Clinical and MRI measures to identify non-acute MOG-antibody disease in adults

Rosa Cortese,¹,² Marco Battaglini,¹ Ferran Prados,²,³,⁴ Alessia Bianchi,² Lukas Haider,² Anu Jacob,⁵,⁶ Jacqueline Palace,⁷ Silvia Messina,⁷ Friedemann Paul,⁸ Jens Wuerfel,⁹ Romain Marignier,¹⁰,¹¹ Françoise Durand-Dubief,¹⁰,¹¹ Carolina de Medeiros Rimkus,¹² Dagoberto Callegaro,¹³ Douglas Kazutoshi Sato,¹⁴ Massimo Filippi,¹⁵,¹⁶,¹⁷,¹⁸,¹⁹ Maria Assunta Rocca,¹⁵,¹⁶,¹⁹ Laura Cacciaguerra,¹⁵,¹⁶,¹⁹ Alex Rovira,²⁰ Jaume Sastre-Garriga,²¹ Georgina Arrambide,²¹ Yaou Liu,²² Yunyun Duan,²² Claudio Gasperini,²³ Carla Tortorella,²³ Serena Ruggieri,²⁴,²⁵ Maria Pia Amato,²⁶,²⁷ Monica Ulivelli,¹ Sergiu Groppa,²⁸ Matthias Grothe,²⁹ Sara Llufriu,³⁰ Maria Sepulveda,³⁰ Carsten Lukas,³¹ Barbara Bellenberg,³¹ Ruth Schneider,³¹,³² Piotr Sowa,³³ Elisabeth G. Celius,³⁴ Anne-Katrin Proebstel,³⁵ Özgür Yaldızlı,³⁶ Jannis Müller,³⁵,³⁶ Bruno Stankoff,³⁷ Benedetta Bodini,³⁷ Luca Carmisciano,³⁸ Maria Pia Sormani,³⁸ Frederik Barkhof,²,³,³⁹ Nicola De Stefano¹,† and Olga Ciccarelli²,⁴,† for the MAGNIMS Study Group

†These authors contributed equally to this work.

Abstract

MRI and clinical features of myelin oligodendrocyte glycoprotein (MOG)-antibody disease may overlap with those of other inflammatory demyelinating conditions posing diagnostic challenges, especially in non-acute phases and when serologic testing for MOG-antibodies is unavailable or shows uncertain results.
We aimed to identify MRI and clinical markers that differentiate non-acute MOG-antibody disease from aquaporin4 (AQP4)-antibody neuromyelitis optica spectrum disorder and relapsing remitting multiple sclerosis, guiding in the identification of MOG-antibody disease patients in clinical practice.

In this cross-sectional retrospective study, data from 16 MAGNIMS centres were included. Data collection and analyses were conducted from 2019 to 2021. Inclusion criteria were: diagnosis of MOG-antibody disease, AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis, brain and cord MRI at least 6 months from relapse, EDSS on the day of MRI. Brain white matter T2 lesions, T1-hypointense lesions, cortical and cord lesions were identified. Random-forest models were constructed to classify patients as MOG-antibody disease/AQP4-neuromyelitis optica spectrum disorder/multiple sclerosis; a leave one out cross-validation procedure assessed the performance of the models. Based on the best discriminators between diseases, we proposed a guide to target investigations for MOG-antibody disease.

One hundred sixty-two patients with MOG-antibody disease (99F, mean age: 41 [±14] years, median EDSS: 2 [0-7.5]), 162 with AQP4-neuromyelitis optica spectrum disorder (132F, mean age: 51 [±14] years, median EDSS: 3.5 [0-8]), 189 with multiple sclerosis (132F, mean age: 40 [±10] years, median EDSS: 2 [0-8]) and 152 healthy controls (91F) were studied. In young patients (<34 years), with low disability (EDSS<3), the absence of Dawson’s fingers, temporal lobe lesions and longitudinally extensive lesions in the cervical cord pointed towards a diagnosis of MOG-antibody disease instead of the other two diseases (accuracy: 76%, sensitivity: 81%, specificity: 84%, p<0.001). In these non-acute patients, a number of brain lesions<6 predicted MOG-antibody disease versus multiple sclerosis (accuracy: 83%, sensitivity: 82%, specificity: 83%, p<0.001). An EDSS<3 and the absence of longitudinally extensive lesions in the cervical
cord predicted MOG-antibody disease versus AQP4-neuromyelitis optica spectrum disorder (accuracy: 76%, sensitivity: 89%, specificity: 62%, p<0.001). A workflow with sequential tests and supporting features has been proposed to guide a better identification of MOG-antibody disease patients.

Adult non-acute MOG-antibody disease patients showed distinctive clinical and MRI features when compared to AQP4-neuromyelitis optica spectrum disorder and multiple sclerosis. A careful inspection of the morphology of brain and cord lesions together with clinical information, can guide for further analyses towards diagnosis of MOG-antibody disease in clinical practice.

Author affiliations:
1 Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
2 NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
3 Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
4 Universitat Oberta de Catalunya, Barcelona, Spain
5 NMO Clinical Service at the Walton Centre, Liverpool, UK
6 Department of Neurology, Cleveland Clinic, AbuDhabi, UAE
7 Department of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
8 Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitaetsmedizin Berlin, Berlin, Germany
9 Hoffmann LaRoche, Basel, Switzerland
10 Department of Biomedical Engineering, University of Basel, Switzerland
11 Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
12 Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia e Oncologia, São Paulo SP, Brazil
13 Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
14 Pontificia Universidade Católica do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil
15 Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
16 Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
17 Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
18 Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
19 Vita-Salute San Raffaele University, Milan, Italy
20 Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
21 Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat). Vall d’Hebron Institut de Recerca, Vall d’Hebron Hospital Universitari. Universitat Autònoma de Barcelona, Barcelona, Spain

22 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

23 Department of Neurosciences, S. Camillo-Forlanini Hospital, Rome, Italy

24 Department of Human Neurosciences, Sapienza University of Rome, Italy

25 Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy

26 Department NEUROFARBA, University of Florence, Italy

27 IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy

28 Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany

29 Department of Neurology, University Medicine of Greifswald, Germany

30 Center of Neuroimmunology, Service of Neurology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Universitat de Barcelona, Barcelona, Spain

31 Institute of Neuroradiology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany

32 Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany

33 Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

34 Department of Neurology, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
Correspondence to: Rosa Cortese, MD, PhD
Department of Medicine, Surgery and Neuroscience
University of Siena, Siena, Italy
E-mail: rosa.cortese@unisi.it

Running title: MRI and clinical markers of MOGAD

Keywords: myelin oligodendrocyte glycoprotein antibody-associated disease; aquaporin 4-antibody positive neuromyelitis optica spectrum disorder; multiple sclerosis; imaging; differential diagnosis

Abbreviations: Acute disseminated encephalomyelitis (ADEM); aquaporin 4-antibody positive neuromyelitis optica spectrum disorder (AQP4-NMOSD); antibodies (Ab); area under the curve (AUC); cell-based assays (CBA); expanded disability status scale (EDSS); fluffy infratentorial
lesions (FIT); leave one out internal-validation procedure (LOOCV); magnetic resonance imaging in multiple sclerosis (MAGNIMS); myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD); optic neuritis (ON); receiving operated characteristic curve (ROC); relapsing remitting multiple sclerosis (RRMS)

Introduction

Myelin oligodendrocyte glycoprotein (MOG) antibody-(Ab) associated disease (MOGAD) is a recently recognised demyelinating disease of the central nervous system (CNS), with a highly variable disease course and poorly understood pathogenetic mechanisms. The differentiation between MOGAD and other inflammatory demyelinating diseases, such as relapsing-remitting MS (RRMS) and aquaporin-4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) may be challenging, as they share a number of clinical and radiological features. An accurate differentiation between these diseases is crucial, however, to recommend an effective treatment and predict prognosis.

MOGAD can be diagnosed with high specificity by the detection of serum antibodies using anti-MOG antibody cell-based assays (CBA). However, up to a quarter of positive results may be false-positives when the test is performed indiscriminately in a real-life clinical setting (particularly when the titre is low or results are borderline), with MS being the most represented alternative diagnosis. On the other hand, MOG-Ab titres may fluctuate, with some patients turning negative in the non-acute phases of the disease. Differences in assay methods may impact on the results of CBA, and discrepancies in low positive or borderline tests may require
Further investigation. Finally, intrathecal production of MOG-Ab was found in up to 28.9% of seronegative cases, thus suggesting that performing only the blood test might underestimate the real prevalence of MOGAD. It is therefore important to identify more stringent measures accompanying MOG-Ab testing to better interpret test results, especially among patients with low antibody titers and atypical phenotypes.

Cerebrospinal fluid restricted oligoclonal bands can help the identification of MOGAD. In contrast to MS, oligoclonal bands are typically found in a minority of MOGAD patients (about 15%) tested acutely, while they can turn negative on subsequent testing in the non-acute phase. The fluctuation of cerebrospinal fluid findings may help to gauge the likelihood of false positive MS patients being included in MOGAD and to guide treatment strategies. However, a second lumbar puncture is rarely performed in clinical practice.

Distinctive MRI lesional features in MOGAD, AQP4-NMOSD and RRMS have been reported, particularly in acute patients. Brain and spinal cord lesions may resolve completely in MOGAD patients, more often than AQP4-NMOSD and MS, and some acute T2 lesions can leave small foci of T2 hyperintensity, thus making the identification of typical signatures more challenging in the chronic phases. Additionally, MOGAD can be clinically heterogeneous, and in the long term, the course of the disease does not generally reflect the severity of the attacks, which can lead to misdiagnosis.
Given the rarity of MOGAD, most of the previous imaging works included a relatively small number of patients or were conducted in a single-centre setting, limiting the generalizability of the results. Moreover, only few and relatively small studies have assessed MOGAD patients in the non-acute phases.16,18–20

Against this background, we carried out a study aiming at identifying key features able to distinguish non-acute adult MOGAD from AQP4-NMOSD and RRMS. Our ultimate goal was to provide advice on how to identify MOGAD patients in clinical practice, by suggesting sequential tests and supporting features beyond or in addition to serological testing.

Materials and methods

Study design and population

This is a multicenter, retrospective cross-sectional study, conducted on previously collected data from 16 international centres (13 Magnetic Resonance Imaging in Multiple Sclerosis [MAGNIMS] collaboration [www.magnims.eu] centres and 3 additional centres, respectively from Europe, Asia and Latin America). The collection and analysis of the MRI scans was centralised in a single centre (Siena, Italy) from 2019 to 2021.

Inclusion criteria were (1) diagnosis of MOGAD (which was made, in each centre, only when MOGAD was suspected on the basis of patient’s history and clinical presentation, and was confirmed by MOG antibody positivity according to local laboratory guidelines), AQP4-Ab NMOSD21 or RRMS22, (2) serum antibodies detected using CBA (either live or fixed) (3) age at
MRI ≥ 18 years, (4) being at least 6 months after an acute event, (5) Expanded Disability Status Scale (EDSS) score at the time of MRI, (6) information on type of clinical onset (classified as: isolated optic neuritis [unilateral or bilateral], transverse myelitis, concurrent optic neuritis and transverse myelitis, acute disseminated encephalomyelitis [ADEM], others), age, sex, and disease duration (time from disease onset to MRI). Healthy controls (HC) were also recruited. Exclusion criteria were a history of other known medical conditions that could have affected the brain and MRI-related contraindications.

Each participant provided written consent for research within each centre. The final protocol for the analysis of fully anonymized scans, acquired independently at each centre, was approved by the European MAGNIMS collaboration and by the local ethics committees.

MRI Acquisition and Processing

Brain and cervical cord images were acquired at 16 sites on 1.5T and 3T scanners, from different manufacturers and with different scanning parameters based on local protocols, following the MAGNIMS guidelines (Supplementary Table 1). All images were visually checked and analyzed centrally. Brain white matter lesions were segmented with a semiautomated process using lesion prediction algorithm as implemented in the LST toolbox version for SPM on 3D FLAIR and PD-T2-weighted MRI sequences. The quality of all the obtained lesions was manually checked and corrected by two experienced readers (R.C. and M.B.). Lesion volumes were subsequently obtained. Brain MRI scans were examined for Dawson’s fingers, juxtacortical lesions in the U-fiber (with a curved/s-shaped morphology), lesions located in the temporal
lobes, and fluffy infratentorial lesions (FIT), which were found to be able to discriminate between MOGAD, AQP4-NMOSD and RRMS. Hypointense lesions on T1 were automatically identified based on a voxel-by-voxel analysis of the local T1 ratio value within each lesion mask, using a definition of hypointense lesion, adopting a previous definition of a region with a signal intensity lower (<1sd) similar to or reduced to than the signal intensity of the grey matter of the slice of the lesion and corresponding to a lesion mask drawn on T2-weighted MRI. Cortical lesions were assessed on the DIR, PSIR or MPRAGE images, when available, and the presence of cervical cord lesions was recorded, and they were classified as either short lesions or longitudinally extensive cord lesion. We included only cervical cord MRI, as this is the part of the spinal cord which is most frequently scanned in clinical practice; other segments (i.e., thoracic, lumbar and sacral cord) were available only for a minority of subjects (10% of the whole cohort). The analyses were based on the consensus between two raters (R.C. and L.H.), who had an excellent inter-rater agreement (96% Cohen kappa coefficient).

All readers worked independently and were blinded to clinical data.

Statistical Analyses

The analysis of this study was divided in two parts:

Differences between groups

Means, medians, and proportions of demographics, clinical features, and MRI measures were calculated for patients and healthy controls. Differences were evaluated using Kruskall-Wallis, ANOVA or χ^2, as appropriate.
Best MRI and clinical discriminators between diseases

The data collection was retrospectively performed using scans already acquired with different MRI protocols and only images with adequate quality were retained. Therefore, not all patients had all sequences and relative measures available. To make efficient use of the available data, we used multiple imputation of missing values for missing data. Imputation was performed using chained equations, where each incomplete variable is imputed by a separate model and implemented through the "mice" R package. Continuous variables (age, disease duration, EDSS, white matter lesion number and volume, T1 hypointense lesions and cortical lesion number) were parameterized as numeric data and imputed with the predictive mean matching method, whereas polytomous logistic regression was used for the unordered categorical variables (such as phenotype at onset), and binomial logistic regression for the binary variables (presence/absence of temporal lobe lesions, Dawson’s finger type lesions, FIT, cortical lesions, cord lesions). Clinical and available lesion data were used to impute missing lesion data.

To assess the best set of variables for prediction purpose, we ran a random forest selected predictor, with a 3-step procedure, considering first the three diseases together and then one disease vs the other. Eight separate models were constructed using MRI data (i.e. lesion number, volume and morphological characteristics) alone first and then MRI and clinical data (i.e. age, disease duration, phenotype at onset, EDSS) together. To assess the performance of the selected best predictors in discriminating the diseases, a leave one out internal cross-validation procedure using LOOCV of Random Forest and binomial logistic regression model was performed using
the set of MRI and MRI and clinical together variables. LOOCV is a cross-validation that considers each observation as the validation set and the rest (N-1) observations as the training set; the process is repeated for all observations such that N models are estimated, and performance averaged. From all models, we obtained the logarithm odds ratio (logOR) of having one disease vs the other, the model average accuracy and Kappa coefficient, and the area under the curve (AUC) Receiving Operated Characteristic curve (ROC). The analyses were further repeated considering only patients with at least one brain or cervical cord lesion.

Finally, for the selected variables, a Youden index optimization criterion was used to identify the best cut-off (i.e., the value associated with the highest sensibility and sensitivity) that predicted the outcome (e.g. a diagnosis of MOGAD rather than the other two diseases).

Sensitivity analyses were run by repeating all the analyses in a model including only patients with complete data with no imputation and using a leave one-center-out procedure rerunning the analysis on data from all but one centre and then validating on the centre not included in train dataset. This was repeated for each centre and reported as average accuracy.

Data availability

Fully anonymized data are available from each participating centre on request.

Results
Study population

Overall, we included in the study 665 subjects: 162 MOGAD, 162 AQP4-NMOSD, 189 RRMS and 152 healthy controls. Demographic and clinical details of subjects are summarised in Table 1. Details about Ab-testing and diagnosis timing are provided in Supplementary Table 2.

Differences in brain and cervical cord MRI measures between groups

Brain T2 white matter lesions were detected in 68% MOGAD, 82% AQP4-NMOSD, 100% RRMS patients, and 23% of healthy controls. The number of T2 white matter lesions and corresponding T1 hypointense lesions on T1 was lower in the two Ab-mediated diseases than RRMS (P <0.001). Temporal lobe lesions and Dawson’s finger-type lesions were detected in a lower % in the MOGAD and AQP4-NMOSD cohorts than RRMS (all P <0.001). At least 1 cortical lesion was seen in 9% of patients with MOGAD, 8% patients with AQP4-NMOSD, in 64% patients with RRMS. At least 1 cervical cord lesion was found in a minority of patients with MOGAD (8.6% with short lesions and 1.2% longitudinally extensive lesions), while in a high percentage of patients with AQP4-NMOSD (14.2% with short lesions and 23.5% longitudinally extensive lesions) and with RRMS (33.9% with short lesions and 1.1% longitudinally extensive lesions) (all P <0.001). None of the HC showed temporal lobe and Dawson’s finger-type lesions, cortical and cord lesions, therefore they were excluded from the discriminant analysis (Table 2).

MRI and clinical discriminators between diseases
After imputation, 456 (88.9%) patients were included in the analysis. **Supplementary Table 3** reports the proportion of missing values for each clinical and MRI measure, which were homogeneously distributed in the three diseases.

MOGAD vs AQP4-NMOSD vs RRMS

When considering the three diseases together, the MRI measures that predicted MOGAD instead of the other two diseases were the absence of Dawson’s fingers, temporal lobe lesions and longitudinally extensive lesions in the cord (average accuracy: 68%, sensitivity: 82%, specificity: 66%, \(AUC: 0.75, 95\% CI: 72 \) to 80, \(P <0.001 \)). Adding disability level and age at MRI increased the sensitivity of the model (average accuracy: 76%, sensitivity: 81%, specificity: 84%, \(AUC: 0.85, 95\% CI: 0.82 \) to 0.88, \(P <0.001 \)) (Figure 1, Table 3).

When considering only patients with at least one brain or cervical cord lesion, the model selected the same best set of MRI measures, which reached the highest accuracy in predicting MOGAD rather than AQP4-NMOSD and RRMS (average accuracy: 70%, sensitivity: 68%, specificity: 72%, \(AUC: 0.75, 95\% CI: 0.71 \) to 0.78, \(P <0.001 \)). Adding disability increased the sensitivity of the model (average accuracy: 79%, sensitivity: 67%, specificity: 83%, \(AUC: 0.84, 95\% CI: 0.80 \) to 0.87, \(P <0.001 \)).

The best cut-off value in respect to EDSS that predicted the diagnosis of MOGAD was 3, in respect to age was 34 years.

MOGAD vs RRMS
The lower number of brain lesions was the best MRI measure that distinguished non-acute MOGAD from RRMS (average accuracy: 76%, sensitivity: 80%, specificity: 73%, \(AUC: 0.87\), 95% CI: 0.83 to 0.91, \(P <0.001\)). This means that for each unit decrease of lesion there is a 9% reduced risk of having MOGAD instead of RRMS.

When considering only patients with at least one lesion, the combination of lower number of brain lesions and the absence of Dawson’s fingers reached the highest accuracy in predicting MOGAD instead of RRMS (average accuracy: 79%, sensitivity: 78%, specificity: 80%, \(AUC: 0.85\), 95% CI: 0.80 to 0.90, \(P <0.001\)). The best cut-off value in respect to the number of lesions that predicted the diagnosis of MOGAD was 6.

If the phenotype at onset was either bilateral optic neuritis, or concurrent optic neuritis and transverse myelitis, or ADEM the sensitivity of the model to distinguish the two diseases increased either when using the whole sample (average accuracy: 83%, sensitivity: 82%, specificity: 83%, \(AUC: 0.89\), 95% CI: 0.85 to 0.93, \(P <0.001\)), or when selecting patients with at least one lesion (average accuracy: 81%, sensitivity: 58%, specificity: 91%, \(AUC: 0.86\), 95% CI: 0.81 to 0.91, \(P <0.001\)).

MOGAD vs AQP4-NMOSD

The absence of longitudinally extensive lesions in the cord was the best MRI measure that distinguished MOGAD from AQP4-NMOSD either when considering all patients (average accuracy: 67%, sensitivity: 97%, specificity: 37%, \(AUC: 0.67\), 95% CI: 0.63 to 0.71, \(P <0.001\)), or when only patients with at least one lesion were selected (average accuracy: 65%, sensitivity: 94%, specificity: 47%, \(AUC: 0.32\), 95% CI: 0.27 to 0.38, \(P <0.001\)).
When considering MRI and clinical measures together, the sensitivity of the model to predict MOGAD increased if low EDSS was considered (average accuracy: 76%, sensitivity: 89%, specificity: 62%, \(AUC: 0.83, 95\%CI: 0.78 \) to 0.88, \(P <0.001 \)), reaching the highest accuracy when only patients with at least one lesion were considered (average accuracy: 84%, sensitivity: 84%, specificity: 68%, \(AUC: 0.80, 95\%CI: 0.74 \) to 0.86, \(P <0.001 \)).

The best cut-off value in respect to the EDSS that predicted the diagnosis of MOGAD was 3.

\textbf{AQP4-NMOSD vs RRMS}

The absence of Dawson’s fingers and temporal lobe lesions were the best discriminators between AQP4-NMOSD and RRMS either when using MRI measures only or MRI and clinical measures together (average accuracy: 87%, sensitivity: 89%, specificity: 62%, \(AUC: 0.89, 95\%CI: 0.86 \) to 0.93, \(P <0.001 \)). This was confirmed when considering only patients with at least one lesion, reaching the highest accuracy (average accuracy: 88%, sensitivity: 89%, specificity: 85%, \(AUC: 0.89, 95\%CI: 0.85 \) to 0.92, \(P <0.001 \)). \textit{Supplementary Table 4} summarises the performances of the best MRI and clinical measures to discriminate between the diseases. \textit{Supplementary Tables 5} and \textit{6} report details on the analyses performed when considering only patients with at least one lesion.

All sensitivity analyses confirmed these findings; the same sets of best discriminators between diseases were selected when using only complete baseline data with no imputation, with a high average accuracy between centre validation performance (\textit{Supplementary Tables 7} and \textit{8}).
Finally, in Figure 2, we propose a workflow that can be applied to non-acute adult patients with suspected CNS inflammatory disease to help in the identification of MOGAD in clinical practice. Figure 3 shows representative MRIs of MOGAD patients with different clinical and MRI characteristics.

Discussion

In this large, multicenter study, we identified MRI and clinical features to differentiate non-acute MOGAD from RRMS and AQP4-NMOSD and proposed a workflow that may serve as a guide towards a better discrimination of MOGAD.

Results of the study showed that brain lesion number and morphology are important to distinguish patients with non-acute MOGAD from those with RRMS, while clinical features and cervical cord involvement can differentiate the two antibody-mediated diseases. Absence of Dawson’s fingers and temporal lobe lesions might lead to question the diagnosis of RRMS, especially in patients with low disability outside an acute event. Previous studies showed that in MOGAD lesions may disappear after the acute phase and often resolve completely over 6-months potentially reflecting a greater propensity for remyelination.\(^{16,27}\) Therefore, it is not surprising that in our cohort, lesion characteristics which were considered to be specific for acute MOGAD (i.e. FIT lesions),\(^ {28}\) were found only in a minority of patients and they did not contribute to the discriminant analysis. This is also in agreement with the previous report of a reduced visibility of infratentorial lesions in MOGAD patients, when evaluated in the remission phase.\(^ {19}\) We found white matter lesions in 68% MOGAD, which is higher than expected as
disease phenotypes at onset were optic neuritis and/or transverse myelitis for the majority of patients.20 Imaging characteristics are age-dependent in MOGAD, with the highest frequency of brain involvement in children, ranging from poorly demarcated and widespread lesions in the childhood to small nonspecific cerebral lesions in older children and adults.29 This discordance may be due to the inclusion of only adult patients in our study with potential incidental white matter hyperintensities. In support of this, white matter lesions were found in 23\% of healthy controls, suggesting that discriminating demyelinating white matter lesions from those of presumably vascular origin, may be challenging in adults in the non-acute phase. Indeed, future plans are to expand our cohorts with a paediatric subgroup with the same demyelinating conditions to assess the effect of age.

Data presented here showed that the differentiation between non-attack MOGAD and AQP4-NMOSD scans might be more challenging but can be achieved when clinical information is available. In patients with low disability levels, the absence of a cervical longitudinally extensive cord lesions on a spinal cord MRI supports the diagnosis of MOGAD. By contrast, in our cohort the presence of longitudinally extensive lesions in the cord did not favour MOGAD over MS patients. This can be explained by two main reasons: i) longitudinally extensive lesions occurs in MOGAD more often in the caudal spinal cord than in in the cervical cord, which was the segment evaluated in this study; ii) cord lesions tend to disappear and a complete resolution of these lesions on conventional MRI in the non-acute phase has been reported.16

Our data emphasises the importance of cord lesions length in differentiating the three diseases, which may be even higher when considering patients in the acute phases, as about 85\% of cervical acute lesions span more than 3 vertebral segments in AQP4-NMOSD, while they are
typically rare in MOGAD and MS.15 While longitudinally extensive hazy T2 hyperintensities may be detected outside attacks in chronic MS, chronic lesions can be short in AQP4-NMOSD and MOGAD, therefore making the differentiation between the three diseases more challenging.15,30 Further studies looking at different cord segments, including thoracolumbar/conus regions that are preferentially involved in MOGAD, and different disease phases are needed to accurately quantify the overall extent of cord damage in the three diseases. Nonetheless, our results suggest that cord MRI findings have significant value in differentiating patients with CNS demyelinating diseases from controls and may be useful in identifying those with non-specific brain white matter lesions. This is supported by the absence of cord lesions in healthy controls versus the disease groups when compared to the frequency of brain lesions in healthy subjects.

By contrast, in patients with high disability levels, the MOG-Ab testing should be limited to patients who are young at the time of MRI. Previous studies have reported that compared to NMOSD, accumulated disability in MOGAD as calculated on the EDSS over time is less severe, but in the majority of these studies, AQP4-NMOSD patients were older at the time of the observation.47 In cases of patients with CNS inflammation negative to both Ab and with no features typical of MS, it is important to consider mimics of CNS demyelination and monitor the patient over time.

A recent study showed that serial MRIs have limited utility in MOGAD, as silent new lesions are rare outside a clinical attack, in contrast to MS, where new brain lesions can be found independently of relapses.31 Importantly, our findings may help to select those patients in whom
a surveillance MRI is necessary. In MOGAD, where lesions often resolve over time rather than enlarge, and new lesions rarely develop, a single follow-up remission brain and cervical cord MRI may have added value in establishing the diagnosis and provide valuable information to overcome false positive results or delayed MOG-Ab testing.

As we used brain and cord images acquired with different MRI protocols from different centres, we performed an internal cross-validation using LOOCV, which improves the generalizability of the predictions. We found a high concordance between centres in the selection of best discriminators between diseases, suggesting that one can reliably use brain and cervical cord MRI along with clinical information to separate the three diseases, independently of scanner characteristics, and results could be generalized to other centres. Cross-validation methods are useful when the dataset is not very large: an advantage of using cross-validation is that there is no waste of data. When we have an external validation set, the data that is being used for validation is being wasted and never used for training, but in cross-validation we use the validation set also for the training due to the resampling approach. However, limitations of LOOCV include that the validation error for a given model is highly variable and that this is a computationally intensive method. A further, external validation would be warranted to consolidate our results. However, to account for the possible confounding by the imputation of missing values, we also repeated the analysis on a subset of subjects with complete, non-imputed data, and confirmed the predictors of diseases, suggesting the robustness of our results.

In addition to the limitations related to validation, there are limitations related to the dataset and the study design. First, although this is to our knowledge the largest study combining MRI and
clinical features to discriminate MOGAD from AQP4-NMOSD and RRMS, only patients with a confirmed diagnosis were included in the study. Therefore, the results are not easily generalizable to patients at the time of the first presentation of the disease and to patients with seronegative NMOSD. Secondly, the time interval between MRI and the previous relapse and the scan frequency differed between patient groups, with the potential bias of having more scans in patients with more severe or atypical disease. Third, the retrospective design did not allow to assess the role of cerebrospinal fluid findings (i.e., presence/absence of oligoclonal bands), as this information was only available for a subgroup of patients, and optic nerve lesions, which are common in MOGAD, in discriminating the diseases, as dedicated sequences were not acquired by the majority of centres. Finally, we could not consider lesions disappearing over time which might occur in MOGAD, due to the cross-sectional design of this study. Future prospective, longitudinal study will test whether the absence of oligoclonal bands (or if present at all, their persistence after the non-acute phase), the involvement of the optic nerve and lesions evolution over time can increase the accuracy of our approach to identify MOGAD.

In line with previous studies, cortical lesions were seen in a minority of patients with MOGAD and AQP4-NMOSD. Reversible cortical involvement in MOGAD has been described in patients presenting with encephalopathy and/or seizures, while cortex is typically spared in NMOSD. When detected, cortical lesions in AQP4-NMOSD may have vascular rather than demyelinating origin, as patients may be more hypercoagulable (e.g. antiphospholipid antibodies commonly coexist in AQP4-Ab positive patients) and they are typically older, thus small asymptomatic cortical infarcts may occur. Similarly, the number of T1 hypointense lesions in the two Ab-mediated diseases was lower than in RRMS, as expected due to the different brain
involvement in the three disorders. Surprisingly, both measures were not included as best discriminating measures by the model. This is in contrast with recent findings suggesting a role of cortical lesions in differentiating between NMOSD and RRMS.35 A possible explanation for this may be the lower number of patients as well as the reduced availability of sequences to perform the cortical lesions analysis when compared to T2 lesions assessment. Similarly, as T2 and T1 lesions are correlated, only T2 lesions were selected by the statistical model, which was built to detect only the best set of variables for prediction using stringent criteria.

Currently, there are no evidence-based guidelines for the non-acute treatment and management of MOGAD patients.1 From a clinical perspective, we hypothesize that our guide will allow targeted investigation and timely change of treatment strategies, as the decision to initiate chronic immunosuppression in MOGAD is more controversial than in AQP4-NMOSD and MS treatments were shown to be ineffective in the two Ab-mediated diseases.36,37 Future studies are needed to confirm whether our suggested approach can be used to differentiate the three diseases at an early stage (i.e., after the first attack), or in other challenging clinical scenarios (i.e., including seronegative NMOSD and controls with focal white matter lesions presumably of vascular origin).

In conclusion, in this large and multicentre study, we found that brain and cord lesion characteristics as detected by conventional MRI, together with routine demographic and clinical information, may facilitate an accurate differentiation between MOGAD, AQP4-NMOSD and RRMS in the non-acute phases. On this basis, we provided here a guide for clinicians that could
complement Ab-testing when results are controversial or when CBA testing is not readily available.

Acknowledgements

The authors thank Dr Yael Hacohen for her thoughtful comments on the study, Dr Lise Magnollay for the recruitment of patients from the London cohort, Dr Claudia Patrick Schindler, Dr Eva Maria-Birgit Dorsch, and Dr Rebekka Rust for the information of patients from the Berlin cohort.

Competing interests

R. Cortese was awarded a MAGNIMS-ECTRIMS fellowship in 2019.

F. Prados received a Guarantors of Brain fellowship 2017-2020 and is supported by National Institute for Health Research (NIHR), Biomedical Research Centre initiative at University College London Hospitals (UCLH).

J. Palace support for scientific meetings and honorariums for advisory work from Merck Serono, Biogen Idec, Novartis, Teva, Chugai Pharma, Bayer Schering, Alexion, Roche, Genzyme, MedImmune, EuroImmune, MedDay, Abide ARGENX, UCB and Viela Bio and grants from Merck Serono, Novartis, Biogen Idec, Teva, Abide, MedImmune, Bayer Schering, Genzyme, Chugai and Alexion. She has received grants from the Multiple Sclerosis Society UK, Guthy Jackson Foundation, National Institute of Health Research, Oxford Health Services Research
Committee, Medical Research Council, GMSI (Grant for MS Innovation), John Fell, Myaware and AMPLO for research studies.

F. Paul serves on scientific advisory boards for Novartis, Viela Bio, Alexion and has received speaker honoraria from Bayer, Teva, Merck, Viela, Alexion, Roche and Novartis.

J. Wuerfel is an employee of Hoffmann LaRoche, Basel, Switzerland and has consulted Actelion/Johnson&Johnson, Biogen, Genzyme-Sanofi, Idorsia, Novartis, Roche and Teva. He has received funding from EU (HORIZON2020); none of this is related to the present study.

C. de Medeiros Rimkus has received speaker honoraria from Roche Pharma.

D.K. Sato received research support from CNPq/Brazil (425331/2016-4 and 308636/2019-8), FAPERGS/Brazil (17/2551-0001391-3 and 21/2551-000077-5), Teva, Merck, Biogen for investigator-initiated studies, and speaker honoraria from Biogen, Merck and Roche, and participated in advisory boards for Biogen, Roche, and Merck.

M. Filippi is Editor-in-Chief of the Journal of Neurology and Associate Editor of Human Brain Mapping; received compensation for consulting services and/or speaking activities from Almirall, Alexion, Bayer, Biogen Idec, Celgene, Eli Lilly, Genzyme, Merck-Serono, Novartis, Roche, Sanofi, Takeda, and Teva Pharmaceutical Industries; and receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Teva Pharmaceutical Industries, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione Italiana di Ricerca per la SLA).

M.A. Rocca received speakers' honoraria from Bayer, Biogen Idec, Bristol Myers Squibb, Celgene, Genzyme, Merck Serono, Novartis, Roche and Teva, and receives research support from the MS Society of Canada and Fondazione Italiana Sclerosi Multipla.
L. Cacciaguerra received speaker and consultant honoraria from ACCMED, Roche, BMS Celgene, and Sanofi.

A. Rovira serves on scientific advisory boards for Novartis, Sanofi-Genzyme, Synthetic MR, Roche, Biogen, TensormMedical and OLEA Medical, and has received speaker honoraria from Bayer, Sanofi-Genzyme, Merck-Serono, Teva Pharmaceutical Industries Ltd, Novartis, Roche and Biogen.

J. Sastre-Garriga received personal fees from Biopass, Biogen, Celgene, Merck and Orchid Pharma. He is member of the Editorial Committee of Multiple Sclerosis Journal and Director of the Scientific Committee of Revista de Neurologia.

G. Arrambide has received compensation for consulting services or participation in advisory boards from Sanofi, Merck, and Roche; research support from Novartis; travel expenses for scientific meetings from Novartis, Roche, Stendhal and ECTRIMS; and speaking honouraria from Sanofi, Merck and Roche. GA is the editor for Europe of the Multiple Sclerosis Journal – Experimental, Translational and Clinical, and is a member of the executive committee of the International Women in Multiple Sclerosis (iWiMS) network.

C. Gasperini received fees as invited speaker or travel expenses for attending meeting from Biogen, Merck-Serono, Teva, Mylan, Sanofi, Novartis, Genzyme.

C. Tortorella received honoraria for speaking and travel grants from Biogen, Sanofi-Aventis, Merck Serono, Bayer-Schering, Teva, Genzyme, Almirall and Novartis

M.P. Amato has served on Scientific Advisory Boards for Biogen, Novartis, Roche, Merck, Sanofi Genzyme and Teva; speaker honoraria from Biogen, Merck, Sanofi Genzyme, Roche,
Novartis and Teva; and research grants for her Institution from Biogen, Merck, Sanofi Genzyme, Novartis and Roche.

M. Grothe has received compensation for serving on Scientific Advisory Boards for Novartis, Roche and Sanofi Genzyme; he received speaker honoraria and travel support from Merck, Novartis, Roche, Sanofi Genzyme and Teva; he received research support from Novartis.

S. Llufriu received compensation for consulting services and speaker honoraria from Biogen Idec, Novartis, TEVA, Genzyme, Sanofi and Merck

M. Sepulveda received speaking honoraria from Roche and UCB Pharma, and travel reimbursement from Biogen, Sanofi and Zambon for national and international meetings.

C. Lukas received a research grant by the German Federal Ministry for Education and Research, BMBF, German Competence Network Multiple Sclerosis (KKNMS, grant no.01GI1601I) and has received consulting and speaker’s honoraria from Biogen Idec, Bayer Schering, Daiichi Sanykyo, Merck Serono, Novartis, Sanofi, Genzyme and TEVA.

R. Schneider has received consulting and speakers honoraria from Biogen Idec GmBH and Roche Pharma AG & has received research scientific grant support from Novartis Pharma

E. G. Celius has received honoraria for lecturing and advice from Biogen, Merck and Roche, grants and honoraria from Novartis and Sanofi.

A.K. Proebstel has participated as speaker in meetings sponsored by and received consulting fees and/or grant support from Biogen and Roche.

Ö. Yaldizli received grants from ECTRIMS/MAGNIMS, University of Basel, Pro Patient Stiftung University Hospital Basel, Free Academy Basel, Swiss Multiple Sclerosis Society and
advisory board/lecture and consultancy fees from Roche, Sanofi Genzyme, Allmirall, Biogen and Novartis.

B. Stankoff has received grants and personal fees for lectures from Roche, Sanofi-Genzyme, and Merck-Serono, personal fees for lectures from Novartis, Biogen and Teva

B. Bodini has received traveling and speaker’s honoraria from Novartis, Genzyme, Roche and Merck Serono, and she received research support from Biogen

M.P. Sormani received consulting fees from Biogen, Merck, Roche, Novartis, Sanofi, Immunic, GeNeuro.

F. Barkhof is supported by the NIHR Biomedical Research Centre initiative at UCLH, and he serves on the editorial boards of Brain, European Radiology, Journal of Neurology, Neurosurgery & Psychiatry, Neurology, Multiple Sclerosis, and Neuroradiology, and serves as consultant for Bayer Schering Pharma, Sanofi-Aventis, Biogen-Idec, TEVA Pharmaceuticals, Genzyme, Merck-Serono, Novartis, Roche, Synthon, Jansen Research, and Lundbeck.

N. De Stefano has received honoraria from Biogen-Idec, Bristol Myers Squibb, Celgene, Genzyme, Immunic, Merck Serono, Novartis, Roche and Teva for consulting services, speaking, and travel support. He serves on advisory boards for Merck, Novartis, Biogen-Idec, Roche, and Genzyme, Immunic and he has received research grant support from the Italian MS Society.

O. Ciccarelli received research funding from NIHR Biomedical Research Centre initiative at UCLH, UK and National MS Societies, Rosetrees trust; she is an Associate Editor for Neurology.
All other authors have nothing to disclose in relation to this work. All coauthors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Funding

The present research was conducted thanks to the 2019 ECTRIMS-MAGNIMS fellowship (awarded to R.C.).

Supplementary material

Supplementary material is available at *Brain* online.

Appendix 1

Full details are provided in the Supplementary material.

The authors are members of the MAGNIMS network (Magnetic Resonance Imaging in MS; https://www.magnims.eu/), which is a group of European clinicians and scientists with an interest in undertaking collaborative studies using MRI methods in multiple sclerosis, independent of any other organization and is run by a steering committee whose members are: F. Barkhof, N. de Stefano, J. Sastre-Garriga, O. Ciccarelli, C. Enzinger, M. Filippi, C. Gasperini, L. Kappos, J. Palace, H. Vrenken, À. Rovira, M.A. Rocca and T. Yousry.
References

1 Neurology. Published online October 3, 2022:10.1212/WNL.0000000000201465.
2 doi:10.1212/WNL.0000000000201465
5 doi:10.1212/WNL.000000000001729
8 doi:10.1016/S1474-4422(17)30470-2
14 25. Burgess S, White IR, Resche-Rigon M, Wood AM. Combining multiple imputation and
16 doi:10.1002/sim.5844
19 27. Uzawa A, Mori M, Kuwabara S. Different patterns of brainstem and cerebellar MRI
20 abnormalities in demyelinating disorders with MOG and aquaporin-4 antibodies. J Neurol
doi:10.1212/WNL.0b013e3182887957

29. Baumann M, Grams A, Djurdjevic T, et al. MRI of the first event in pediatric acquired

longitudinally extensive myelitis in adults with MOG antibodies: A retrospective

MRI Outside of Clinical Attacks in Patients With MOG-Antibody-Associated Disease.
Neurology. Published online September 29, 2022:10.1212/WNL.0000000000201263.
doi:10.1212/WNL.0000000000201263

32. Salama S, Khan M, Levy M, Izbudak I. Radiological characteristics of myelin
doi:10.1016/j.msard.2019.01.021

33. Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in
doi:10.1212/WNL.0b013e31826e9a96

34. Asgari N. Epidemiological, clinical and immunological aspects of neuromyelitis optica

35. Cacciaguerra L, Meani A, Mesaros S, et al. Brain and cord imaging features in

Figure legends

Figure 1 Visual representation of the best set of discriminators between myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD), aquaporin-4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) and relapsing-remitting MS (RRMS). Example of a random tree from a leave one out internal-validation procedure of Random Forest model, showing the MRI and clinical measures that predicted MOGAD instead of AQP4-NMOSD and RRMS. The order of measures in the tree represents the most (Dawson’s fingers) to the less (longitudinally extensive lesions in the cervical cord) accurate discriminator. EDSS=Expanded Disability Status Scale.

Figure 2 Workflow that can be applied to non-acute adult patients with suspected central nervous system inflammatory disease to help in the identification of MOGAD. The first recommended approach is to assess disease history and MRI findings. If MRI features resemble MS (i.e. high number of white matter lesions [>6], presence of Dawson’s fingers and temporal lesions), the McDonald criteria should be applied, which may allow a diagnosis of MS. Alternatively, in patients who have clinical and MRI characteristics suggestive of NMOSD, AQP4-Ab testing may permit a diagnosis of AQP4-NMOSD if Wingerchuk criteria are met, particularly in patients having a cervical longitudinally extensive cord lesion, high disability (EDSS>3) at the time of MRI, and older than 34 years. In AQP4-Ab negative patients, if disease presentation is considered to be typical or suggestive of MOGAD (i.e. ADEM, bilateral optic neuritis, concomitant optic neuritis and transverse myelitis), then MOG-Ab should be checked. In MOG-Ab positive cases, this helps to reach the diagnosis of MOGAD. In patients with
ADEM, bilateral optic neuritis, concomitant optic neuritis and transverse myelitis, concurrently without longitudinally extensive lesions in the cervical cord or high disability who resulted MOG-Ab negative, AQP4-Ab should be checked. Consideration of alternative diagnoses, and then monitoring are recommended in the remaining Ab-negative patients. Ab=antibody; ADEM=acute disseminated encephalomyelitis; AQP4=aquaporin-4; MS=multiple sclerosis; NMOSD=neuromyelitis optica spectrum disorder, MOG=myelin oligodendrocyte glycoprotein; MOGAD=myelin oligodendrocyte glycoprotein associated disease; ON=optic neuritis, TM=transverse myelitis, WML=white matter lesion; +ve=positive; -ve=negative.

Figure 3 Representative examples of magnetic resonance imaging (MRI) findings in non-acute myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) patients and different clinical and MRI characteristics. Patients with disease presentation typical of MOGAD: (A) patient 1 showing poorly marginated brain lesions; (B-C) patient 2 with more than 6 brain white matter lesions and one short cervical cord lesion. Patients with isolated unilateral optic neuritis at onset: (D-F) patient 3 showing less than six brain white matter lesions, with no involvement of temporal lobes and no Dawson’s fingers; (G-I) patient 4: one periventricular lesion, brainstem involvement and two short cord lesions.
<table>
<thead>
<tr>
<th>Features</th>
<th>MOGAD</th>
<th>AQP4-NMOSD</th>
<th>RRMS</th>
<th>Healthy controls</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>162</td>
<td>162</td>
<td>189</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>63/99</td>
<td>30/132</td>
<td>57/132</td>
<td>61/91</td>
<td>0.004</td>
</tr>
<tr>
<td>Age at MRI, years, mean (SD)</td>
<td>40.59 (14.09)</td>
<td>50.65 (14.14)</td>
<td>39.66 (10.44)</td>
<td>37.38 (11.43)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at onset, years, mean (SD)</td>
<td>34.43 (14.33)</td>
<td>42.87 (15.69)</td>
<td>32.27 (8.57)</td>
<td>NA</td>
<td>0.005</td>
</tr>
<tr>
<td>Disease duration, years, mean (SD)</td>
<td>5.8 (7.5)</td>
<td>8.5 (8.2)</td>
<td>7.8 (6.8)</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>Time from last attack to MRI, months* median (range)</td>
<td>14 (3–404)</td>
<td>24 (3–263)</td>
<td>17 (3–225)</td>
<td>NA</td>
<td>0.01</td>
</tr>
<tr>
<td>EDSS at MRI, median (range)</td>
<td>2 (0–7.5)</td>
<td>3.5 (0–8)</td>
<td>2 (0–8)</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>Race/Ethnicity, n (%) patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Caucasian</td>
<td>116 (72)</td>
<td>108 (67)</td>
<td>144 (76)</td>
<td>93 (61)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>9 (6)</td>
<td>11 (7)</td>
<td>7 (4)</td>
<td>10 (7)</td>
<td></td>
</tr>
<tr>
<td>Afro-Caribbean</td>
<td>19 (12)</td>
<td>28 (17)</td>
<td>11 (6)</td>
<td>5 (3)</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>3 (2)</td>
<td>9 (6)</td>
<td>6 (3)</td>
<td>3 (2)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>15 (8)</td>
<td>6 (3)</td>
<td>21 (14)</td>
<td>41 (27)</td>
<td></td>
</tr>
<tr>
<td>Patients on treatment, n (%)</td>
<td>78 (48)</td>
<td>144 (88)</td>
<td>189 (100)</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>Type of treatment*, n (%) patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>MS disease modifying agents</td>
<td>2 (2)</td>
<td>0</td>
<td>181 (96)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Classical immunosuppressants</td>
<td>73 (94)</td>
<td>134 (93)</td>
<td>7 (3)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Other immunosuppressants</td>
<td>3 (4)</td>
<td>10 (7)</td>
<td>1 (1)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Phenotype at onset, n (%) patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Unilateral ON</td>
<td>44 (27)</td>
<td>44 (27)</td>
<td>38 (20)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Bilateral ON</td>
<td>36 (22)</td>
<td>11 (7)</td>
<td>3 (2)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>38 (24)</td>
<td>55 (34)</td>
<td>38 (20)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>ON+TM</td>
<td>17 (11)</td>
<td>16 (10)</td>
<td>1 (1)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>ADEM</td>
<td>9 (6)</td>
<td>0</td>
<td>1 (1)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>8 (5)*</td>
<td>16 (10)</td>
<td>77 (41)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Disease course, n (%) patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Monophasic</td>
<td>48 (32)</td>
<td>23 (16)</td>
<td>0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Relapsing</td>
<td>100 (68)</td>
<td>118 (84)</td>
<td>189 (100)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Number of patients (%) with CSF oligoclonal bands</td>
<td>102 (84%)</td>
<td>86 (75%)</td>
<td>10 (10%)</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>Absence</td>
<td>19 (16%)</td>
<td>22 (25%)</td>
<td>93 (90%)</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

AEDM = acute disseminated encephalomyelitis; EDSS = Expanded Disability Status Scale; ON = optic neuritis TM = transverse myelitis.

*Using Kruskall-Wallis, ANOVA or χ², as appropriate, depending on the nature of the variable.

Refers to biological factors. This information was self-reported by participants.

A minority of patients presented with a relapse within 3 and 6 months prior to study entry, respectively 40/162 (25%) of MOGAD, 27/162 (17%) of AQP4-NMOSD and 50/189 (26%) of RRMS.

MS disease modifying agents included medications approved for MS: interferon, glatiramer acetate, teriflunomide, dimethylfumarate, cladribine, fingolimod, natalizumab, alemtuzumab, ocrelizumab; classical immunosuppressants included: azathioprine, mycophenolate mofetil, rituximab; other immunosuppressants included: cyclophosphamide, methotrexate, mitoxantrone.

Seven patients with brainstem involvement, one patient with unilateral tumefactive hemispheric lesion.
Table 2 MRI features of MOGAD, AQP4-NMOSD, RRMS and healthy controls

<table>
<thead>
<tr>
<th>Features</th>
<th>MOGAD</th>
<th>AQP4-NMOSD</th>
<th>RRMS</th>
<th>Healthy controls</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain lesion volume, mm³</td>
<td>82.60 [0.00–851.25]</td>
<td>416.76 [0.00–2739.75]</td>
<td>4231.10 [1392.08–11736.75]</td>
<td>0.002 (0.00–1.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (range)</td>
<td>1047; 6.80 (12.11)</td>
<td>1604; 10.69 (14.13)</td>
<td>4925; 26.62 (21.16)</td>
<td>144; 2.21 (5.27)</td>
<td><0.001</td>
</tr>
<tr>
<td>Total number of brain WML; mean (SD)</td>
<td>647; 7.7 (9.7)</td>
<td>976; 8.4 (10.6)</td>
<td>3749; 13.8 (16.4)</td>
<td>92; 1.4 (4.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence of temporal lobe lesion, number of patients (%)</td>
<td>Absence: 138 (85)</td>
<td>143 (88.3)</td>
<td>74 (39.2)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>14 (8.6)</td>
<td>9 (5.6)</td>
<td>111 (58.7)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Presence of U-fibre lesion, number of patients (%)</td>
<td>Absence: 147 (90.7)</td>
<td>148 (91.4)</td>
<td>161 (85.2)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>5 (3.1)</td>
<td>4 (2.5)</td>
<td>24 (12.7)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Presence of Dawson’s finger lesion, number of patients (%)</td>
<td>Absence: 135 (83.3)</td>
<td>145 (89.5)</td>
<td>50 (26.5)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>17 (10.5)</td>
<td>7 (4.3)</td>
<td>135 (71.4)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Presence of FIT lesion, number of patients (%)</td>
<td>Absence: 149 (92.0)</td>
<td>151 (93.2)</td>
<td>183 (96.8)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>3 (1.9)</td>
<td>1 (0.6)</td>
<td>2 (1.1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Presence of cortical lesions, number of patients (%)</td>
<td>Absence: 88 (91)</td>
<td>87 (92)</td>
<td>40 (36)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>9 (9)</td>
<td>8 (8)</td>
<td>70 (64)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total number of cortical lesions</td>
<td>19</td>
<td>8</td>
<td>172</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (range)</td>
<td>1 (1–9)</td>
<td>1 (1–1)</td>
<td>2 (1–14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence of short cord lesion, number of patients (%)</td>
<td>Absence: 93 (67.4)</td>
<td>77 (47.5)</td>
<td>51 (27.0)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>14 (8.6)</td>
<td>23 (14.2)</td>
<td>64 (33.9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Presence of longitudinally extensive cord lesion, number of patients (%)</td>
<td>Absence: 105 (64.8)</td>
<td>62 (38.3)</td>
<td>113 (59.8)</td>
<td>152 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence</td>
<td>2 (1.2)</td>
<td>38 (23.5)</td>
<td>2 (1.1)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

FIT = fluffy infratentorial lesions; MRI = magnetic resonance imaging; WML = white matter lesions.

*Using Kruskal-Wallis, ANOVA or χ², as appropriate, depending on the nature of the variable.

*Assessed on available sequences.
Table 3 Results from the leave one out internal-validation procedure (LOOCV) of Random Forest model using the best sets of discriminators and the imputed set of data

<table>
<thead>
<tr>
<th>Variable importance</th>
<th>MOGAD</th>
<th>AQP4-NMOSD</th>
<th>RRMS</th>
<th>Mean decrease in impurity<sup>a</sup></th>
<th>Mean decrease in accuracy<sup>b</sup></th>
<th>Accuracy (LOOCV)<sup>d</sup></th>
<th>Kappa (LOOCV)<sup>d</sup></th>
<th>AUC (95%CI)<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson’s fingers lesion</td>
<td>77.4</td>
<td>5.3</td>
<td>58.6</td>
<td>72.9</td>
<td>88.4</td>
<td>0.68</td>
<td>0.52</td>
<td>0.75 (0.72–0.78)</td>
</tr>
<tr>
<td>Temporal lobe lesion</td>
<td>71.7</td>
<td>12.4</td>
<td>31</td>
<td>16.3</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinally extensive cord lesion</td>
<td>42.6</td>
<td>76.1</td>
<td>26</td>
<td>23.4</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical and MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawson’s fingers lesion</td>
<td>48.1</td>
<td>34.9</td>
<td>38.5</td>
<td>55.6</td>
<td>65.2</td>
<td>0.76</td>
<td>0.64</td>
<td>0.85 (0.82–0.88)</td>
</tr>
<tr>
<td>Temporal lobe lesion</td>
<td>39.9</td>
<td>20.2</td>
<td>15.3</td>
<td>30.9</td>
<td>42.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinally extensive cord lesion</td>
<td>36.4</td>
<td>30.0</td>
<td>12.9</td>
<td>19.5</td>
<td>41.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at MRI</td>
<td>-0.4</td>
<td>15.2</td>
<td>10.9</td>
<td>43.0</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDSS</td>
<td>23.1</td>
<td>33.8</td>
<td>9.4</td>
<td>40.4</td>
<td>36.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EDSS=Expanded Disability Status Scale, MRI=magnetic resonance imaging.

^aVariable importance represents the difference between the prediction errors (on the out-of-bag portion of the data) and the prediction error after performing random predictor permutations. Showing the class-specific (MOGAD, AQP4-NMOSD, RRMS) error we attempt to give extra information about which predictors are important for which class.

^bMean decrease in impurity uses the Gini index, which is a measure of impure classification ranging from 0 (totally clear) to 1 (totally random). When removing a variable from a model (such as in random variable permutation procedures) the corresponding Gini drop of a variable is a measure of the usefulness of such variable to improve the classification performance (the higher the better).

^cMean decrease in accuracy: also known as permutation importance, is a measure of the usefulness of a variable within a random permutation procedure using the proportion of correctly classified cases (i.e., accuracy) as internal metrics instead of impurity. It is more computationally expensive than mean decrease in impurity but may offer more reliable estimates when predictors are of mixed data type (categorical and continuous).

^dLeave one out validation accuracy and Kappa represent the internal model stability and gives us insight on the generalizability of our conclusions in the attempt to mitigate the natural overfit tendency of our model-based predictions. Accuracy is the proportion of correctly classified subjects among all the cross-validation cycle. For example, an accuracy of 0.7 means that 7 times out of 10 the model should correctly classify a subject not previously seen during model training. This can overestimate performances if once class is overrepresented. Kappa is a similar metric but account for the marginal probabilities of the classes and therefore adjust the accuracy for the simplicity of correctly classify the most prevalent class only by chance.

^eAUC represents the area under the receiver operating characteristic curve. It is used here as a simple metric for summarizing the performance of different classification models (based on a different set of predictors i.e., MRI only or MRI and clinic variables).
Figure 1
159x73 mm (5.8 x DPI)
Figure 2
159x150 mm (5.8 x DPI)
Patient 1: F, age at MRI: 33 yr, EDSS at MRI: 1.0, onset: ADEM

Patient 2: M, age at MRI: 59 yr, EDSS at MRI: 5.0, onset: concomitant optic neuritis and transverse myelitis

Patient 3: F, age at MRI: 32 yr, EDSS at MRI: 1.5, onset: isolated unilateral optic neuritis

Patient 4: F, age at MRI: 28 yr, EDSS at MRI: 2.5, onset: isolated unilateral optic neuritis

Figure 3
159x199 mm (5.8 x DPI)