waste activated sludge: Process optimization and effects on anaerobic digestion and
 polyacrylamide degradation. Bioresource Technol., 281, 158 167.
- 69. Lozano, N., Rice, C.P., Ramirez, M., Torrents, A. 2013. Fate of Triclocarban, Triclosan and
 Methyltriclosan during wastewater and biosolids treatment processes. Water Res., 47, 4519 4527.
- 70. Lu, D., Sun, F., Zhou, Y. 2018. Insights into anaerobic transformation of key dissolved organic
 matters produced by thermal hydrolysis sludge pretreatment. Bioresource Technol., 266, 60 67.
- Lu, Y., Zhang, X., Liu, X., Lu, Q., Li, Z., Xiao, J., Li, Y., Hu, X., Xie, Q., Wang, D. 2022. Ferric
 chloride aiding nitrite pretreatment for the enhancement of the quantity and quality of shortchain fatty acids production in waste activated sludge. Water Res., 219, 118569.
- 72. Luo, J.Y., Chen, Y.G., Feng, L.Y. 2016b. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid
 Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and
 Viability of Acetogen. Environ. Sci. Technol., 50, 6921 6929.
- 73. Luo, J.Y., Wu, L.J., Zhang, Q., Fang, F., Feng, Q., Xue, Z.X., Cao, M., Peng, Z.Q., Li, C., Cao,
 J.S. 2019. How Do Biocides That Occur in Waste Activated Sludge Affect the Resource
- Recovery for Short-Chain Fatty Acids Production. ACS Sustainable Chem. Eng., 7, 1648 1657.
- 74. Luo, J.Y., Zhang, Q., Zha, J.N., Wu, Y., Wu, L.J., Li, H., Tang, M., Sun, Y.Q., Guo, W., Feng, Q.,
 Cao, J.S., Wang, D.B. 2020. Potential influences of exogenous pollutants occurred in waste
- activated sludge on anaerobic digestion: A review. J. Hazard. Mater., 383, 121176.
- 75. Lurie, M., Rebhun, M. 1997. Effect of properties of polyelectrolytes on their interaction with

ha formattato: Italiano (Italia)

particulates and soluble organics. Water Sci. Technol., 36, 93 - 101.

- 76. Lv, L., Feng, C., Li, W., Zhang, G., Wang, P., Ren, Z. 2021. Exogenous N-acyl-homoserine
 lactones promote the degradation of refractory organics in oligotrophic anaerobic granular
 sludge. Sci. Total Environ., 761, 143289.
- 77. Mishra, P.K., Wimmer, R. 2017. Aerosol assisted self-assembly as a route to synthesize solid and
 hollow spherical lignin colloids and its utilization in layer by layer deposition. Ultrason.
 Sonochem., 35, 45 50.
- 78. Mustafa, A.M., Poulsen, T.G., Sheng, K.C. 2016. Fungal pretreatment of rice straw with
 Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state
 anaerobic digestion. Appl. Energy, 180, 661 671.
- Ni, B.J., Zeng, S.T., Wei, W., Dai, X.H., Sun, J. 2020. Impact of roxithromycin on waste
 activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic
 resistance genes. Sci. Total Environ., 703, 134899.
- 866 80. Niu, Q., Xu, Q., Wang, Y., Wang, D., Liu, X., Liu, Y., Wang, Q., Ni, B.-J., Yang, Q., Li, X., Li,
 867 H. 2019. Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic
 868 and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource
 869 Technol., 285, 121363.
- 81. Oh, J.-Y., Choi, S.-D., Kwon, H.-O., Lee, S.-E. 2016. Leaching of polycyclic aromatic
 hydrocarbons (PAHs) from industrial wastewater sludge by ultrasonic treatment. Ultrasonics
 Sonochemistry, 33, 61-66.
- 873 82. Ortiz-Collazos, S., Picciani, P.H.S., Oliveira, O.N., Pimentel, A.S., Edler, K.J. 2019. Influence of
 874 levofloxacin and clarithromycin on the structure of DPPC monolayers. Biochim Biophys Acta
 875 Biomembr, 1861, 182994.
- 83. Park, J., Cayetano, R.D.A., Kim, G.B., Jo, Y., Kwon, Y., Lei, Z.F., Kim, S.H. 2022. Sludge
 disintegration and anaerobic digestion enhancement by alkaline-thermal pretreatment: Economic
 evaluation and microbial population analysis. Bioresource Technol., 346, 126594.
- 84. Ping, Q., Lu, X., Zheng, M., Li, Y. 2018. Effect of CaO2 addition on anaerobic digestion of
 waste activated sludge at different temperatures and the promotion of valuable carbon source
 production under ambient condition. Bioresource Technol., 265, 247 256.
- 85. Prorot, A., Julien, L., Christophe, D., Patrick, L. 2011. Sludge disintegration during heat
 treatment at low temperature: A better understanding of involved mechanisms with a
 multiparametric approach. Biochem. Eng. J., 54, 178 184.
- 86. Puicharla, R., Mohapatra, D.P., Brar, S.K., Drogui, P., Auger, S., Surampalli, R.Y. 2014. A
 persistent antibiotic partitioning and co-relation with metals in wastewater treatment plant—
 Chlortetracycline. J. Environ. Chem. Eng., 2, 1596 1603.
- 87. Qian, D.K., Geng, Z.Q., Tang, J., Wang, S., Hu, Z.Y., Dai, K., van Loosdrecht, M.C.M., Zeng,
 R.J.X., Zhang, F. 2021. Highly Selective Fermentation of Waste-Activated Sludge by AlginateDegrading Consortia. ACS EST Engg., 1, 1606 1617.
- 88. Shao, L., Li, W., Lu, F., He, P. 2018. Anaerobic re-digestion of digested sludge post-treated by
 ultrasound: effect of the adding linear alkylbenzene sulfonate. J. Chem. Technol. Biotechnol., 93,
 2464 2470.
- 89. Sibert, J.R., Minchom, P.E., Craft, A.W., Jackson, R.H., George, A.M. 1979. Child-Resistant
 Containers Really are Effective. The Lancet, 314, 522.
- 90. Siebielska, I., Sidelko, R. 2015. Polychlorinated biphenyl concentration changes in sewage

897		sludge and organic municipal waste mixtures during composting and anaerobic digestion.
898		Chemosphere, 126, 88-95.
000	0.1	Starrent MI Deville C. Yess C. Tanas DI Kisley C. 1000 Starstand Instinued and an all

- 899 91. Stewart, M.J., Parikh, S., Xiao, G., Tonge, P.J., Kisker, C. 1999. Structural basis and mechanism
 of enoyl reductase inhibition by triclosan11Edited by P. E. Wright. J. Mol. Biol., 290, 859 865.
- 901 92. Sutton, R., Sposito, G. 2005. Molecular structure in soil humic substances: The new view.
- 902 Environ. Sci. Technol., 39, 9009 9015.
- 903 93. Syafiuddin, A., Boopathy, R. 2021. Role of anaerobic sludge digestion in handling antibiotic
 904 resistant bacteria and antibiotic resistance genes A review. Bioresource Technol., 330, 124970.
- 94. Tabares-da Rosa, S., Wogulis, L.A., Wogulis, M.D., González-Sapienza, G., Wilson, D.K. 2019.
 Structure and specificity of several triclocarban-binding single domain camelid antibody
 fragments. J. Mol. Recognit., 32, e2755.
- 908 95. Tang, M., Wang, Z., Zhang, W., Wang, D. 2021a. Biopolymer transformation and antibiotics
 909 degradation of wastewater sludge using thermally activated persulfate oxidation for
 910 dewaterability enhancement. Sep. Purif. Technol., 274, 119021.
- dewaterability enhancement. Sep. Puril. lechnol., 2/4, 119021.
- 96. Tang, M.Y., Wang, Z.Y., Zhang, W.J., Wang, D.S. 2021b. Biopolymer transformation and
 antibiotics degradation of wastewater sludge using thermally activated persulfate oxidation for
 dewaterability enhancement. Sep. Purif. Technol., 274, 119021.
- 914 97. Tian, S., Huang, S., Zhu, Y., Zhang, G., Lian, J., Liu, Z., Zhang, L., Qin, X. 2021. Effect of low915 intensity ultrasound on partial nitrification: Performance, sludge characteristics, and properties
 916 of extracellular polymeric substances. Ultrason Sonochem, 73, 105527.
- 917 98. Toutian, V., Barjenbruch, M., Unger, T., Loderer, C., Remy, C. 2020. Effect of temperature on
 918 biogas yield increase and formation of refractory COD during thermal hydrolysis of waste
 919 activated sludge. Water Res., 171, 115383.
- 99. Triolo, J.M., Pedersen, L., Qu, H.Y., Sommer, S.G. 2012. Biochemical methane potential and
 anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production.
 Bioresource Technol., 125, 226 232.
- 100. Vajnhandl, S., Le Marechal, A.M. 2005. Ultrasound in textile dyeing and the
 decolouration/mineralization of textile dyes. Dyes Pigm., 65, 89 101.
- 101. Verlicchi, P., Zambello, E. 2015. Pharmaceuticals and personal care products in untreated
 and treated sewage sludge: Occurrence and environmental risk in the case of application on soil A critical review. Sci. Total Environ., 538, 750 767.
- Wang, D., He, D., Liu, X., Xu, Q., Yang, Q., Li, X., Liu, Y., Wang, Q., Ni, B.-J., Li, H. 2019.
 The underlying mechanism of calcium peroxide pretreatment enhancing methane production
 from anaerobic digestion of waste activated sludge. Water Res., 164, 114934.
- 103. Wang, D.B., Duan, Y.Y., Yang, Q., Liu, Y.W., Ni, B.J., Wang, Q.L., Zeng, G.M., Li, X.M.,
 Yuan, Z.G. 2018a. Free ammonia enhances dark fermentative hydrogen production from waste
 activated sludge. Water Res., 133, 272 281.
- 104. Wang, D.B., Liu, X.R., Zeng, G.M., Zhao, J.W., Liu, Y.W., Wang, Q.L., Chen, F., Li, X.M.,
 Yang, Q. 2018b. Understanding the impact of cationic polyacrylamide on anaerobic digestion of
 waste activated sludge. Water Res., 130, 281 290.
- 105. Wang, D.B., Yi, N., Wang, Y.L., Yang, J.N., Fu, Q.Z., Liu, X.R., Yang, Q., Cai, Z., Ye, J.,
 Liu, Y.W., Wang, Q.L., Ni, B.J. 2021. Triclosan degradation in sludge anaerobic fermentation
- and its impact on hydrogen production. Chem. Eng. J., 421, 129948.
- 940 106. Wang, L., Ben, W., Li, Y., Liu, C., Qiang, Z. 2018c. Behavior of tetracycline and macrolide

941	antibiotics in activated sludge process and their subsequent removal during sludge reduction by	
942	ozone. Chemosphere, 206, 184 - 191.	
943	107. Wang, Y., Sun, P., Guo, H., Wang, D., Zhu, T., Liu, Y. 2022. Enhancing Methane Production	
944	from Anaerobic Digestion of Waste Activated Sludge through a Novel Sodium Percarbonate	
945	(SPC) Pretreatment: Reaction Kinetics and Mechanisms. ACS EST Engg., 2, 1326 - 1340.	
946	108. Wang, Y.L., Han, K., Wang, D.B., Yi, N., Teng, Y.J., Wang, W.J., Liu, L., Wang, H.J. 2020.	
947	Revealing the mechanisms of Triclosan affecting of methane production from waste activated	
948	sludge. Bioresource Technol., 312, 123505.	
949	109. Wei, H., Gao, B.Q., Ren, J., Li, A.M., Yang, H. 2018. Coagulation/flocculation in	
950	dewatering of sludge: A review. Water Res., 143, 608 - 631.	
951	110. Wilen, B.M., Jin, B., Lant, P. 2003. The influence of key chemical constituents in activated	
952	sludge on surface and flocculating properties. Water Res., 37, 2127 - 2139.	
953	111. Wilson, C.A., Novak, J.T. 2009. Hydrolysis of macromolecular components of primary and	
954	secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res., 43, 4489 - 4498.	
955	112. Wu, Z.L., Lin, Z., Sun, Z.Y., Gou, M., Xia, Z.Y., Tang, Y.Q. 2020. A comparative study of	
956	mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content:	
957	Reactor performance and microbial community. Bioresource Technol., 302, 122851.	
958	113. Xiao, K.K., Abbt-Braun, G., Horn, H. 2020. Changes in the characteristics of dissolved	
959	organic matter during sludge treatment: A critical review. Water Res., 187, 116441.	
960	114. Xiong, B., Loss, R.D., Shields, D., Pawlik, T., Hochreiter, R., Zydney, A.L., Kumar, M.	
961	2018. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean	
962	Water, 1, 17.	
963	115. Xu, Q., Fu, Q., Liu, X., Wang, D., Wu, Y., Li, Y., Yang, J., Yang, Q., Wang, Y., Li, H., Ni, B	ha formattato: Italiano (Italia)
964	J. 2021. Mechanisms of potassium permanganate pretreatment improving anaerobic	
965	fermentation performance of waste activated sludge. Chem. Eng. J., 406, 126797.	
966	116. Xu, R.Z., Fang, S.Y., Zhang, L., Cheng, X.S., Huang, W.X., Wang, F., Fang, F., Cao, J.S.,	
967	Wang, D.B., Luo, J.Y. 2022. Revealing the intrinsic drawbacks of waste activated sludge for	
968	efficient anaerobic digestion and the potential mitigation strategies. Bioresource Technol., 345,	
969	126482.	
970	117. Xu, Y., Lu, Y.Q., Zheng, L.K., Wang, Z.W., Dai, X.H. 2020a. Effects of humic matter on the	
971	anaerobic digestion of sewage sludge: New insights from sludge structure. Chemosphere, 243,	
972	125421.	
973	118. Xu, Y., Lu, Y.Q., Zheng, L.K., Wang, Z.W., Dai, X.H. 2020b. Perspective on enhancing the	
974	anaerobic digestion of waste activated sludge. J. Hazard. Mater., 389, 121847.	
975	119. Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X., Li, N. 2015. Effects of thermal hydrolysis on	ha formattato: Italiano (Italia)
976	organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J., 264,	
977	174 - 180.	
978	120. Yan, W.W., Xu, H., Lu, D., Zhou, Y. 2022. Effects of sludge thermal hydrolysis pretreatment	
979	on anaerobic digestion and downstream processes: mechanism, challenges and solutions.	
980	Bioresource Technol., 344, 126248.	
981	121. Yang, J., Liu, X., Wang, D., Xu, Q., Yang, Q., Zeng, G., Li, X., Liu, Y., Gong, J., Ye, J., Li,	
982	H. 2019a. Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain	
983	fatty acids from waste activated sludge. Water Res., 148, 239 - 249.	

984 122. Yang, W.W., Huang, J., Pan, F.K. 2019b. Polychlorinated biphenyls affects anaerobic

985	methane production from waste activated sludge through suppressing hydrolysis-acidification
986	and methanation processes. J. Environ. Manage., 251, 109616.

- Yuan, L., Liu, H., Lu, Y., Lu, Y., Wang, D. 2022. Enhancing the dewaterability of waste
 activated sludge by the combined ascorbic acid and zero-valent iron/persulfate system.
 Chemosphere, 303, 135104.
- Yuan, X., Ma, L., Wen, B., Zhou, D., Kuang, M., Yang, W., Cui, Z. 2016. Enhancing
 anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1).
 Bioresource Technol., 207, 293 301.
- 125. Zeng, S.T., Sun, J., Chen, Z.W., Xu, Q.X., Wei, W., Wang, D.B., Ni, B.J. 2021. The impact
 and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas
 production. Environ. Res., 195, 110792.
- 126. Zhang, F., Qian, D.K., Geng, Z.Q., Dai, K., Zhang, W., van Loosdrecht, M.C.M., Zeng, R.J.
 2021. Enhanced Methane Recovery from Waste-Activated Sludge by Alginate-Degrading
 Consortia: The Overlooked Role of Alginate in Extracellular Polymeric Substances. Environ.
 Sci. Technol. Lett., 8, 86 91.
- 1000 127. Zhang, F., Zhang, W., Qian, D.K., Dai, K., van Loosdrecht, M.C.M., Zeng, R.J. 2019.
 1001 Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and
 1002 methanogens. Water Res., 163, 114892.
- 1003 128. Zhang, W.L., Zhang, Q., Liang, Y.N. 2022. Ineffectiveness of ultrasound at low frequency
 1004 for treating per- and polyfluoroalkyl substances in sewage sludge. Chemosphere, 286, 131748.
- 129. Zhang, X., Li, R. 2018. Variation of antibiotics in sludge pretreatment and anaerobic
 digestion processes: Degradation and solid-liquid distribution. Bioresource Technol., 255, 266 272.
- 130. Zhao, L., Ji, Y., Sun, P.Z., Deng, J.H., Wang, H.Y., Yang, Y.K. 2019. Effects of individual
 and combined zinc oxide nanoparticle, norfloxacin, and sulfamethazine contamination on sludge
 anaerobic digestion. Bioresource Technol., 273, 454 461.
- 1011 131. Zhao, Q., Li, M., Zhang, K.F., Wang, N., Wang, K.K., Wang, H.B., Meng, S.J., Mu, R.M.
 1012 2020. Effect of ultrasound irradiation combined with ozone pretreatment on the anaerobic
 1013 digestion for the biosludge exposed to trace-level levofloxacin: Degradation, microbial
 1014 community and ARGs analysis. J. Environ. Manage., 262, 110356.
- 1015 132. Zhu, A.J., Qin, Y., Wu, J., Ye, M., Li, Y.Y. 2021. Characterization of biogas production and
 1016 microbial community in thermophilic anaerobic co-digestion of sewage sludge and paper waste.
 1017 Bioresource Technol., 337, 125371.