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Abstract: Many studies have been conducted on the effects of red wine polyphenols on certain diseases, primarily, coro-

nary heart disease (CHD) and, in this respect, evidence has been demonstrated that intake of red wine is associated with a 

reduction of CHD symptomatology. In this framework, the purpose of this review is to illustrate the effects of polyphenols 

on immune cells from human healthy peripheral blood. Data will show that polyphenols are able to stimulate both innate 

and adaptive immune responses. In particular, the release of cytokines such as interleukin (IL)-12, interferon (IFN)- , and 

IL-10 as well as immunoglobulins may be important for host protection in different immune related disorders. 

Another important aspect pointed out in this review is the release of nitric oxide (NO) from peripheral blood mononuclear 

cells (PBMC), stimulated by red wine polyphenols despite the fact that the majority of studies have reported NO produc-

tion only by endothelial cells. Release of NO from PBMC may play an important role in cardiovascular disease, because it 

is known that this molecule acts as an inhibitor of platelet aggregation. On the other hand, NO exerts a protective role 

against infectious organisms.  

Finally, some molecular cytoplasmatic pathways elicited by polyphenols able to regulate certain immune responses will 

also be discussed. In particular, it seems that p38, a molecule belonging to the MAPK family, is involved in the release of 

IFN-  and, therefore, in NO production. 

All these data confirm the beneficial effects of polyphenols in some chronic diseases.  
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POLYPHENOLS: DENOMINATION AND CHEMI-
CAL STRUCTURE 

 Over the past ten years, researchers have focused their 
attention on the properties of natural substances such as 
polyphenols because there is a link between their assumption 
and prevention and/or treatment of some diseases, in particu-
lar cardiovascular disease [1-3]. 

 Dietary polyphenols are the most abundant antioxidants 
in human diet. With over 8,000 structural variants, they are 
secondary metabolites of plants and denote many substances 
with aromatic ring(s) bearing one or more hydroxyl moieties 
[4]. They are subdivided into groups (Fig. 1) by the number 
of phenolic rings and of the structural elements that link 
these rings [5]: (1) the phenolic acids with the subclasses 
derived from hydroxybenzoic acids such as gallic acid and 
from hydroxycinnamic acid, containing caffeic, ferulic, and 
coumaric acid; (2) the large flavonoid subclass, which in-
cludes the flavonols, flavones, isoflavones, flavanones, an-
thocyanidins, and flavanols; (3) tannins are a group of water-
soluble polyphenols having a molecular weight from 500 to 
3,000 which are subdivided into condensed and hydrolysable 
tannins, and commonly found complexed with alkaloids, 
polysaccharides and proteins, particularly the latter. On the 
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basis of structural characteristics there are two groups, gallo-
tannins and ellagitannins of hydrolysable tannins; (4) the 
stilbenes; and (5) the lignans and the polymeric lignins.  

 The flavonoids, which share a common structure (Fig. 2) 
consisting of 2 aromatic rings (A and B) that are bound to-
gether by 3 carbon atoms that form an oxygenated heterocy-
cle (ring C), may themselves be divided into 6 subclasses as 
a function of the type of heterocycle involved: flavanols, 
flavones, isoflavones, flavanones, antocyanidins, and fla-
vonols (Fig. 3). The most abundant flavonoids in the diet are 
flavanols (e.g. catechins, epicatechin, epigalocathechin, epi-
gallocatechin-gallate) found in red wine, green tea, and cho-
cholate; anthocyanins (pelargodin, cyanidin, malvidin) and 
the polymeric forms (proanthocyanidins), found in red wine 
and berry fruits. In addition to this diversity, polyphenols 
may be associated with various carbohydrates and organic 
acids and with one another. 

 Flavonols are mainly represented by myricetin, rutin, 
quercetin and kaempferol and are present in onions, broccoli 
and red wine. Flavone groups (e.g. apigenin, luteolin, wogo-
nin) are present in cerely. Flavanone groups (e.g. naringenin, 
naringin, hesperitin, hesperidin) are present in citrus fruits, 
tomatoes and oranges. Isoflavones (e.g. genistein, daidzein, 
glycitein) are present in leguminous plants. 

 Resveratrol (3,4’,5–trihidroxy-stilbene), a phenolic fitoa-
lexin, is a derivative of stilbene (Fig. 4) structurally charac-
terized by the presence of a 1,2-diphenylethylene nucleus 
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with hydroxyls substituted on the aromatic rings, and present 
in the form of monomers or oligomers. The best known  
 

 

 

 

 

 

Fig. (2). General chemical structure of flavonoids. 

compound is  trans-resveratrol, possessing a trihydroxystil-
bene skeleton. Previous reports have demonstrated that res-
veratrol regulates many biological activities, mainly concen-
trating on tumor, oxidation, inflammation regulation, [6-9] 
neuroprotection, [10] and cardioprotection [11]. On the other 
hand, in recent experimental studies resveratrol seems to 
exert beneficial effects on the metabolic syndrome induced 
by excessive food intake, and characterized by central obe-
sity, atherogenic dislipidemia, high blood pressure, and ele-
vated blood glucose levels. Calorie restriction can antagonize 
the development of this syndrome, leading to improved glu-
cose tolerance, decreased LDL-cholesterol, and increased 
HDL-cholesterol [12]. On the other hand, calorie restriction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Classification of dietary polyphenols. 
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can prevent all diseases associated with metabolic syndrome 
such as insulin resistance, cardiovascular disease, and cancer 
[13,14]. Calorie restriction has also been shown to increase 
muscle mitochondrial biogenesis in healthy humans through 
SIRT1 and activation of Peroxisome Proliferator-Activated 
 

 

 

 

 

 

Fig. (4). Chemical structure of resveratrol. 

Receptor-  Coactivator (PGC)-1  [15]. The SIRT1 activator, 
resveratrol, has been shown to improve insulin sensitivity, 
increase mitochondrial content, and prolong survival of mice 
fed a high fat, high calorie diet [16-18]. 

 The effects of daily consumption of resveratrol have been 
observed in mice fed high calorie diet [16], and long-term 
treatment shifted the physiology of middle aged mice on a 
high-calorie diet towards that of mice on a standard diet, and 
markedly increased their survival. Mostly strikingly, resvera-
trol treatment prevented high calorie-induced insulin resis-
tance and organ pathologies, particularly fatty liver diseases 
[16]. These changes were associated with increased mito-
chondrial numbers and improved motor functions. Further-
more, treatment of mice with resveratrol significantly in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Ring skeletons of flavonoids. 
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creased their aerobic capacity, as evidenced by the increased 
running time and consumption of oxygen in muscle fibers 
[19].  

 Sirtuitins are an evolutionarily conserved class of pro-
teins that regulate a variety of cellular functions such as ge-
nome maintenance, longevity, and metabolism [20-22]. 
There are seven human sirtuitins (SIRT1-7) that contain a 
conserved catalytic core domain composed of approximately 
275 amino acids. SIRT1 has been implicated as a key media-
tor of the pathways downstream of calorie restriction, a die-
tary regimen that is known to delay the onset and reduce the 
incidence of age-related diseases. 

 In this context, it has been shown that resveratrol can 
counteract the actions of calorie excess improving health and 
lifespan in mammals as well as preventing the development 
of the metabolic syndrome [16-17].  

 It is well established that mitochondrial dysfunction is 
causally associated with reduced longevity. In addition, im-
paired mitochondrial function that directs fatty acids towards 
storage, as opposed to oxidation, contributes to intramyocel-
lular and hepatic lipid accumulation, which has been pro-
posed as a key etiological factor in the pathogenesis of insu-
lin resistance and the metabolic syndrome [23]. 

 In this context, it has been demonstrated that the benefi-
cial effects of resveratrol on longevity and metabolic profiles 
are mediated by Sirt-1-induced PGC-1  activation, which 
leads to increased mitochondrial biogenesis and enhanced 
oxidative phosphorylation [16-17]. 

RED WINE AND EFFECTS ON HUMAN HEALTH: 
OBSERVATIONS MADE ON VARIOUS DISEASES 

 Many epidemiological studies have shown that regular 
intake of natural polyphenols in grape juice, red wine, and in 
some other beverages is associated with reduced risk of car-
diovascular disease [24-26]. In general, more than two thirds 
of the polyphenols consumed in the diet are grapes which 
contain a wide variety of polyphenols including resveratrol, 
catechins, flavonoids, and its derivatives, flavons, flavonols, 
and anthocyanidins. 

 Indeed, these compounds present in the red wine possess 
a number of biological effects that might participate in vas-
cular protection, including anti-aggregatory, antioxidant, and 
free radical scavenging properties. Another therapeutically 
relevant effect of flavonoids may be their ability to interact 
with the generation of nitric oxide (NO) from vascular endo-
thelium, which leads not only to vasodilatation, but also to 
the expression of genes that protect the cardiovascular sys-
tem [27-29]. Due to their antioxidant properties, diets sup-
plemented with foods containing flavonoids might also pro-
tect different tissues against ischemic damage. Flavonoids 
reduce oxidative and nitrosative stress leading to cellular 
death. All these effects of flavonoids might interfere with 
atherosclerotic plaque development and stability, vascular 
thrombosis, and occlusion, and they might, therefore, explain 
their vascular protective properties [28-30]. 

 Epidemiological studies have suggested that light to 
moderate consumption of alcoholic beverages, particularly 
red wine, is associated with a reduction in overall mortality, 

and this effect is attributable primarily to a reduced risk of 
coronary heart disease (CHD) [31]. 

 Polyphenols have long been recognized to possess anti-
hepatotoxic, antiinflammatory, antiatherogenic, antiallergic, 
antiosteoporotic, antioxidant and anticancer activities [32]. 

 Atherosclerosis can be considered to be a form of chronic 
inflammation resulting from interaction between modified 
lipoproteins, monocyte-derived macrophages, T cells, and 
the normal cellular elements of the arterial wall. Once adher-
ent to the endothelial cells, leukocytes enter the intima by 
diapedesis between endothelial cells at their junctions. Once 
resident in the arterial intima, monocytes acquire the mor-
phological characteristics of macrophages, undergoing a 
series of changes that lead ultimately to foam cell formation 
characterized by the presence of modified forms of lipopro-
tein, such cholesterol esters accumulated in cytoplasmatic 
droplets [33]. The monocytes increase expression of scaven-
ger receptor A (SRA) and CD36, and then internalize these 
oxidized Low Density Lipoprotein (oxLDL) [34,35]. Al-
though the differentiation of monocytes into macrophages 
may initially serve a protective function by removing cyto-
toxic and proinflammatory oxLDL particles or apoptotic 
cells, progressive accumulation of macrophages and their 
uptake of oxLDL ultimately lead to macrophage necrotic 
death with subsequent release of cellular proteases, inflam-
matory cytokines, and prothrombotic molecules, which con-
tribute to plaque instability, plaque rupture, and acute throm-
botic vascular occlusion [36]. 

 Among factors of endothelial dysfunction and atheroscle-
rosis development elevated and modified LDL, hypertension, 
diabetes mellitus, herpes viruses or Chlamydia pneumoniae, 
lipopolysaccharides (LPS) [37,38] alone or in combinations 
have been included. 

 As above cited, polyphenols have generated a great 
amount of scientific research due to their in vivo and in vitro 
antioxidant capabilities with beneficial effects on cardiovas-
cular health. This relation was clear in the “French Paradox” 
phenomenon as well as in the Mediterranean diet. The 
French Paradox is defined as low incidence of CHD [39,40] 
while consuming a diet rich in saturated fat. The Mediterra-
nean diet, rich in fruits and wine, was shown to protect 
against the occurrence of coronary events [39,41] and may 
help reverse hyperlipidemia, alter the atherogenicity of LDL 
particle, and protect the cholesterol in LDL from oxidation 
[42]. The French Paradox hypothesizes that reduced inci-
dence of cardiovascular manifestations of atherothrombotic 
disease in France and neighbouring Mediterranean countries 
is due, at least in part, to their cultural dietary features, 
mainly a regular and moderate consumption of wine, in 
comparison to Anglo-Saxon populations [43] whose inci-
dence of cardiovascular events is much higher for the same 
level of “regular” cardiovascular risks (hypercholes-
terolemia, hypertension, diabetes).  

 Accordingly, a series of in vitro and experimental studies 
pointed out that the constituents of red wine other than alco-
hol are protective against cardio-metabolic disorders. In fact, 
administration of red wine could hamper in vivo platelet 
function, and thrombosis in coronary arteries [44]. However, 
white wine, whisky and beer did not exhibit same properties 
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on platelets. Furthermore, chronic consumption of alcohol 
free red wine prevented arterial thrombosis in hypercholes-
terolemic rats [45]. Dealcoholized red wine but not white 
wine reduced atherosclerosis in apolipoprotein E gene-
deficient mice [46-48]. In human mononuclear cells, pre-
treated with red wine but not vodka the activation of nuclear 
factor (NF)- B induced by very LDL (VLDL) [49] was in-
hibited.  

 Polyphenols (procyanidin) absorbed at intestinal level are 
found in plasma with a maximum plasma concentration after 
2 h ingestion and, then, decrease [50]. Administration of red 
wine or quercetin or catechin inhibited the development of 
aortic lesion on atherosclerotic Apolipoprotein E-knockout 
mice preventing LDL oxidation [51]. Ethanol facilitated the 
absorption of polyphenols from red wine, and their concen-
tration is inversely correlated with CHD mortality and mor-
bidity [51,52]. In hamsters, phenolic extracts from grape 
seeds and marc, at a dose equivalent to two glasses of red 
wine per meal, decreased plasma cholesterol and prevented 
aortic atherosclerosis occurrence [53]. 

 Polyphenols can exert a direct antioxidant activity, dis-
playing an array of antiatherogenic mechanisms such as: 
inhibition of platelet aggregation [54], downregulation of 
nuclear factor ( B) (NF- B) activation, and subsequently 
inhibition of adhesion molecule expression [55], and endo-
thelium vasorelaxation via increased synthesis of NO [56].  

 In particular, the enhanced generation of NO [57-59], a 
platelet inhibitor and a powerful vasodilator, caused by 
polyphenolic red wine components in vitro and in vivo, con-
stitutes an important modulatory component of hemostatic 
function, and may represent a clinically relevant mechanism 
to explain the protective effect of moderate red wine con-
sumption on cardiovascular disease in man [60,61].  

 Other studies provided evidence that oral administration 
of red wine polyphenolic compounds (ProvinolsTM) pre-
vented the development of cardiovascular alterations in NO 
deficient hypertension [62] as well as it induced a faster and 
more profound decrease of blood pressure in developed NO 
deficient hypertension [63]. In this direction, there is evi-
dence that a phenolic extract from red wine upregulates en-
dothelial NO synthase expression and, thus, NO production 
by endothelium [60]. In turn, NO possesses other antiathero-
genic activities such as inhibition of platelet aggregation, of 
adhesion to the vascular wall, of smooth muscle cell prolif-
eration and of gene expression involved in atherogenesis, 
respectively [64,65], influx of atherogenic monocytes and 
LDL into the wall of arteries [66]. However, other investiga-
tions have failed to demonstrate any influence of red wine or 
alcohol on a rabbit model of atherosclerosis [67]. On the 
other hand, both red wine and non-alcoholic wine prevented 
rabbit atherosclerosis in a lipid-independent manner [68]. 

 It is well known that NO is a simple diatomic molecule 
consisting of one atom of nitrogen and one atom of oxygen, 
whose physico-chemical and biological properties are deter-
mined by its small size (30 kDa), absence of charge and its 
single unpaired electron. NO is a gas under atmospheric 
conditions but a solute within cells and tissue [69]. It is gen-
erated by a group of cytosolic or membrane-bound isoen-
zymes, named nitric oxide synthase enzyme (NOS or NOS2) 

and constituted by a sequence of 1,294 aminoacids. This 
enzyme converts the terminal guanidine-nitrogen atoms on 
the aminoacids L-arginine into NO and L-citruline either in 
mammalian or non-mammalian cells [70,71], and acts as a 
vascular relaxing agent, and inhibitor of platelet aggregation. 
NO is utilized throughout the animal kingdom as a signalling 
or toxic agent between cells [69]. NO plays several roles in 
immunity, as a toxic agent towards infectious organisms [72] 
either bacterial or viral, an inducer or suppressor of apoptosis 
[73] or an immunoregulator [74-77]. On the other hand, the 
formation of more toxic radicals occurs when NO combines 
with O2

-
 radicals, leading to peroxinitrite formation which 

can degrade to hydroxyl radical. Regarding iNOS, it is 
known that its activation does not depend on calcium signal 
[69], but is continuously expressed once activated. 

 NO may regulate it own synthesis functioning as a nega-
tive feedback modulator for the same iNOS activity both at 
level of mRNA and at level of enzyme activity by interacting 
with the enzyme-bound heme of iNOS gene. 

 In our in vitro studies we have observed NO production 
from human mononuclear cells from healthy donors treated 
with red wine polyphenols. In particular in preliminary stud-
ies we have tested three different types of red wine (Primi-
tivo, Lambrusco and Negroamaro) with different polyphe-
nols contents. Negroamaro was the strongest inducer of NO 
production [78] and, therefore, in subsequent experiments 
this wine was consistently employed. An explanation for this 
different of behavior response among different wines may 
depend on the cultivar, on the type of grape, and the country 
of origin [79,80]. In our in vitro test system, we have chal-
lenged human healthy mononuclear cells with whole wine, 
polyphenols alone, and dealcoholized wine. All these sam-
ples were used at two different dilutions: 1:5 containing 3 
μg/ml and 1:10 containing 1,5 μg/ml of polyphenols, respec-
tively. Data obtained, clearly demonstrated a significant pro-
duction of NO in presence of polyphenols and ethanol and 
polyphenols alone, whereas dealcoholized samples did not 
produce NO, thus excluding a possible contribution of alco-
hol in this function [78]. 

 Despite the fact that the majority of studies [81-83] have 
observed NO production from endothelial cells stimulated 
with polyphenols, we were the first to observe NO produc-
tion from PBMC, as also confirmed by further studies on the 
inducible nitric oxide enzyme (iNOS) expression in mono-
cytes in the presence of polyphenols. 

 When mononuclear cells were stimulated in presence of 
whole wine and/or polyphenols plus LPS, respectively, no 
increase of NO production and, therefore, of iNOS expres-
sion was observed. 

 Of note, studies performed in western blotting demon-
strated that TLR-4 expression was strongly expressed only in 
cells treated with E.coli LPS but not in presence of red wine 
polyphenols [84]. 

 These results could be explained as an antagonism link-
age for the same receptor (TLR-4) between polyphenols and 
LPS. These informations may be of clinical relevance be-
cause in the course of Gram-negative infections, intake of 
polyphenols could prevent noxious reactions triggered by 
LPS. 
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 Also, NO is able to limit the flux of atherogenic plasma 
proteins into the artery wall.  

 In previous studies, it was reported that red wine poly-
phenol compounds (RWPCs) from different sources, includ-
ing dry powder from red wine (Provinol), were able to pro-
duce ex vivo endothelium dependent relaxation in rat aortic 
rings [85,86] by enhanced NO synthesis rather than by en-
hancing the biological effectiveness of NO or by protecting 
it against breakdown by superoxide anions (O2

-2
). These ef-

fects of RWPC probably involved the NO pathway; in as 
much as enhanced in vitro endothelium-dependent relaxation 
was observed as a result of enhanced NO synthesis [87]. 

 Polyphenols have been studied in other diseases, such as 
experimental colitis induced in mice, and it was observed 
that dietary rutin but not its aglycone quercetin ameliorated 
dextran sulphate sodium-induced colitis in mice, a model of 
inflammatory bowel disease [88].The presence or absence of 
a sugar chain in polyphenols is important for expressing ac-
tivities. It is generally accepted that the type of sugar at-
tached may represent, a major determinant of the extent of 
small intestinal absorption [89-91], although the aglycone is 
critical for the expression of biological activities. 

ROLE AND SIGNIFICANCE OF TOLL-LIKE RE-

CEPTORS AND THEIR MODULATION BY POLY-
PHENOLS 

 LPS is an integral component of the outer membrane of 
Gram-negative bacteria, inducing cellular responses by its 
complexing with circulating LPS-binding protein and subse-
quently, binding to CD14. This, in turn, facilitates the inter-
action of LPS with signaling molecules belonging to the 
Toll-like receptor (TLR) family [92]. TLRs induce innate 
immune responses by recognizing invading microbial patho-
gens leading to the activation of adaptive immune responses 
[93]. TLRs are evolutionarily conserved Pattern recognition 
receptors (PRRs) that recognize conserved Pathogen Associ-
ated Molecular Patterns (PAMPs) present on various mi-
crobes [94-96]. These receptors have varied tissue distribu-
tion and recognize many different PAMPs. TLR signaling is 
initiated by the recruitment of cytosolic adapters that all 
share the TIR domain [97]. Currently, at least 13 TLRs in 
mammalian cells are identified with different types of ago-
nists [98]. TLR agonists include LPS for TLR4, bacterial 
lipopeptides, and peptidoglycan for TLR2, dsRNA for 
TLR3, flagellin for TLR5, and ssRNA and bacterial unmeth-
ylated CpG DNA for TLR7 and TLR9, respectively [99-
106]. It was reported that TLR4 signaling pathways can be 
activated by nonbacterial agonists such as heat shock protein 
60, fibronectin, Taxol, respiratory syncytial virus fusion pro-
tein and saturated fatty acids [107-112]. This fact points to 
the possibility that TLRs are involved in inflammatory re-
sponses induced by molecules with non-infectious origin. 

 Broadly, the stimulation of TLRs by agonists can trigger 
the activation of two downstream signaling pathways: 
MyD88-dependent and -independent pathways [96]. MyD88 
is the immediate adaptor molecule that is common to all 
TLRs, with the exception of TLR3. 

 MyD88 was the first TIR domain containing adapter pro-
tein characterized and was shown to interact with the TIR 
domain on TLR/IL-1R cytoplasmic tails by homotypic inter-

action. MyD88 is crucial for normal NF- B induction in 
response to Interleukin (IL)-1, IL-18, and LPS [113,114]. 
MyD88 recruitment to TLR4 following receptor aggregation 
leads to recruitment of another TIR-domain containing 
adapter, TIRAP or Mal. TIRAP mediates NF- B activation 
downstream of TLR2 and TLR4, but not IL-1R or other 
TLRs [115,116]. 

 Currently it is not known how TIRAP selectively acts 
only in a subset of MyD88-mediated signaling pathways 
[117]. 

 MyD88 also recruits IL-1R-associated kinase and TNFR-
associated factor 6 (TRAF6) [118], leading to activation of 
the canonical IKB kinase (IKK)  complex that phos-
phorylates I B  on serine residues 32 and 36, causing its 
ubiquination and the subsequent degradation of I B , lead-
ing to the nuclear translocation and DNA binding of NF- B 
[119-123]. Deregulated activation of TLRs can lead to the 
development of severe systemic inflammation including sep-
tic shock with high mortality. Moreover, chronic inflamma-
tion is known to be an important etiological condition for 
various chronic diseases including atherosclerosis, diabetes, 
and cancer. Recent evidence suggests the involvement of 
TLRs in these chronic diseases [124-126]. Identifying mo-
lecular targets by which pharmacological or dietary factors 
modulate TLR-mediated signaling pathways and target gene 
expression would provide new opportunity to manage the 
deregulation of TLR-mediated inflammatory responses, lead-
ing to acute and chronic inflammatory diseases. 

 The intestinal mucosa is constantly exposed to a myriad 
of antigens, including bacteria and bacterial products (LPS, 
peptidoglycan), viruses, parasites and dietary antigens. The 
host has evolved sophisticated mechanisms to maintain ho-
meostasis in the face of such a hostile environment [127-
129]. 

 With respect to innate signaling polyphenols, inhibit 
LPS-induced TNF-  secretion by macrophages in vitro also 
displaying anti-inflammatory activity in mice [130,131].  

 In a study performed using luteolin, it was found that this 
substance failed to block LPS-induced RelA phosphorylation 
[132]. This suggests that luteolin mainly modulates NF- B 
activity through RelA shuttling and likely not by interfering 
with the transactivating ability of the subunit. In addition, the 
lack of inhibitory effect on p38 phosphorylation indicates 
that luteolin exerts some level of specificity. Thus, the 
blockade of LPS-induced IKK activity and I B  phosphory-
lation in the absence of impaired RelA is a surprising find-
ing.  

 Dysregulated innate responses to the endogenous micro-
flora are a hallmark of intestinal inflammation such as that 
observed in Inflammatory Bowel Disease (IBD) and block-
ade of innate signal transduction may help to restore host 
homeostasis and alleviate inflammation [133,134]. There-
fore, TLR modulation by polyphenols may play a beneficial 
role in IBD characterized by secretion of proinflammatory 
cytokines, such as TNF- . 

NF- B 

 The basic scheme of NF- B signaling consists of a series 
of positive and negative regulatory elements. Inducing stim-
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uli triggers IKK activation leading to phosphorylation, ubiq-
uitination, and degradation of I B proteins. Released NF- B 
dimers are further activated through various posttranslational 
modifications and translocate to the nucleus where they bind 
to specific DNA sequences and promote transcription of tar-
get genes. In its most basic form, therefore, the pathway con-
sists of receptor and receptor proximal signaling adaptor 
molecules: the IKK complexes; I B proteins and NF- B 
dimers. 

 The NF- B family of transcription factors consists of five 
members of the mammalian NF-kB family, p50/p105 (NF-
KB1), p52/p100 (NF-KB2), p65 (RelA), c-Rel, and RelB, 
encoded by NFKB1, NFKB2, RELA, REL, and RELB, re-
spectively, which share an N-terminal Rel homology domain 
(RHD) responsible for DNA binding and homo-and het-
erodimerization. NF- B dimers bind to B sites within the 
promoters/enhancers of target genes and regulate transcrip-
tion through the recruitment of coactivators and corepres-
sors. The transcription activation domain (TAD) necessary 
for the positive regulation of gene expression is present only 
in p65, c-Rel, and RelB. As they lack TADs, p50 and p52 
may repress transcription unless associated with a TAD-
containing NF- B family member or other proteins capable 
of coactivator recruitment. Constitutive binding of p50 or 
p52 homodimers to B sites on NF- B-responsive promoters 
may, thus, act to check NF- B transactivation until displaced 
by transcriptionally competent NF- B dimers. There is con-
siderable structural information about NF- B dimers in both 
its inactive I B-bound form and active DNA bound state. 
Crystal structures of NF- B dimers bound to B sites reveal 
how the immunoglobulin-like domains that comprise the 
RHD contact DNA. The NH2-terminal Ig-like domain con-
fers selectivity for certain types of B sites, whereas the hy-
drophobic residues within the C-terminal domain provide the 
dimerization interface between NF- B subunits [135]. 

 In its inactive state, NF- B dimers are associated with 
one of three typical I B proteins, I B  (NFKBIA), I B  
(NFKBIB), or I B  (NFKBIE), or the precursor proteins 
p100 (NFKB2) and p105 (NFKB1). These I Bs maintain NF-

B dimers in the cytoplasm, and are crucial to signal respon-
siveness. All I B proteins are characterized by the presence 
of multiple ankyrin repeat domains. The prototypical and 
most extensively studied member of the family is I B . I B  
is rapidly degraded during activation of canonical NF- B 
signaling pathways, leading to the release of multiple NF- B 
dimers, although the p65:p50 heterodimer is likely the pri-
mary target of I B . 

 Binding to I B prevents the NF- B:IkB complex from 
translocating to the nucleus, thereby maintaining NF- B in 
an inactive state. NF- B signalling is generally considered to 
occur through either the classical or alternative pathway 
[136]. 

 Stimuli, such as proinflammatory cytokine and, PAMPS 
can activate the classical NF- B pathway, leading to activa-
tion of the IKK complex. This complex is composed of two 
catalytic subunits, IKK  (also known as IKK1) and IKK  
(also known IKK2), and a regulator subunit, IKK  (also 
called NEMO). The activation of the classical pathway 
mainly acts through the phosphorylation of I Bs catalyzed 
by IKK  in an IKK -dependent manner.  

 The degradation of I B exposes the nuclear localization 
signal of the NF- B family protein, leading to its nuclear 
translocation and binding to enhancers or promoters of target 
genes. Instead the alternative pathway is strictly dependent 
on and independent of IKK  and IKK . Therefore, the IKK  
is an essential component of the alternative NF- B activation 
pathway based on regulated NF- B2 processing rather than 
I B degradation. In this pathway, IKK  phosphorylates NF-

B2 at two C-terminal sites, and this activity requires its 
phosphorylation by upstream kinases, one of which may be 
NF- B-inducing kinase (NIK). Phosphorylation of these 
sites is essential for p100 processing to p52, while polyubiq-
uitination and proteasomal degradation are also indispensa-
ble. The phosphorylation-dependent ubiquitination of p100 
results in degradation of its inhibitory C-terminal half, which 
is different from the complete degradation of p100, as seen 
with I Bs. The activation of this alternative pathway then 
brings about nuclear translocation of p52-RelB dimers [136]. 
There are seven I B family members I B , I B , BCL-3, 
I B , I B , and the precursor proteins p100 and p105, which 
are characterized by the presence of five to seven ankyrin 
repeats that assemble into elongated cylinders that bind the 
dimerization domain of NF- B dimers. The crystallographic 
structures of I B  and I B  bound to p65/p50 or p65/c-Rel 
dimers revealed that the I B proteins mask only the nuclear 
localization sequence (NLS) of p65, whereas the NLS of p50 
remains accessible [137,138]. The presence of this accessible 
NLS on p50, coupled with nuclear export sequences (NES), 
that are present on I B  and p65, results in constant shut-
tling of I B /NF- B complexes between the nucleus and the 
cytoplasm, although the steady-state localization is in the 
cytosol [139]. The dynamic balance between cytosolic and 
nuclear localization is altered upon I B  degradation, be-
cause it removes the contribution of the I B NES and ex-
poses the masked NLS of p65, resulting in predominantly 
nuclear localization of NF- B.  

 Inhibitory I B proteins tightly control the biological ac-
tivity of Rel/NF- B transcription factors through their asso-
ciation with homo- or heterodimers of this family. Members 
of the family share a highly conserved NH2-terminal se-
quence termed the Rel homology domain, which is required 
for DNA binding, dimerization, nuclear localization, and 
interaction with the I B molecules. In response to an in-
flammatory stimulus, cytokines, or viral infections, I B pro-
teins are rapidly degraded by the 26 S multicatalytic protea-
some. Degradation of I B , the most intensively character-
ized inhibitor, requires phosphorylation on serine residues 
32-36 [140] by the activated I B kinase complex.  

 As a consequence of I B  degradation, the freed NF- B 
accumulates in the nucleus, where it activates gene transcrip-
tion [141]. NF- B acts on genes codifying for cytokines, 
chemokines, immune receptors, and adhesion molecules, and 
its activation leads to a coordinated increase in the expres-
sion of inflammatory and immune response mediators. Apart 
from the well characterized inhibitory function on NF- B in 
the cytoplasm [141], I B also participates in the inhibition of 
NF- B-dependent transcription in the cell nucleus. Once the 
stimulus is withdrawn, NF- B activity is rapidly shut down, 
ensuring that the I B-dependent transcriptional activity is 
only transient.  
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 This is accounted for by two mechanisms. First, free, 
non-NF- B-associated I B  has the capacity to enter the 
nucleus when the protein is overexpressed from a heterolo-
gous promoter. Such a property seems to rely on an active 
process mediated by a non-canonical nuclear import se-
quence, located within the second ankyrin domain of I B  
protein [142]. Secondly, I B  has the ability to both prevent 
NF- B binding to and to dissociate NF- B from specific 
DNA consensus sequences. Nuclear localization of I B  is 
induced by stimuli activating NF- B and can be considered 
as part of a physiological mechanism regulating NF- B-
dependent transcription. This assumption is supported by the 
fact that a massive accumulation of I B , which becomes 
detectable in the nucleus upon extinction of the cell signal-
ing, occurs concomitantly with loss of NF- B-DNA binding 
activity and extinction of NF- B-dependent transcription. 
The main observation in this study is that nuclear I B , 
known to be detectable transiently upon extinction of the 
activation stimulus, is in fact entering the nucleus steadily in 
cells continuously exposed to stimulation, but is constantly 
degraded in the nuclear compartment as long as stimulation 
persists.  

 Current findings reveal the existence of two dynamically 
related mechanisms finely tuning the transcriptional activity 
of NF- B into the nucleus of mammalian cells. The first one 
permits nuclear NF- B to remain transcriptionally active as 
long as stimulation is ongoing, and it results from protea-
some-mediated degradation of nuclear I B , thus suppress-
ing the termination properties of this inhibitor. The second 
one, intervening later when NF- B activity is no longer 
needed, results from retrograde transport of NF- B proteins 
to the cytoplasm by nuclear I B  molecules whose destruc-
tion is stopped when stimulation is finished, thus liberating 
the nucleus from then unwanted NF- B molecules. These 
two mechanisms would thus successively act to optimize the 
efficiency and the timing of NF- B-dependent gene tran-
scription, adapting the latter to cell activation or rest, death, 
or survival. Inducible transcription factors regulate immedi-
ate and long-lived cellular responses necessary for organism 
adaptation to environmental plasticity. Such responses are 
mediated to a large degree through changes in gene expres-
sion [143]. One transcription factor that serves as a key re-
sponder to changes in the environment is NF- B, an evolu-
tionarily conserved signaling module that plays a critical role 
in many biological processes. 

 The biological system in which NF- B plays the most 
important role is the immune system [123,136]. In particular, 
recent results suggest that the classical pathway is mostly 
involved in innate immunity while the alternative pathways 
may be involved in adaptive immunity. 

 NF- B regulates the expression of cytokines, growth 
factors, and effector enzymes in response to ligation of many 
receptors involved in immunity including T-cell receptors 
(TCRs), B-cell receptors (BCRs) and Toll/IL-1R family 
[144,136]. 

 NF- B also regulates the expression of genes outside the 
immune system and, hence, can influence multiple aspects of 
normal physiology and disease. Recognition of I B  leads 
to polyubiquitination at conserved residues, Lys 21 and Lys 
22 on I B , and NF- B plays an essential role in early 

events of innate immune responses through TLR signalling 
pathways.  

 NF- B is a redox-sensitive transcription factor that is 
involved in the transmission of various signals from the cy-
toplasm to the nucleus of numerous cell types [145]. It is 
found as a trimer consisting of p50, p65, and I B subunits in 
the cytosol. The release of I B from the trimer results in the 
migration of the p50/p65 heterodimer to the nucleus and the 
subsequent DNA binding [146]. This process activates genes 
involved in the immune, inflammatory, or acute-phase re-
sponse, such as cytokines [monocyte chemoattractant pro-
tein-1 (MCP-)1, IL-8], adhesion molecules, and procoagu-
lant proteins (tissue factor, plasminogen activator inhibitor 
1). Recent data strongly suggest that NF- B could be in-
volved in the pathogenesis of atherosclerosis [147]. NF- B is 
present in the human atherosclerotic lesions in the nuclei of 
macrophages and endothelial cells [148] and participates in 
dysregulation of vascular smooth muscle cells in human 
atherosclerosis [149]. Conversely, accumulating evidence 
suggests that postprandial lipemia is strongly associated with 
the risk of developing atherosclerotic lesions [150]. In fact, 
in this study, it has been shown that a fat-enriched breakfast 
increases triglycerides and chylomicrons, whereas the simul-
taneous consumption of red wine was associated with an 
increment in total triglycerides, chylomicrons, and VLDL 
triglycerides. Postprandial lipemia was correlated with an 
increment of NF- B activation in PBMCs that was prevented 
by red wine intake. An intake of another form of alcohol, 
vodka, did not prevent the activation of this transcription 
factor provided by postprandial lipemia. 

 Because VLDLs were the only lipoproteins augmented 
following red wine intake but not after the fat ingestion 
alone, the effects of VLDLs on NF- B activation were 
tested. VLDLs elicited an increase in NF- B activation in 
human mononuclear THP-1 cells that was prevented by co-
incubation with quercetin and -tocopherol succinate, two 
antioxidants contained in red wine [151]. Because NF- B 
regulates many genes involved in the pathogenesis of coro-
nary artery disease, these results provided a new explanation 
concerning the potential beneficial effects of moderate con-
sumption of red wine in human beings. Therefore, it has 
been suggested that NF- B activation could be involved in 
the pathogenesis of atherosclerosis, because numerous proin-
flammatory genes are regulated by this transcription factor 
[152]. Furthermore, an increased expression of numerous 
genes known to be regulated by NF- B has been found in the 
atherosclerotic lesions, [149] and NF- B is selectively and 
markedly activated in humans with unstable angina pectoris 
[147]. Furthermore, monocytes are involved in the progres-
sion of atherosclerosis and are potent activators of blood 
coagulation through their ability to synthesize procoagulant 
factors (plasminogen activator inhibitor-1, tissue factor) that 
are regulated by NF- B.  

 Conversely, it is known that oxidants increase NF- B 
activation, whereas such antioxidants as pyrrolidine dithio-
carbamate and N-acetyl cysteine inhibit NF- B activation 
[153]. Because of the redox regulation of NF- B, it is possi-
ble that the antioxidants contained in red wine were the 
cause of the inhibition of NF- B activation. In this sense, 
Feng et al., [154] demonstrated that red wine intake inhibited 
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MCP-1 expression in cholesterol-fed rabbits, a protein regu-
lated by NF- B, and this effect might be partly attributed to 
its antioxidant effects. In addition, catechin and vitamin E 
prevented the development of fatty streak in hypercholes-
terolemic hamsters [155] and attenuated early lesion devel-
opment in rabbits [156]. Moreover, red wine and non alco-
holic wine products can prevent plaque formation in hyper-
cholesterolemic rabbits despite significant increases in LDL 
[68]. Also, red wine polyphenols inhibited proliferation of 
vascular smooth muscle cells [157] and reduced the suscep-
tibility of LDL to cause oxidation in vitro [158] and in vivo 
[159]. In conclusion, red wine intake, but not another form 
of alcohol beverage intake (vodka), prevented NF- B activa-
tion in PBMCs elicited in healthy volunteers by postprandial 
lipemia. Because NF- B activation is involved in the patho-
genesis of atherosclerotic lesions, the inhibitory effect of red 
wine on NF- B activation provides a further explanation of 
the beneficial effects of red wine intake in cardiovascular 
disease [49].  

MAPKS FAMILY 

 MAPKs are a prominent group of serine/threonine pro-
tein Kinases that in mammalian cells consist of three fami-
lies: p38 MAPK, ERK, and JNK. Mammalian ERK1 and 
ERK2 (ERK1/2) MAPKs predominantly mediate mitogenic 
and cellular differentiation signals: p38 and JNK MAPKs are 
mainly activated by exposure of cells to stress signal [160-
162]. 

 Numerous reports indicate that MAPK signaling path-
ways are affected by ethanol in a manner that depends on the 
organ or cell type, the duration of ethanol administration 
(acute vs chronic), and the type of stimulatory agents [163]. 
A study on the effect of ethanol exposure on MAPK activity 
monocytes/macrophages showed that LPS-induced p38 
MAPK activation was inhibited in human blood cells cul-
tured in the presence of ethanol [164]. 

 Finally, results of MAPK-mediate processes depend on a 
length and a degree of activation of the MAPKs. Because 
MAPKs are activated by a double phosphorylation of a rele-
vant threonine and tyrosine residues, a removal of a single 
phosphate from phosphothreonine or phosphotyrosine affects 
the activity of the enzymes. 

 MAPKs were studied as potential therapeutic targets in 
inflammatory and proliferative disorders [165]. Activation of 
MAPK pathways by LPS and cytokines represents a poten-
tial signaling mechanism for NO production during the in-
flammatory response. 

 Furthermore, the extracellular signal-regulated kinases 
(ERKs), c-jun N-terminal kinase/stress-activated protein 
kinases (JNK/SAPKs), and p38 MAPK pathways have been 
implicated in the activation of AP-1, which is involved in 
iNOS promoter activation by cytokines. The ERK and p38 
MAPK pathways played a crucial role in human NOS tran-
scriptional activation via modulation of AP-1 binding to spe-
cific promoter sequences. 

 In our in vitro experiments we have evaluated the mo-
lecular mechanisms elicited by polyphenols from red wine 
from healthy human PBMC [84]. In particular, our interest 
has been to investigate the putative activation of p38 and 

ERK1/2 and expression of I B  as an inhibitory of NF- B. 
Also in this case we have observed a stronger activation of 
P-p38 and of PERK1/2 when mononuclear cells were treated 
in presence of polyphenols and alcohol and polyphenols 
alone but not with alcohol alone. Furthermore, stimulation of 
mononuclear cells in presence of a double stimulus (poly-
phenols plus LPS) gave rise to a lesser expression of these 
activated molecules in comparison with cells treated in the 
absence of LPS, thus confirming that a reduced expression of 
P-p38 and PERK1/2 should be beneficial for the host since it 
avoids an exaggerated release of proinflammatory cytokines 
that could be detrimental to the organism. 

 Regarding phosphorylated form of I B  we have ob-
served its decreased expression when cells were stimulated 
in presence of whole wine and polyphenols alone in com-
parison with LPS treated cells. These data are in accordance 
with the lower expression of p65/NF- B than that of LPS 
treated cells.  

 As far as p38 activation is concerned, it has been ob-
served that polyphenols and alcohol are responsible for p38 
activation that acts on NF- B which, in turn, stimulates re-
lease of t-PA, thus reducing the risk for acute coronary heart 
disease (CAD) by promoting fibrinolysis [166]. 

CYTOKINE RELEASE 

 Results on cytokine production obtained following stimu-
lation of PBMC with red wine polyphenols seem to support 
the involvement of p38. 

 In previous experiments we found that Negroamaro 
polyphenols induced IFN-  release from PBMC. It is known 
that p38 may act stimulating IFN-  which, bound to its spe-
cific membrane receptor, activates the molecular nuclear 
factor STAT1, that, in turn, by binding to motifs at -5.2 and -
5.8 kb in the iNOS promoter leads to NO production.  

 On the other hand, we have also observed [167] an in-
crease in IL-12 which is known that acts as a key regulator 
of cell-mediated immune responses through the induction of 
T helper (h)1 type differentiation, and induces cellular im-
munity by promoting IFN-  release. Furthermore, release of 
IL-1 , IL-6, and IL-10 (even if to a lesser extent) after stimu-
lation of PBMC with red wine polyphenols was observed. 
On the other hand, IL-6 itself stimulates the release of IL-10, 
thus restoring the “equilibrium” between cytokines of Th1 
and Th2 origin (Fig. 5). 

 Briefly, these results, demonstrate that moderate intake of 
red wine polyphenols could be beneficial in terms of host 
protection. IL-10 seems to control the proinflammatory 
pathway even if limited biochemical and clinical evidence 
suggests a link between IL-10 and CHD [168]. In fact, in a 
randomized clinical trial, that examined the effects of hor-
mone replacement therapy on post-menopausal women with 
known coronary atherosclerosis, elevated IL-10 concentra-
tion was associated with an increased risk for future cardio-
vascular events. However, our results did not provide evi-
dence for an elevated production of IL-10.  

 On the other hand, IFN-  and IL-12 can promote macro-
phage, natural killer and cytotoxic cells responses toward 
various pathogens such as bacteria, virus and parasites in-
volved in atherosclerotic plaque formation. 
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INTAKE OF RED WINE AND INTESTINAL AB-
SORPTION 

 The majority of polyphenols have a sugar residue linked 
to the carbon skeleton. Glucose is a common sugar residue; 
however, residues can include different monosaccharides, 
disaccharides, or oligosaccharides. Other compounds includ-
ing amines, organic acids, carboxylic acids, lipids, and other 
polyphenols may also be linked to the basic polyphenolic 
structure [169].  

 Because of the abundance of polyphenols in nature, it is 
not surprising that they can be found in fruits, vegetables, 
coffee, tea, chocolate, and soy [4]. Once ingested, polyphe-
nols have several possible fates, including absorption in the 
small intestine or colon, and/or excretion in the feces or 
urine. The site and rate of absorption depend on the chemical 
structure, degree of glycosylation/acylation, conjugation of 
other phenolics, molecular size, degree of polymerization, 
and solubility [169,170]. In the small intestine, polyphenols 
can enter the mucosa through passive diffusion. In some in-
stances, hydrophobic moieties must be cleaved for absorp-
tion to take place. In the colon, polyphenols are initially di-

gested into smaller phenolic structures by gut microflora. 
After this initial digestion is complete, the polyphenols and 
their metabolites may be absorbed [169]. 

 Once absorption has taken place, polyphenols and their 
metabolites are transported to the liver. Further digestion 
may occur there, and then polyphenol metabolites may be 
transported to extrahepatic tissues or to the kidneys where 
they are excreted in the urine. For the majority of polyphe-
nols, the maximum concentration in the plasma is apparent 
1–2 h after ingestion. Polyphenols may also be incorporated 
into bile, return to the small intestine, and eventually be ex-
creted in the feces [169]. 

 In general terms, peak plasma concentrations of polyphe-
nols were higher after aglycone ingestion than after gluco-
side ingestion, thus indicating a preferential absorption of 
polyphenols via the small intestine [171,172]. 

 Intake of polyphenols can stimulate Gut Associated 
Lymphoreticular Tissue (GALT) that is rich in macrophages 
which generating NO can enter into circulation via lymphatic 
vessels and may contribute to the increase in plasma levels 
of NO along with the aliquot generated by endothelial cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Red wine polyphenols (Negroamaro) polarize the immune response toward the Th1 type via release of IL-12 and subsequent pro-

duction of IFN- . IL-6 and IL-1  production is enhanced and counterbalanced by IL-10. Thus, moderate red wine assumption is able to pro-

mote Th1 cytokine release and the proinflammatory pathway with subsequent protection of the host against pathogens. 



Polyphenols from Red Wine Modulate Immune Responsiveness Current Pharmaceutical Design, 2008, Vol. 14, No. 26    2743 

 Finally, we have also observed in vitro antibody produc-
tion (IgA and IgG) from human healthy PBMC in presence 
of whole wine and polyphenols alone. This fact plays an 
important role in those pathological conditions where hu-
moral and cellular immune responses are compromised. Af-
ter intake of red wine polyphenols, GALT B cells are acti-
vated and their products can arrive to distant sites (spleen, 
glands and peripheral blood), thus providing specific im-
mune protection (Fig. 6) In particular, cytokine and immu-
noglobulin production could be very important in the case of 
geriatrics individuals, generally characterized by a series of 
immune dysfunctions, due to the involution of thymus (T 
cells deficiency) and altered antigen presentation with a de-
fective phagocytosis and killing of microorganisms also due 
to a reduced NO [173]. 

 Reequilibrium of immune balance in the elderly after 
moderate intake of red wine should be taken into serious 
consideration. 

FUTURE TRENDS 

 As we have discussed in this review, a large body of evi-
dence suggests that red wine polyphenols exert beneficial 

effects to human health when assumed at a moderate dosage. 
In particular, Negroamaro wine is a powerful inducer of NO 
and of proinflammatory cytokines, and its potential athero-
genic property has been described. However, this finding is 
not supported by other reports dealing with single polyphe-
nols and not with a mixture of them as in the case of whole 
wine. For instance, just recently evidence has been provided 
that (+)- catechin hampers tumor angiogenesis via inhibition 
of proinflammatory cytokines, NO, Vascular Endothelial 
Growth Factor, IL-2, and Tissue Inhibitor of Metalloprotein-
ase-1 [174]. 

 This implies that according to their polyphenol content 
different types of wine may exhibit a variety of biological 
effects into the host, and, therefore, investigations in this 
direction should be pursued. In fact, isolation and characteri-
zation of polyphenols from red grapes endowed with the 
strongest antiinflammatory and antineoplastic activities 
should represent the next target in this type of studies. 
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Fig. (6). Intake of red wine polyphenols stimulates release of immunoglobulins from B cells within GALT.  Immunoglobulin reaches lym-
phoid organs and protects the host aganist various pathogens. 
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ABBREVIATIONS 

BCRs = B cell receptors 

CHD = Coronary Heart Disease 

GALT = Gut Associated Lymphoreticular Tissue 

HDL = High Density Lipoprotein 

IL = Interleukin 

I B  = Inhibitor of NF- B 

iNOS = inducible Nitric Oxide Synthase 

LDL = Low Density Lipoprotein 

LPS = Lypopolysaccharide 

MAPK = Mitogen Activated Protein Kinase 

MCP-1 = Monocyte Chemoattractant Protein-1 

NO = Nitric Oxide 

NF- B = Nuclear Factor - B 

PBMC = Peripheral Blood Mononuclear Cell 

RWPCs = Red Wine Polyphenol Compounds 

SIRT = Sirtuitin 

SRA = Scavenger Receptor A 

TIMP-1 = Tissue Inhibitor of Metalloproteinase-1 

TLR = Toll like Receptor 

TNF-  = Tumor Necrosis Factor-alpha 

VEGF = Vascular Endothelial Growth Factor 

VLDL = Very Low Density Lipoprotein 
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