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Abstract

Pattern formation and modulation is an active branch of mathematics, not only from
the perspective of fundamental theory but also for its huge applications in many
fields of physics, ecology, chemistry, biology, and other sciences. In this thesis, the
occurrence of Turing and wave instabilities, giving rise to stationary and oscillatory
patterns, respectively, is theoretically investigated by means of two-compartment
reaction-transport hyperbolic systems. The goal is to elucidate the role of inertial
times, which are introduced in hyperbolic models to account for the finite-time prop-
agation of disturbances, in stationary and transient dynamics, in supercritical and
subcritical regimes.

In particular, starting from a quite general framework of reaction-transport model,
three particular cases are derived. In detail, in the first case, the occurrence of sta-
tionary patterns is investigated in one-dimensional domains by looking for the inertial
dependence of the main features that characterize the formation and stability process
of the emerging patterns. In particular, the phenomenon of Eckhaus instability, in
both supercritical and subcritical regimes, is studied by adopting linear and multiple-
scale weakly-nonlinear analysis and the role played by inertia during the transient
regime, where an unstable patterned state evolves towards a more favorable stable
configuration through sequences of phase-slips, is elucidated.

Then, in the second topic, the focus is moved to oscillatory periodic patterns
generated by wave (or oscillatory Turing) instability. This phenomenon is studied
by considering 1D two-compartment hyperbolic reaction-transport systems where
different transport mechanisms of the species here involved are taken into account.
In these cases, by using linear and weakly nonlinear stability analysis techniques,
the dependence of the non-stationary patterns on hyperbolicity is underlined at and
close to the criticality. In particular, it is proven that inertial effects play a role, not
only during transient regimes from the spatially-homogeneous steady state toward
the patterned state but also in altering the amplitude, the wavelength, the migration
speed, and even the stability of the travelling waves.

Finally, in the last case, the formation and stability of stationary patterns are
investigated in bi-dimensional domains. To this aim, a general class of two-species
hyperbolic reaction-transport systems is deduced following the guidelines of Extended
Thermodynamics theory. To characterize the emerging Turing patterns, linear and
weakly nonlinear stability analysis on the uniform steady states are addressed for
rhombic and hexagonal planform solutions.

In order to gain some insight into the above-mentioned dynamics, the previous
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theoretical predictions are corroborated by numerical simulations carried out in the
context of dryland ecology. In this context, patterns become a relevant tool to identify
early warning signals toward desertification and to provide a measure of resilience of
ecosystems under climate change. Such ecological implications are discussed in the
context of the Klausmeier model, one of the easiest two-compartment (vegetation
biomass and water) models able to describe the formation of patterns in semi-arid en-
vironments. Therefore, it will be also here discussed how the experimentally-observed
inertia of vegetation affects the formation and stability of stationary and oscillatory
periodic vegetation patterns.
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Chapter
1

Introduction

Self-organized patterns are quite ubiquitous in nature and the study of the associated
nonlinear spatial processes has become nowadays a sub-area of complexity science.
Due to the huge amount of field applications, i.e. physics, ecology, chemistry, biology,
epidemiology, and others [1–7], in the last century a lot of effort has been spent to
propose different approaches that are able to describe these complex phenomena.
The difficulties in replying nature phenomena under laboratory conditions, and/or
the long time scale in which they occur, brought scientists to dedicate their efforts
in developing different mathematical tools apt to predict and replicate the observed
dynamics. These led mathematicians to play an active role in describing the pattern
formation process and, in particular, in improving their own tools to achieve always
a deeper description of them.

The aim of this chapter is to briefly introduce the subject of this thesis from a
mathematical perspective but using a simple formalism in order to be understandable
to a general audience.

1.1 Patterns as a natural fascinating phenomenon
All of us have already seen a pattern, some in a conscious way while others not.
They represent amazing products of nature and their presence in everyday life is
really common, from animals to beaches, by the way of cooking and beautiful land-
scapes. The first time that you’re gonna open a book that handles patterns, even a
mathematical one, you may be amazed in finding a lot of strange pictures, such as
tigers, fingerprints, ripples in sandy deserts, or hexagons on a frying pan, but the
question that easily arises is: “What are patterns?”

The word “pattern” has a very general connotation that encloses a lot of different
phenomena. In the most general context, it can be associated with a regular spatial
structure or spatiotemporal scheme that is periodic in space, at least locally. In
the one-dimensional case, it refers to only stripes or bands, whereas in the two-
dimensional one many shapes can be achieved, such as squares, spots, gaps, hexagons,
spirals, and many others. In a wrong way, they are usually associated with something
that assumes a symmetric behaviour, but, on the contrary, they may break the global
symmetry maintaining the local one.
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Patterned dynamics can be observed in huge quantities of different phenomena
that are very far from each other, but which share the same formation mechanism.
For example, let us consider the stripes on a zebra coat and the desert sand ripples,
they represent events completely different from the physical viewpoint but show the
same phenomenon in which two stripes merge into one or one splits into two of them.
Once having realized what a pattern is and how it looks like, one may ask: “How do
they arise?”

In the last century, a lot of effort has been made in extracting information about
patterns, understanding their nature and characterizing them. Firstly, motivated by
experiments, scientists focused their attention on patterns resulting from the con-
vective phenomenon [8]: a fluid that is heated from below creates a movement of
mass that gives rise to the so-called convection rolls. Then, stimulated by observa-
tions in the context of chemical reactions (such as the Belousov-Zhabotinsky ones
[9]), they understood that spatial dispersal of species may play an important and
decisive role in the pattern formation process. In particular, following Alan Turing’s
idea of morphogenesis [10], it was realized that spatial instabilities at the macro-
scale emerge as a consequence of competition between two concurrent mechanisms
operating at different spatial scales: a short-range activation and a long-range inhi-
bition. These observations conducted mathematicians to take into account tools able
to mimic these spatial behaviours through reaction-diffusion (RD) systems. Indeed,
RD models are considered the most simple evolutionary processes able to exhibit
complex spatial patterns [4, 11]. A form of the N -component RD systems for the
field W = (W1, . . . ,WN ) ∈ RN is given by

Wt = D∆W + F (W, B) (1.1)

where W(x, t) acts on (x, t) ∈ [Ω,R+] with Ω ⊆ Rn (n = 1, 2, 3), W1, . . . ,WN

represent the state variables, D represents the diffusion squared matrix of order N ,
∆ is the Laplacian operator, and F(W, B) is the kinetic vector depending also on
the control parameter B ∈ R.

To obtain a more detailed description of the natural phenomena, mathematicians
started to focus on different approaches to study RD models that can provide more
details on these complex phenomena [3, 4, 6, 7, 12, 13]. In particular, the mechanism
of pattern formation proposed by Alan Turing in 1952 arises from the coupling of
diffusion and reaction kinetics and is based on the destabilization of a spatially
uniform steady state due to a perturbation of a given wavenumber. In the case
where only two agents interact with each other U = (U1, U2), they give rise to Turing
instability only if one of the following scenarios take place: (i) U1 is an activator for
both U2 and itself whereas U2 is always an inhibitor; (ii) U1 is a self-activator and
an inhibitor for U2, whereas U2 is a self-inhibitor and an activator for U1. Note that,
in both cases, the inhibitor U2 has to diffuse faster than the activator U1 [4].

Turing’s instability has been hugely proposed in so many fields and was able to
fill a lot of gaps of knowledge on the pattern formation mechanism. For sake of
completeness, it should be mentioned that other mechanisms, different from Turing’s
one, have been proposed to explain the origin of such structures. They are mostly
based on the concept of “prepatterning” but this is beyond the scope of the present
thesis [3, 4].
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1.2 Towards the hyperbolic framework
Standard RD systems of parabolic type are usually employed to study the formation
and the stability of self-organized patterns in many research areas [1–7]. They have
been studied extensively over the last decades and they provide a good description of
the dynamics in many applications. There exist, however, some contexts where such
parabolic models provide a non-entirely satisfactory description, mainly due to the
fact that simple diffusive transport admits the flux of a species to follow the gradient
of the species “adiabatically”, i.e. instantaneously, with no time delay [14]. This
occurs when the dissipative fluxes obey gradient-like laws, as in the case of Fourier law
in thermodynamics, Fick’s law for concentration of species or particles, and Darcy’s
law for porous media. From a mathematical viewpoint, parabolic models suffer from
the unrealistic propagation of local disturbances through the system with infinite
speed. This issue can be overcome by rebuilding the governing equations in terms
of hyperbolic reaction-transport (RT) systems where the finite-time propagation of
disturbances, i.e. the inertia of the involved species, is explicitly taken into account.

In particular, from a mesoscopic viewpoint, RD systems describe an uncorrelated
random-walk of particles, referred to as Brownian motion. In this framework, local-
ized disturbances are allowed to spread infinitely fast, although heavily attenuated,
through the system. In addition, in this case, the motion of particles became un-
predictable even on small time scales. These phenomena are not observed in nature.
Brownian motion, and therefore RD systems, fail to well describe the dispersion of
species in those cases where particles or individuals take a well-defined velocity. On
the other hand, it still works as a good approximation where the inertia is negligi-
ble, i.e. the velocity does not take a relevant role and the position is determined by
different independent effects, such as in liquids.

In order to avoid the above-mentioned unphysical problem, one should take hy-
perbolic RT systems into account, as they account for finite speed of propagation
and a predictable motion in small time intervals. Therefore, hyperbolic RT models
constitute a step forward in the mathematical modelling of natural phenomena giv-
ing a better description for those in which persistence, i.e. inertial, effects are not
negligible on macroscopic scales, such as dilute gases, turbulent diffusion, motion
of animals, and vegetation dynamics. Moreover, they also appear more suitable to
describe transient phenomena characterized by waves evolving in space over a finite
time, especially those involving long-time scales. Moreover, from a mathematical
viewpoint, the inertial times constitute additional degrees of freedom that may be
used to better mimic experimental observations and, at the same time, offer a richer
scenario of dynamics [15–27].

The most commonly used approaches that rely on hyperbolic evolution equations
and that have a physical foundation are in the form of reaction-telegraph, reaction
correlated random walk, or reaction-Cattaneo systems [14–16, 21, 22, 28–37]. The ap-
proach here followed falls into the latter category and is based upon Extended Ther-
modynamics (ET) theory [38]. According to ET theory, the dissipative fluxes are con-
sidered as additional state variables that obey some thermodynamically-consistent
balance laws and that reduce to the gradient-based constitutive law in parabolic
models and in the stationary case.
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1.3 Vegetation patterns in dryland ecology
Now more than ever, the world is changing very quickly. By comparing nowadays
data with those dating back to the 1880s, the increase in the global temperature of
1°C, the raise in the sea level of 10 centimeters, and the decrease of the 12% in the
Arctic sea ice show how climate change is going to perform unrecoverable damages
[39]. A lot of long-term effects have been observed in all geographic scales, such as
the widespread changes in precipitations, ocean salinity, wind strength, and aspects
of extreme weather including droughts, heavy precipitation, heat waves, and tropical
cyclones. More intense and longer droughts have been observed over wider areas
since the 1970s. As it stands, the World Meteorological Organization (WMO) in the
next future expects an increase in global temperature of 0.2°C per decade, such as
in the amount of precipitation in high latitudes. A rainfall decrease is forecasted
in subtropical regions. Hot extremes, heat waves, and heavy precipitation will be
more frequent. Land degradation will increase due to droughts and soil erosion. The
expectations on water availability are an increase of 10-40% at high latitudes and
a decrease of 10-30% over dry regions. Dryland areas will undergo an increase in
extension [40].

To prevent this catastrophic scenario, several multidisciplinary approaches, enclos-
ing mathematical modelling of complex phenomena, have been proposed to predict
future behaviors of ecosystems as well as to identify ecological indicators of climate
change, land degradation, and ecosystem resilience. Unfortunately, from a mathe-
matical viewpoint, modelling the complex processes occurring at physical, biological,
ecological, and socio-economical levels, makes the study of desertification very hard
to study. However, thanks to simplifying assumptions, many features of this phe-
nomenon have been captured and understood. In particular, it has already been
proven that pattern formation acquires a very important role to address the study
of desertification mechanisms and dynamics, to detect as it may be representative
of early warning signals of imminent transition toward desertification. At the same
time, the use of mathematical tools may help in finding some restoration strategies
for degraded areas [7].

Mathematically speaking, the desertification process is often viewed as a sudden
global transition from a stable (uniformly or not) vegetated state, i.e. a vegetated
area, to an unproductive alternative stable state, i.e. the soil bare ground, dictated
by a variation of a control parameter (such as the decrease in rainfall or increase of
plant loss). It can be associated, for instance, to the occurrence of subcritical bifur-
cation that admits a sudden transition toward the desert state when main control
parameter values go beyond the turning point, so that the productive state no longer
exists. This simplified view of the desertification mechanism may provide warning
signals for the occurrence of imminent desertification that can be extracted from a
bifurcation analysis. Of course, real ecological dynamics are much more complex than
this simplistic view. Indeed some recent satellite observations, combined with math-
ematical modelling, suggest that ecosystems may “evade” the tipping points through
pattern formation, so that patterns may be a signature of ecosystem resilience in-
stead of marking a sharp transition toward desertification. Also, spatial disturbances
are often limited in space, so leading to a local rather than global transition toward
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an alternative stable state.
During the last decades, many mathematical models have been proposed to de-

scribe the mechanism of pattern formation and stability in the context of dryland
ecology [41–62]. Among these, one of the easiest two-compartment models able to
provide a sufficiently adequate description of the vegetation patterned dynamics in
semi-arid environments is the Klausmeier model [41]. It is based on the water redistri-
bution hypothesis under which spatial instability at the macro-scale arises from the
local biomass-water positive feedback at the micro-scale. In particular, in its original
formulation, it captures the dynamics of vegetation biomass u(x, t) and surface wa-
ter w(x, t) and accounts for the isotropic diffusion of vegetation and the anisotropic
transport of water along the hillslope. In dimensionless form, it reads:

ut − ∆u = u2w −Bu

wt − νwx = A− u2w − w
(1.2)

where subscripts denote the partial derivatives with respect to the indicated variable
and ∆ is the Laplacian operator. Furthermore, the model encloses a per-capita rate
of water uptake proportional to plant biomass, the plant growth rate proportional
to water uptake, a linear dependence of plant loss with strength B, a mean annual
rainfall represented by the parameter A, and the last term in the balance equation
for water is representative of losses by evaporation. Note that, previous investiga-
tions suggest that realistic values of plant loss and rainfall rate belong to the ranges
B ∈ (0, 2) and A ∈ (0, 3), respectively [41, 63, 64]. From an ecological viewpoint, the
original version of the Klausmeier model (1.2) is able to predict the formation of
vegetated patterns along sloped terrains only.

Later, some variants or extensions of it have been proposed in order to depict
different scenarios and to acquire additional information about vegetation dynamics.
In detail, Refs. [53, 65, 66] modified the water equation by removing the advection
term, which models the downhill run-off of surface water and substituting it with a
diffusion term. In this case, the most suitable ecological interpretation is that w(x, t)
is now representative of soil water and vegetated dynamics occurring over flat terrains
may be better mimicked. Then, the model (1.2) has been further extended to account
also for the diffusion of water [46]. Here, the diffusion term has been added in order
to better capture the movement of surface water induced by spatial differences in
infiltration rate. It should be noticed that, this latter model is more general and
encloses the previous ones as limit cases: when the diffusion coefficient is set to zero,
we retrieve the original model for sloped terrains, when the advective one is set to
zero, we deal with the modified version for flat areas. Finally, a further generalization
was introduced in Ref. [67] to better account for another ecological phenomenon, i.e.
the secondary seed dispersal. Indeed, all previous models ignore the possibility of the
seed to be transported downhill by an overland flow. To mimic this behaviour, an
advective term has to be considered in the vegetation equation.

Therefore, the Klausmeier model, in all its variants, is able to qualitatively capture
the uphill or stationary migration of vegetation bands in both sloped and flat envi-
ronments, which are believed to be observed experimentally [27, 68–70]. However, the
parabolic nature of the above model prevents the possibility of taking into account
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those inertial effects which are observed in the vegetation response, in particular for
the woody component [18, 20, 24, 26, 27]. It was indeed emphasized that inertia
of existing plant populations, namely the tendency to continue residing in a given
location when the environmental conditions become unfavorable, takes an active role
in response to climate change and presence of pollutants. To this aim, as well as to
provide a proper description of long transient pattern dynamics [71–74], hyperbolic
generalizations of the above models have been proposed in [75–80]. Literature on this
topic has indeed emphasized that inertia plays a non-trivial role, as it can be more
than just a time lag in response to an ongoing stressor (global climate change, pol-
lutants, etc.). Indeed, it can mask future deterioration in ecosystem conditions and
can even lead a species to change toward an alternative state even after a stressor is
removed [18, 27].

1.4 Models and goals
The main aim of this thesis is to extend the literature of two-compartment hyperbolic
RT systems in order to provide a deeper understanding on the pattern formation and
stability mechanisms there involved.

By reviewing the literature on hyperbolic RT systems, it is possible to face with 1D
RT systems where pattern formation is addressed via linear stability analysis (LSA)
and/or weakly nonlinear analysis (WNA). In detail, wave instability in systems where
one species diffuses and the other one undergoes advection is performed by adopting
LSA only [75], Turing and wave instabilities in the presence of cross-diffusion, with
no advection, is considered by adopting LSA and WNA in limited domains [81] or
LSA only [32, 82], Turing instability in the absence of advection is taken into account
by using LSA and WNA in extended domains with constant [15, 16, 76] and non-
constant [77] inertial times, and travelling fronts are studied in models with advection
[14, 31] or in its absence considering self-diffusion [29] and cross-diffusion [83]. On
the contrary, investigation in the bi-dimensional hyperbolic RT case are performed
through LSA tools and numerical simulations only [15, 16, 32–35].

With this in mind, here the study of both stationary and oscillatory patterns in
the one- and bi-dimensional case will be tackled by means of LSA and WNA in
both limited and infinite domains. Moreover, to emphasize the role played by inertial
effects in the context of dryland ecology, the corresponding hyperbolic generalizations
of the Klausmeier model will be taken into account as illustrative examples.

Our analysis starts from the following, general, two-compartment bidimensional
parabolic reaction-advection-diffusion (RAD) system that in dimensionless form reads:

Wt = D∆W + MWx + F (W, B) (1.3)
where the subscripts denote partial derivatives and ∆ is the Laplacian operator in R2.
The column vector enclosing the dependent field variables W, the diffusion matrix
D, the advective one M, and the reaction kinetics F(W, B) are defined as follows

W =

 u

w

 , D =

 1 0

0 d

 , M =

 ψ 0

0 ν

 , F (W, B) =

 f(u,w,B)

g(u,w,B)

 ,
(1.4)
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where B is the control parameter, d ≫ 1 denotes the w-by-u diffusion ratio while ψ
and ν are the advection speeds of species u and w, respectively, along the privileged
direction x. In the applicative example of Klausmeier dynamics, the kinetic terms
f(u,w) and g(u,w) take the form reported in (1.2).

Then, in order to account for inertial effects, it is possible to build up a hyperbolic
generalization via the ET theory. It takes the form:

Ut + M(1)(U)Ux + M(2)(U)Uy = N(U, B) (1.5)

being the vector of field variables now defined as U =
[
u ,w , Ju1 , J

u
2 , J

w
1 , J

w
2
]T with

(Ju1 , Ju2 ) and (Jw1 , Jw2 ) the vectors of the planar fluxes associated to the species u and
w, respectively, whereas the 6×6 matrices M(1) and M(2) are expressed as:

M(1) =



−ψ 0 1 0 0 0
0 −ν 0 0 1 0
1
τu 0 0 0 0 0
0 0 0 0 0 0
0 d

τw 0 0 0 0
0 0 0 0 0 0


, M(2) =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
1
τu 0 0 0 0 0
0 0 0 0 0 0
0 d

τw 0 0 0 0


(1.6)

and the vector of kinetic terms is given by:

N (U, B) =
[
f(u,w,B), g(u,w,B), −Ju1 /τu,−Ju2 /τu, −Jw1 /τw, −Jw2 /τw

]T
. (1.7)

In (1.6), τu > 0 and τw > 0 are the inertial times related to the species u and w,
respectively. For the sake of simplicity, the inertial times are hereafter treated as
constants. In the 1D case, the above system reduces to:

Ut + MUx = N(U, B) (1.8)

being

U =



u

w

Ju

Jw


, M =



−ψ 0 1 0

0 −ν 0 1
1
τu 0 0 0

0 d
τw 0 0


, N =



f(u,w,B)

g(u,w,B)

− 1
τuJu

− 1
τw Jw


. (1.9)

Details on the derivation of 2D hyperbolic RT model (1.5)-(1.7) are given in Ap-
pendix A, while those related to the 1D model (1.8)-(1.9) can be found in Ref. [31]. It
should be noticed that, in the limiting case τu → 0 and τw → 0, the hyperbolic mod-
els reduce to the classical parabolic ones and the constitutive Fick’s law of dispersion
is retrieved.

Before investigating pattern formation, it will be necessary to preliminarily ad-
dress the LSA of the spatially-homogeneous steady-states admitted by these mod-
els. As known, such states are obtained by setting the reaction terms to zero, i.e.
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N(U, B) = 0. In the case of Klausmeier dynamics, the number of steady states de-
pends upon the relative value of plant loss B and rainfall A. In particular, if A ≤ 2B,
the model admits only a spatially-homogeneous steady state of desert-type:

U∗
D = (0, A,0), (1.10)

while, if A ≥ 2B, it also admits two states representative of spatially-homogeneous
vegetated regions:

U∗
L = (uL, wL,0),

U∗
S = (uS , wS ,0),

(1.11)

where uL =
(
A−

√
A2 − 4B2

)
/(2B), uS =

(
A+

√
A2 − 4B2

)
/(2B), wL = B/uL,

wS = B/uS , with uL < 1 < uS . Notice that the steady states are always associated
to null fluxes of the involved species.

Here, the study of the pattern formation arising from the destabilization of the
above equilibria will be addressed in three different frameworks which constitute
subsets of the general class presented in (1.5)-(1.7). In detail, this thesis can be
subdivided into the following chapters.

In Chapter 2, the focus is given on the pattern mechanisms by looking for sta-
tionary periodic patterns in two-compartment 1D hyperbolic RT systems (1.8)-(1.9)
where both species undergo self-diffusion (ψ = ν = 0). In the context of dryland
ecology, it is representative of pattern dynamics taking place over a flat terrain. The
species u(x, t) and w(x, t) denote vegetation biomass and soil water, respectively,
both undergo a primary dispersal and no passive transport phenomena are here
included. Here, a detailed investigation is performed by means of LSA and WNA
in a large finite domain in order to establish the inertial dependence of the main
features that characterize the emerging patterns. Then, the focus is moved to the
re-stabilization pattern mechanism known as Eckhaus instability (EI) in both su-
percritical and subcritical dynamics. Here, the cubic real (CRGL) and cubic-quintic
(CQRGL) Ginzburg-Landau equations are deduced to characterize the pattern am-
plitude evolution near the onset of criticality and the stability behaviour of each
primary and secondary patterned branch. Numerical simulations in the framework
of vegetation dynamics are performed to confirm and validate the theoretical predic-
tion. Results achieved in this chapter are published in Ref. [79].

In Chapter 3, the study of oscillatory periodic patterns in two-compartment 1D
hyperbolic RT systems (1.8)-(1.9) is, in turn, addressed considering two different
frameworks. The first considered model accounts for the self-diffusion of both species
and the advection of only one of them (ψ = 0) whereas the second one encloses
the advection of both species and the self-diffusion to only one of them (d = 0).
In the context of dryland ecology, these models are representative of pattern dy-
namics taking place over a hillside of a semiarid environment, with the variable ν
measuring the slope of the terrain and in turn the water advection speed. The species
u(x, t) and w(x, t) here denote vegetation biomass and surface water, respectively.
In the first model, both species undergo a primary dispersal and no passive trans-
port of seeds is considered. In the second model, water dispersal is neglected as the
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unidirection downhill flow is taken as the dominant contribution, whereas both pri-
mary and secondary dispersals of seeds are taken into account. In both frameworks,
the LSA and WNA tools are used to gain some insight into the pattern evolution
with particular emphasis on the dependence of the migration speed on hyperbolicity.
Additional information is given in the framework of the illustrative example of the
Klausmeier model where it is proved how inertia significantly modifies the features
associated with the vegetation patterns. Moreover, further details will be provided by
a comparison with experimental data. Results here achieved are published in Refs.
[78, 80]

In Chapter 4, the bi-dimensional dynamics occurring in two-compartment hyper-
bolic RT systems (1.5)-(1.7) are considered in the presence of a diffusive character
only (ψ = ν = 0). In this case, the ecological scenario is again the one discussed in
Chapter 2, where isotropic primary dispersal acts over flat terrains and advective
fluxes are consequently neglected. In this context, particular focus will be given to
the formation of rhombic and hexagonal Turing patterns. First, the 2D hyperbolic
RT model is derived by means of ET theory and, then, LSA and WNA are applied to
characterize the near criticality evolution of patterns that are different from stripes.
Qualitative results are compared with those achieved in 1D dynamics. Results here
achieved are contained in a publication which is currently under review.



Chapter
2

Stationary patterns in 1D
hyperbolic RT systems

Turing-driven stationary periodic patterns, in the one-dimensional case, are variously
referred to as bands, rolls, or stripes. It is known that, in a large domain, the equation
ruling the spatio-temporal evolution of pattern amplitude close to onset is in the
form of GL equation [84–87]. This equation also allows to inspect the dependence
of the stability of the resulting periodic states on wavelength. Indeed, patterns may
undergo different destabilization mechanisms associated with changes in wavelength
and amplitude, one of which is the EI [5, 88–91]. EI acts on the roll phase to compress
or dilate pattern wavelength and takes place when a given roll wavelength cannot
be accommodated by the environment so that some of them are eventually created
or eliminated. The process leading the system to be rearranged in a more favorable
configuration is referred to as phase-slip [5, 88, 90].

A large body of literature has successfully addressed the bifurcation analysis of
EI in both infinite and finite spatial domains and has also addressed the study of
complex intriguing dynamics, such as those associated to quasi-periodic solutions
and homoclinic snaking bifurcation structures [5, 88–90, 92–98]. However, none of
those works has inspected the EI of stationary and quantized Turing patterns in the
context of hyperbolic models. As widely reported in literature [15, 28, 30, 32, 75–
79, 81], despite the mathematical convergence of parabolic and hyperbolic models is
expected in the long-time limit due to the stationary nature of the excited patterns,
the coupling between hyperbolicity and nonlinearity may generate richer transient
dynamics.

In particular, this chapter addresses the analysis of one-dimensional stationary
patterns emerging in the subclass of two-compartments hyperbolic RT models (1.8)-
(1.9) where both species undergo self-diffusion (ψ = ν = 0), defined on a large finite
domain. Here, the aim is focused at addressing the stability and quantization of
spatially-periodic patterns, in both supercritical and subcritical regimes.

With this in mind, it is deduced, first, the equation governing the evolution of
pattern amplitude close to the onset of supercritical and subcritical bifurcation. To
this aim, a multiple-scale weakly nonlinear expansion, pushed up to the fifth pertur-
bative order, is applied. Depending on the perturbative order at which the expansion
is truncated, this procedure allows to build a CRGL or CQRGL equation. Moreover,
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taking into account the quantization of modes due to the spatial confinement, a bi-
furcation analysis of the EI is addressed, to accurately describe the existence and
stability thresholds of all periodic branches [89]. This investigation is finalized at
inspecting the qualitatively different dynamical features captured by the above GL
equations.

Theoretical predictions here developed are then validated through a comparison
with numerical simulations. To this aim, the EI in the context of dryland ecology is
investigated by considering the hyperbolic generalization of the modified Klausmeier
model [41, 53, 65, 66, 76, 77].

The comparison between analytical and numerical results made it possible to ad-
dress several issues: (i) to validate theoretical predictions on bifurcation analysis
developed in the frameworks of CRGL and CQRGL equations, in both supercritical
and subcritical regimes; (ii) to investigate how hyperbolicity affects not only tran-
sient regime dynamics between different patterned states but also the occurrence of
phase-slips observed during an Eckhaus-driven restabilizing process; (iii) the feasi-
bility to control, independently of each other, the time and the spatial location at
which such phase-slips occur.

This chapter is organized as follows. In Section 2.1, LSA and WNA are performed.
Then, in Section 2.2, the bifurcation analysis of the EI is addressed. In detail, a brief
review of the most relevant results associated with the supercritical regime in the
framework of the CRGL equation is summarized, whereas the subcritical regime is
inspected via both CRGL and CQRGL equations. Finally, in Section 2.3, a validation
of the theoretical predictions is developed by means of a comparison with numerical
simulations carried out on the hyperbolic modified Klausmeier model. Numerical
investigations are addressed to inspect the spatio-temporal dependence of phase-slip
and to emphasize the role played by inertial times. Concluding remarks are given in
the last section.

2.1 LSA and WNA

The considered class of 1D hyperbolic RT models (1.8)-(1.9), where both species
u(x, t) and w(x, t) undergo self-diffusion (ψ = ν = 0) is given by

Ut + MUx = N(U, B) (2.1)

being

U =



u

w

Ju

Jw


, M =



0 0 1 0

0 0 0 1
1
τu 0 0 0

0 d
τw 0 0


, N =



f(u,w,B)

g(u,w,B)

− 1
τuJu

− 1
τw Jw


. (2.2)

In the literature, the hyperbolic structure (2.1),(2.2) has been successfully em-
ployed in different contexts, such as plant ecology [76], epidemiology [99], air pollution
[100] and chemistry [15].
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Before entering the details of the analysis, let us briefly recall the conditions for the
onset of Turing instability [3, 4]. Turing instability is the phenomenon that breaks
the spatial symmetry of a system. It arises when a steady state U∗ is stable against
spatially-uniform (k = 0) perturbations but loses stability under non-homogeneous
(k ̸= 0) ones. As known [4], this is equivalent to suppose that, after introducing a per-
turbation in the form e(ωt+ikx), the characteristic polynomial admits a null eigenvalue
(ω = 0) for a non-null value of k, named critical wavenumber kc. Also, the transition
from stability to unstability has to occur via a maximum, that is (∂ω/∂k|k=kc = 0).
By considering B as a control parameter and the above perturbation, the following
characteristic polynomial is obtained:

ω4 +A1ω
3 +A2ω

2 +A3ω +A4 = 0 (2.3)

where

A1 = 1
τu + 1

τw − (f∗
u + g∗

w) ,

A2 =
(

1
τu + d

τw

)
k2 + τuτw − (f∗

u + g∗
w)
(

1
τu + 1

τw

)
+ f∗

ug
∗
w − f∗

wg
∗
u,

A3 =
[
(d+ 1) τuτw − f∗

u
d
τw − g∗

w
1
τu

]
k2 + (f∗

ug
∗
w − f∗

wg
∗
u)
(

1
τu + 1

τw

)
− (f∗

u + g∗
w) τuτw,

A4 = d
τuτw

[
k4 −

(
f∗
u + g∗

w
d

)
k2 + f∗

ug
∗
w−f∗

wg
∗
u

d

]
,

Then, by requiring that U∗ is stable against spatially-uniform perturbations but
unstable with respect to non-homogeneous ones, we get the following restrictions:

f∗
u + g∗

w < 0

f∗
ug

∗
w − f∗

wg
∗
u > 0

df∗
u + g∗

w > 0

(df∗
u + g∗

w)2 − 4d (f∗
ug

∗
w − f∗

wg
∗
u) > 0

(2.4)

where the asterisk denotes that the function is evaluated at U∗.
From (2.4), it can be easily deduced that the critical values of control parameter

Bc and wavenumber kc at the onset of Turing instability are obtained by solving:

d2f∗
u + 2d

(
2f∗
wg

∗
u − f∗

ug
∗
w

)
+ g∗

w
2 = 0, (2.5)

k2
c =

√
f∗
ug

∗
w − f∗

wg
∗
u

d
. (2.6)

Note that, since we deal with the formation of stationary patterns, the hyperbolic
structure of system (2.1),(2.2) does not affect the expression of the critical parameters
at onset, so that the occurrence of Turing instability is ruled by the same conditions
found in classical parabolic models [4].

To describe the spatio-temporal evolution of pattern amplitude close to Turing
threshold (2.5),(2.6), multiple-scale WNA is now addressed [5, 58, 88, 92, 101]. To this
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aim, we consider a small dimensionless parameter ϵ, expand the control parameter
B around Bc and the field U = U − U∗ as

B = Bc + ϵ2B2 + ϵ4B4 +O(ϵ6),

U = ϵU1 + ϵ2U2 + ϵ3U3 + ϵ4U4 + ϵ5U5 +O(ϵ6)
(2.7)

and introduce different time and spatial scales as follows:

∂

∂t
→ ϵ2

∂

∂T2
+ ϵ4

∂

∂T4
,

∂

∂x
→ ∂

∂x
+ ϵ

∂

∂X
.

(2.8)

After substituting the above expansions into the governing system (2.1),(2.2), ap-
plying zero-flux boundary conditions over the physical domain x ∈ [0,D] and collect-
ing terms of the same orders of ϵ, a set of linear equations for the Ui is obtained:

at order 1 ∂U1
∂x −K∗

cU1 = 0

at order 2 ∂U2
∂x −K∗

cU2 = M−1 F̃2

at order 3 ∂U3
∂x −K∗

cU3 = M−1 F̃3

at order 4 ∂U4
∂x −K∗

cU4 = M−1 F̃4

at order 5 ∂U5
∂x −K∗

cU5 = M−1 F̃5

(2.9)

where the vectors F̃j (j = 2, ..., 5) are given by

F̃2 = 1
2

[(
U1 · ∇

)(2)
N
]∗

Bc

− M∂U1
∂X ,

F̃3 =
[(

U1 · ∇
)((

U2 · ∇
)

N
)

+ 1
6

(
U1 · ∇

)(3)
N
]∗

Bc

− M∂U2
∂X − ∂U1

∂T2
+ LU1,

F̃4 =
[(

U1 · ∇
)((

U3 · ∇
)

N
)

+ 1
2

(
U2 · ∇

)(2)
N + 1

2

(
U1 · ∇

)(2)
((

U2 · ∇
)

N
)

+

+ 1
24

(
U1 · ∇

)(4)
N
]∗

Bc

+ B2
2

d
[
(U1·∇)(2)N

]∗

dB


Bc

− M∂U3
∂X − ∂U2

∂T2
+ LU2,

F̃5 =
[(

U1 · ∇
)((

U4 · ∇
)

N
)

+ 1
2

(
U1 · ∇

)(2)
((

U3 · ∇
)

N
)

+
(
U2 · ∇

)((
U3 · ∇

)
N
)

+

+1
2

(
U2 · ∇

)(2)
((

U1 · ∇
)

N
)

+ 1
120

(
U1 · ∇

)(5)
N + 1

6

(
U1 · ∇

)(3)
((

U2 · ∇
)

N
)]∗

Bc

+

+B2
6

d
[
(U1·∇)(3)N+3(U1·∇)

(
(U2·∇)N

)]∗

dB


Bc

− M∂U4
∂X − ∂U3

∂T2
− ∂U1

∂T4
+ LU3 + L̃U1,

(2.10)
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being ∇ = ∂/∂U, together with

K∗
c =


0 0 −1 0
0 0 0 −1

d
f∗
u f∗

w 0 0
g∗
u g∗

w 0 0

 ,

L = B2
[

d(∇N)∗

dB

]
Bc

, L̃ = B4
[

d(∇N)∗

dB

]
Bc

+ B2
2

2

[
d2(∇N)∗

dB2

]
Bc

.

(2.11)

Moreover, for a generic vector H, the expression (H · ∇)(j) stands for the operator

H · ∇ = H1
∂

∂u
+H2

∂

∂w
+H3

∂

∂Ju
+H4

∂

∂Jw
(2.12)

applied j times.
The set of equations (2.9)-(2.11) has to be solved sequentially, as sketched in the

Appendix B. The removal of secular terms at O(ϵ3) leads to an envelope equation
ruling the spatio-temporal evolution of the pattern complex amplitude Ω(X,T2, T4)
that takes the form of a CRGL equation:

∂Ω
∂T2

= σΩ − L|Ω|2Ω + ν
∂2Ω
∂X2 , (2.13)

which preserves the structure found in classical parabolic models [5, 87–89]. It is
worth noticing that the real coefficients σ, L and ν inherit the dependence on the
inertial times as follows:

σ (τu, τw) = Π
d− 1 + k2

cd (τw − τu) ,

L (τu, τw) = Γ
d− 1 + k2

cd (τw − τu) ,

ν (τu, τw) = Ψ
d− 1 + k2

cd (τw − τu) ,

(2.14)

where the functions Π, Γ and Ψ depend upon the w-by-u diffusion ratio d and the ki-
netic terms, together with their partial derivatives, but are independent of the inertial
times. The explicit expressions of these functions are given in the Appendix B for the
case of vegetation dynamics illustrated by the hyperbolic modified Klausmeier model.
Therefore, the hyperbolic structure of the system may affect the spatio-temporal evo-
lution of pattern amplitude. In particular, the growth rate σ and coefficient ν, that
in the pattern forming region are always positive, play a significant role during tran-
sient regime. On the other hand, the sign of the Landau coefficient L determines
the nature of the dynamical regime: L > 0 corresponds to the supercritical regime,
whereas L < 0 to the subcritical one [76].

From the removal of secular terms at O(ϵ4), the following compatibility condition
for the spatially evolution of the pattern amplitude is obtained [93]:

k1ΩXXX + k2|Ω|2ΩX + k3ΩX = 0. (2.15)
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Therefore, to investigate subcritical dynamics, we push weakly nonlinear analysis
up to the fifth perturbative order where the removal of secular terms leads to the
following envelope equation for the pattern amplitude:

∂Ω
∂T

= σΩ − L|Ω|2Ω +R|Ω|4Ω + ν
∂2Ω
∂X2 , (2.16)

which is in the form of a CQRGL equation. In (2.16), ∂/∂T = ∂/∂T2 + ϵ2∂/∂T4,
the coefficients here appearing are real and represent second-order corrections of the
coefficient involved in CRGL equation (2.13), namely σ = σ + ϵ2σ̃, L = L + ϵ2L̃,
ν = ν + ϵ2ν̃ and R = ϵ2R̃. Moreover, each of these coefficients encloses a non trivial
dependence on the inertial times which, acting as additional degrees of freedom, may
offer a richer scenario of spatio-temporal dynamics with respect to the parabolic
counterpart. This statement holds true despite hyperbolic and parabolic models share
the same structure of weakly inverted bifurcations to a stationary spatially-periodic
state [94–97, 102, 103]. However, due to the cumbersome expressions here involved,
conclusions can be only given through numerical simulations. For this reason, as well
as to keep the length of this thesis within reasonable limits, the full expressions of
all the real coefficients involved in eqs.(2.13)-(2.16) will be explicitly given in the
Appendix B for the hyperbolic generalization of the modified Klausmeier model.

2.2 Bifurcation analysis of the EI
The analysis carried out in this section focuses on the formation and stability of
stationary 1D Turing patterns originating in the hyperbolic RT system (2.1),(2.2)
over a large finite domain (D ∝ 1/ϵ). In detail, the occurrence of the phenomenon of
EI will be analytically investigated in both supercritical and subcritical regime, with
the main aim of quantifying some key dynamical features: stationary amplitude of
patterns, existence and stability thresholds of each periodic bifurcating branch and
linear growth rate. To address how a non-favorable wavelength may lead to pattern
instability, the standard procedure adopted in the literature by Tuckermann and
Barkley is followed [5, 89], which is briefly reviewed in the next subsection.

2.2.1 Supercritical regime (a brief review)

To describe the spatio-temporal evolution of pattern amplitude close to onset of
Turing instability in the supercritical regime, it suffices to push WNA up to the
third perturbative order, where the CRGL equation (2.13) is retrieved. We remind
that the coefficients σ and ν are always positive whereas the Landau coefficient L is
positive in the supercritical regime only. To reduce the number of coefficients here
involved, let us apply the following rescaling:

x̃ = π

D
x = π

ϵD
X, t̃ = π2ν

D2 t = π2ν

ϵ2D2T2, Ω̃ = ϵD
√
L

π
√
ν

Ω, ζ = ϵ2D2

π2ν
σ, Q = D

π
k,

(2.17)
that allows to recast eq.(2.13) as:

∂Ω̃
∂t̃

= ζΩ̃ − Ω̃|Ω̃|2 + ∂2Ω̃
∂x̃2 . (2.18)



2. Stationary patterns in 1D hyperbolic RT systems 16

For simplicity, let us drop the tilde notation and assume that rolls take the structure:

Ω = ΞeiQxeiθ, (2.19)

where Ξ and Q describe, respectively, the amplitude and the phase of the envelope,
whereas θ is an arbitrary constant to be determined according to boundary condi-
tions. Substituting (2.19) into (2.18) gives, apart from the null solution Ξ = 0, the
stationary amplitude:

Ξ =
√
ζ −Q2. (2.20)

Patterned solution (2.19),(2.20) exists for ζ > Q2 and is referred in the literature to
as pure mode [89]. It has to be distinguished from the trivial solution Ω = 0 which
is termed conductive mode.

Note that, according to (2.17),(2.19) and the structure of U1 (see (B.12) in the
Appendix B), the field has total wavenumber (Q+Qc). The finite domain, however,
implies quantization of modes, i.e. not all wavenumbers are admitted but only those
integer ones satisfying (Qn +Qc) ∈ Z, n ∈ N0. Let us call

Ξn =
√
ζ −Q2

n (2.21)

the quantized amplitude of the n-th mode, that exists for ζ > Q2
n := ζe,n. Zero-

flux boundary conditions, together with quantization of modes, restrict the possible
values of θ to 0 and π only. For simplicity, we set θ = 0. To address linear stability of
patterns, let us apply small perturbations in amplitude and phase of rolls as follows:

Ω = Ξn(1 + ξ)ei(Qnx+ϕ), (2.22)

where |ξ|, |ϕ| ≪ 1. Substituting (2.22) into (2.18), keeping the linear terms in ξ and ϕ
and taking real and imaginary parts, the system ruling the evolution of perturbations
results: 

∂ϕ
∂t = 2Qn ∂ξ∂x + ∂2ϕ

∂x2

∂ξ
∂t = −2Ξ2

nξ + ∂2ξ
∂x2 − 2Qn ∂ϕ∂x

(2.23)

Then, by assuming: ϕ = ϕ̂eλt+ik̃x

ξ = ξ̂eλt+ik̃x
(2.24)

being ϕ̂ and ξ̂ arbitrary constants and the dimensionless wavenumber k̃ ̸= 0, the
following quadratic equation for the linear growth rate λ is obtained:

λ2 + 2
(
k̃2 + Ξ2

n

)
λ+ k̃2

(
2Ξ2

n + k̃2 − 4Q2
n

)
= 0, (2.25)

whose roots are:
λ(1,2)
n = −Ξ2

n − k̃2 ±
√

Ξ4
n + 4Q2

nk̃
2. (2.26)

Since the eigenvalue λ
(2)
n is always negative, the stability of the associated mode

depends on λ
(1)
n which, taking into account (2.21), can be expressed as:

λ(1)
n = Q2

n − k̃2 − ζ +
√(

ζ −Q2
n

)2 + 4Q2
nk̃

2. (2.27)
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Stationary amplitude
of pure modes n ≥ 0 Ξn =

√
ζ −Q2

n

Existence threshold n ≥ 0 ζe,n = Q2
n

(Unstable)
bifurcation points

1 < k̃ ≤ n ζn,k̃ = 3Q2
n − 1

2 k̃
2

(Restabilizing)
Eckhaus threshold

n ≥ 1 ζE,n = ζn,1 = 3Q2
n − 1

2

Range of existence n ≥ 0 ζ ≥ ζe,n

Range of stability n = 0
n ≥ 1

ζ ≥ ζe,0

ζ ≥ ζE,n > ζe,n

Table 2.1: Dynamical features predicted by CRGL equation (2.18) in the supercritical
regime.

Consequently, stable roll solutions in a finite domain satisfy:

ζ > sup
k∈N

{3Q2
n − 1

2 k̃
2} = 3Q2

n − 1
2

:= ζE,n, (2.28)

the last equality of which identifies the well-known Eckhaus parabola in the (Q, ζ)
plane [5, 89].

By means of this approach, a well-known result is retrived: the primary branch Ω0
is always stable at onset (ζ ≥ ζe,0) while all the other branches Ωn (with n ≥ 1) have
always n unstable directions at onset and undergo n secondary bifurcations (of pitch-
fork type) in order to become stable. The final, restabilizing, bifurcation corresponds
to the Eckhaus threshold [89]. The analysis developed in the supercritical regime,
where pattern amplitude obeys CRGL equation (2.18) can be thus summarized in
tabular form, see Table 2.1.

Moreover, taking into account (2.14) and (2.17), we can conclude that the station-
ary amplitude of each pure mode Ξn, the existence thresholds ζe,n and the Eckhaus
thresholds ζE,n are unaffected by hyperbolicity, being the ratio σ/ν independent of
inertial times. This result is compatible with the stationary nature of the emerging
spatially-periodic patterns.

2.2.2 Subcritical regime

In this section we aim to describe the pattern amplitude close to onset of a subcritical
bifurcation via a CRGL equation or CQRGL equation. Although it is known that
these amplitude equations may capture different dynamical features, the goal of the
subsequent analyses is to detect and emphasize such differences keeping in mind that
the Landau coefficient L is negative in this regime.
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Stationary amplitude
of pure modes n ≥ 0 Ξn =

√
Q2
n − ζ

Existence threshold n ≥ 0 ζe,n = Q2
n

(Restabilizing)
Eckhaus threshold

n = 0 ζE,0 = 3Q2
0 − 1

2

Range of existence n ≥ 0 ζ ≤ ζe,n

Range of stability n = 0 ζE,0 ≤ ζ ≤ ζe,0

Table 2.2: Dynamical features predicted by CRGL equation (2.30) in the subcritical
regime.

2.2.2.1 Description via CRGL equation

Starting from CRGL equation (2.13), let us rescale the variables as in (2.17) except
for the amplitude:

Ω̃ = ϵD
√

−L
π

√
ν

Ω. (2.29)

This allows to recast the CRGL equation as follows:
∂Ω̃
∂t̃

= ζΩ̃ + Ω̃|Ω̃|2 + ∂2Ω̃
∂x̃2 . (2.30)

Removing tilde notation and adopting similar arguments as those addressed in the
previous subsection, the quantized pure modes can be expressed as:

Ωn =
√
Q2
n − ζeiQnx (2.31)

and exist for
ζ < Q2

n := ζe,n. (2.32)
For each Qn, the previous expression is representative of two periodic branches that
originate from the conductive state through a subcritical pitchfork bifurcation. It
is easy to verify that the expression of the eigenvalue determining stability of each
bifurcating branch λ(1)

n (given in (2.27)) as well as the condition on pattern stability
(given in (2.28)) are formally unchanged with respect to those found in the super-
critical case. However, a key point has to be stressed according to the analysis here
carried out: the existence (2.32) and stability (2.28) conditions are simultaneously
fulfilled in the subcritical regime for n = 0 only. Results are summarized in Table
2.2. Therefore, if the pattern amplitude obeyed CRGL equation (2.30) close to the
onset of a subcritical bifurcation, the sole primary branch Ω0 would undergo Eck-
haus instability [104]. This marks a notably difference with respect to the behavior
outlined in the supercritical regime.

2.2.2.2 Description via CQRGL equation

Let us now inspect whether the CQRGL equation (2.16), obtained by pushing WNA
expansion up to fifth order, may provide a qualitatively different description of sub-
critical dynamics. The signs of the coefficients are assumed to be σ > 0, L < 0, ν > 0
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and R̃ < 0 in order to guarantee that the the primary branch exhibits a weakly
inverted bifurcation at onset (i.e., it shows hysteresis) and that such a bifurcation
saturates to quintic order [94]. By using the following rescaling of variables:

x̃ = π

ϵD
X, t̃2 = π2ν

ϵ2D2T2, t̃4 = π2ν

ϵ2D2T4, Ω̃ = ϵD
√

−L
π

√
ν

Ω,

ζ = ϵ2D2

π2ν
σ, Q = D

π
k, ρ = − π2ν

D2L
2 R̃,

(2.33)

the CQRGL equation (2.16) may be recast as:

∂Ω̃
∂t̃

= ζΩ̃ + Ω̃|Ω̃|2 − ρΩ̃|Ω̃|4 + ∂2Ω̃
∂x̃2 , (2.34)

being ∂/∂t̃ = ∂/∂t̃2 + ϵ2
(
∂/∂t̃4

)
. Notice that the coefficients ζ and ρ are real and

positive.
Dropping tilde notation, considering “perfect” rolls structure as in (2.19) and using

similar arguments as those addressed in the previous subsections, the quantized pure
modes originating from the turning point can be expressed as Ωn = ΞneiQnx with:

Ξn =

√√√√1 ±
√

1 + 4ρ
(
ζ −Q2

n

)
2ρ . (2.35)

The large amplitude branch exists for

ζ > Q2
n − 1

4ρ
:= ζe,n, (2.36)

whereas the small amplitude one exists for

ζe,n < ζ < Q2
n. (2.37)

Considering (2.22),(2.24) and (2.34), the eigenvalue λ(1)
n determining stability of pure

modes is given by

λ(1)
n = Ξ2

n − k̃2 − 2ρΞ4
n +

√
4ρ2Ξ8

n − 4ρΞ6
n + Ξ4

n + 4Q2
nk̃

2, (2.38)

that, using (2.35), allows to deduce the following stability condition for the large
amplitude branch:

ζ > sup
k̃∈N

2Q2
n − 1

4 k̃
2 − 1

8ρ

[
1 −

√
1 − 4ρ

(
k̃2 − 4Q2

n

)] =

= 2Q2
n − 1

4 − 1
8ρ

[
1 −

√
1 − 4ρ

(
1 − 4Q2

n

)]
:= ζE,n,

(2.39)

the last equality of which defines the Eckhaus threshold predicted by CQRGL equa-
tion. From the comparison between existence (2.36) and Eckhaus thresholds (2.39),
it is possible to identify which bifurcating branch may undergo EI as:

ζe,n ≤ ζE,n ⇔ −8ρ
(
Q2
n − 1

4

)
− 1 ≤

√
1 − 4ρ

(
1 − 4Q2

n

)
. (2.40)
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Inequality (2.40) points out that the restabilizing mechanism depends on the order
of the bifurcating branch. Indeed, for n = 0, since quantization of modes implies(
Q2

0 − 1/4
)

≤ 0, the necessary and sufficient condition for the restabilization of the
primary branch becomes:

2
(
1 − 4Q2

0
)
ρ ≤ 1, (2.41)

that represents a restriction on the allowed values of the coefficient ρ. On the other
hand, for n ≥ 1, since

(
Q2
n − 1/4

)
> 0, the inequality (2.40) is fulfilled for any

ρ > 0, so implying that all the secondary branches exhibit restabilizing Eckhaus
bifurcations.

According to this analysis, the existence and consequently the amount of secondary
bifurcations originating from periodic branches requires:

k̃ ≤ 2|Qn|
√

1 + 1
8ρQ2

n

:= k̃∗
n, (2.42)

with k̃ ∈ N. Since ρ > 0, the radicand is always greater than 1, so that k̃∗
n ≥ 2|Qn|.

Notice that, fulfillment of conditions (2.40) and (2.41), as well as the numerical
estimation of the quantity k̃∗

n in (2.42), depends on the value of the coefficient ρ and
thus, it has to be checked numerically for the specific model under consideration.
This issue will be addressed in next sections.

Therefore, the CQRGL equation predicts at least four key differences with respect
to the cubic counterpart: (i) the range of existence of patterns is bounded from
below ζ ≥ ζe,n := Q2

n − 1/(4ρ); (ii) such an existence threshold is smaller than the
bifurcation point (ζn = Q2

n) at which periodic branches originate from the conductive
state; (iii) the primary branch may undergo EI provided that condition (2.41) is
satisfied whereas (iv) all the secondary branches undergo EI and the number of
restabilizing bifurcations depends on value of ρ through condition (2.42).

Results contained in this subsection, that represent one of the novelties, are sum-
marized in Table 2.3.

In the literature [94], Brand and Deissler tackled a similar study on Eckhaus in-
stability and deduced the analog of the Benjamin-Feir-Newell instability criterion for
a weakly inverted bifurcation. However, some differences with respect to the present
work should be pointed out. Indeed, those authors addressed the analysis on infinite
domains only, so that quantization of modes was not investigated. Furthermore, the
stability domain for finite-amplitude plane-wave solutions of CQRGL equation that
are stable against the EI was provided in terms of wavenumber instead of control
parameter.

2.2.3 Spatio-temporal dependence of phase-slip

The analysis carried out so far has revealed that the transition from an Eckhaus
unstable state towards a more favorable, stable, patterned configuration may occur
under different dynamical regimes. This process involves a sequence of transient states
during which the wavelength of patterns is adjusted via the formation of amplitude
defects and the appearance of phase-slips. Phases-slips are defined as solutions of
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Stationary amplitude
of pure modes n ≥ 0 Ξn =

√[
1 +

√
1 + 4ρ

(
ζ −Q2

n

)]
/(2ρ)

Existence threshold n ≥ 0 ζe,n = Q2
n − 1

4ρ

(Unstable)
bifurcation points 1 < k̃ ≤ k̃∗

n ζn,k = 2Q2
n − 1

4 k̃
2 − 1

8ρ

[
1 −

√
1 − 4ρ

(
k̃2 − 4Q2

n

)]

(Restabilizing)
Eckhaus threshold n ≥ 0 ζE,n = 2Q2

n − 1
4 − 1

8ρ

[
1 −

√
1 − 4ρ

(
1 − 4Q2

n

)]

Range of existence n ≥ 0 ζ ≥ ζe,n

Range of stability
n = 0

n ≥ 1

ζ ≥ ζE,0 > ζe,0 ⇔ 2
(
1 − 4Q2

0
)
ρ ≤ 1

ζ ≥ ζE,n > ζe,n always

Table 2.3: Dynamical features predicted by CQRGL equation (2.34) in the subcritical
regime.

the real GL equation whose number of zeros varies as a function of time. In other
words, assuming the pattern amplitude Ω = Ξ(x, t)eiψ(x,t), a wavelength can only be
created or destroyed where the local spatial phase ψ(x, t) is undefined, namely at time
instants (t′) and locations (x′) where Re(Ω(x′, t′)) = Im(Ω(x′, t′)) = 0 [90, 105, 106].

Unfortunately, the global evolution of a given perturbation cannot be correctly
described by a local analysis around a steady state, as the one performed in the pre-
vious sections, so that the occurrence in time and the location in space of phase slips
is hard to be predicted. To the best of our knowledge, some good approximations of
these quantities have been obtained by means of local theories under the assumption
that phase slip occurs ‘just’ after an ad-hoc choice of initial data [90, 106], but no
explicit expressions have been provided in the general, global, case. Moreover, some
works pointed out the possibility to control and vary the time to phase slip only if
some ‘free’ model parameters, not involved in the spectrum of the linearized problem,
are available [96, 104, 107]. At the same time, those works inspected the dependence
of the time to phase slip on the linear growth rate but no mention was given on
the functional dependence of the spatial location at which phase slip occurs. There-
fore, the issue of controlling, independently of each other, time and space at which
phase slip takes place appears to be still unaddressed. This issue will be investigated
numerically in the next section.

2.3 An illustrative example: the hyperbolic modified
Klausmeier model

In order to validate the theoretical predictions carried out in the previous sections,
let us now investigate, as an illustrative example, the occurrence of EI in the context
of dryland ecology. To this aim, let us take into account the Klausmeier model.
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It has been proposed in the literature both in parabolic (1.2) [41] and hyperbolic
(1.8)-(1.9) [75–77] versions. This latter has been introduced to account for inertial
effects [18, 20, 24, 26, 27] and long transient regimes [71–74]. In line with the analysis
carried out previously, plant mortality B is taken as the main control parameter as
it encloses variability due to natural, human, and herbivory effects. To evaluate the
spatio-temporal evolution of pattern dynamics, the governing system is integrated
numerically over a finite domain of length D by means of COMSOL Multiphysics
[108]. Moreover, the MATLAB package PDE2PATH [109] is used to build up the
bifurcation diagrams in both supercritical and subcritical regimes.

In Appendix B all the expressions of the quantities arising from LSA and WNA
for the hyperbolic generalization of the modified Klausmeier model are reported.

2.3.1 Supercritical regime

In the supercritical regime, the following model parameters are chosen: water-to-
plant diffusion ratio d = 103 and rainfall A = 2.8. According to (2.5),(2.6),(2.14),
the considered setup gives rise to a critical value of plant loss Bc = 3529 × 10−4,
critical wavenumber kc = 0.3814 and Landau coefficient L = +113 × 10−5 > 0. The
governing system is integrated over a spatial domain of length D = 200. For the
computation of spatio-temporal dynamics the overall time window here considered
is t ∈ [0, 1.5 × 104].

The bifurcation diagram obtained in the supercritical regime is depicted in Fig.2.1,
where solid red (dashed black) lines are representative of stable (unstable) branches.
In agreement with theoretical predictions (see Table 2.1), it consists of a primary
branch (n = 0) and several secondary branches (the cases n = 1, 2, 3 are here
shown). The primary branch bifurcates supercritically at Be,0 giving rise to two
stable branches for B > Be,0. The secondary branches originate from the conduc-
tive state at Be,n and, for n > 1, undergo (n − 1) unstable (pitchfork) bifurcations,
namely Bn,i ∀i = 1, . . . , n− 1, until they re-stabilize at the Eckhaus threshold BE,n.
The bifurcation diagram is computed for different values of inertial times achieving
the same result, as expected from the theoretical analysis.

The numerically-computed values of the existence and Eckhaus thresholds are
summarized in Table 2.4 and compared to the theoretical ones given in Table 2.1.
As it can be noticed, the resulting agreement between them is satisfying for all the
investigated branches. The agreement gets slightly worse for higher-order branches,
as the dimensionless distance from the Turing threshold ϵ2 increases, as expected
from weakly nonlinear approximation. It should be also remarked that the following
inequalities on existence and Eckhaus thresholds, Be,n > Be,n−1 and BE,n+1 > BE,n,
hold for any n ≥ 1.

In order to check the validity of the bifurcation diagram and, in turn, to confirm
the theoretical predictions carried out, let us now integrate numerically the governing
systems by varying the control parameter B. In all simulations, the initial condition
is assumed to take the form given by (2.7)2 and (B.12), where the pattern amplitude
is taken as a small perturbation of the stationary value for each considered branch
Ωn =

√
ζ −Q2

ne
iQnx, in line with eqs.(2.19),(2.21). Results are shown in Fig.2.2.

Zero-flux boundary conditions impose that only integer values of the wavenumber
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Figure 2.1: Bifurcation diagram in the supercritical regime. Solid red (dashed black)
lines represent stable (unstable) stationary branches. Existence Be,n and Eckhaus
BE,n thresholds are indicated in the bottom and in the top part of the figure, respec-
tively.

Branch k̃ BP theoretical numerical ϵ2

×10−4 ×10−4

Ω0 Be,0 3529 3529 1, 1 × 10−4

Ω1 Be,1 3531 3531 7, 1 × 10−4

1 BE,1 3534 3535 1, 8 × 10−3

Ω2 Be,2 3537 3538 2, 7 × 10−3

2 B2,2 3544 3543 4, 1 × 10−3

1 BE,2 3553 3550 6, 1 × 10−3

Ω3 Be,3 3545 3544 4, 4 × 10−3

3 B3,3 3552 3554 7, 2 × 10−3

2 B3,2 3566 3570 1, 2 × 10−2

1 BE,3 3574 3580 1, 5 × 10−2

Table 2.4: Comparison between theoretically-estimated and numerically-computed
bifurcation points for the first four periodic branches characterizing the supercritical
regime. The quantity ϵ2 represents the dimensionless distance from Turing threshold.



2. Stationary patterns in 1D hyperbolic RT systems 24

Figure 2.2: Spatio-temporal evolution of supercritical pattern dynamics obtained
integrating numerically the hyperbolic modified Klausmeier model with the following
parameter set: D = 200, A = 2.8, d = 103, τu = τw = 10−2. In the figures, the control
parameter B is varied as follows: (a) B > Be,0, (b) Be,1 < B < BE,1, (c) B > BE,1,
(d) Be,2 < B < BE,2, (e) B > BE,2, (f) Be,3 < B < BE,3 and (g) B > BE,3. The
different initial conditions here used are specified in the main text.

are allowed. Therefore, the system will only support periodic patterns whose overall
wavenumber Qc+Qn are integer. Since kc = 0.3814, according to (2.17), the rescaled
value of wavenumber becomes Qc = 24.28 and the closest integer is 24, so that
the finite geometry shall select a primary mode with wavenumber Qc + Q0 = 24.
Considering that π(Qc +Q0)/D = 2π/Λ, with Λ the pattern wavelength, the whole
computational domain D shall thus accommodate 12Λ. Indeed, by choosing a value
B > Be,0, starting from a small perturbation of the branch Ω0, the confirmation
of the stability of the primary branch is achieved, as can be seen from Fig.2.2(a).
Analogously, starting from Be,1 < B < BE,1 and setting as initial condition a small
perturbation of the branch Ω1, the system undergoes a phase slip, during which
the number of wavelengths is reduced, and finally it converges towards the stable
Ω0 branch (Fig.2.2(b)). On the contrary, by leaving the previous initial condition
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unchanged, if the control parameter is set just above the Eckhaus threshold, i.e.
B > BE,1, the system now stabilizes along the stable branch Ω1. In this latter case,
in fact, the next closest integer is 25, so the finite geometry shall select a mode
with wavenumber Qc + Q1 = 25 that corresponds to D = 12.5Λ (see Fig.2.2(c)).
Similar conclusions can be drawn for higher-order branches. In detail, Fig.2.2(d)
represents the evolution from a small perturbation of the branch Ω2 (characterized by
Qc+Q2 = 23 and D = 11.5Λ) by using Be,2 < B < BE,2. Indeed, in this range of the
control parameter, the initial branch is unstable, so the system converges to the stable
branch Ω0 and a phase slip at the boundary of the domain occurs. Instead, if the
value of the control parameter is slightly increased to overcome Eckhaus threshold,
B > BE,2, the branch Ω2 now stabilizes (see Fig.2.2(e)). Finally, the last two figures
correspond to simulations where the initial conditions are set as small perturbations
of branch Ω3 with control parameter slightly smaller (Be,3 < B < BE,3, Fig.2.2(f))
or larger (B > BE,3, Fig.2.2(g)) than the Eckhaus threshold of the corresponding
branch. As can be seen, in the former case, the initial branch is unstable and system
experiences a transition towards the stable Ω0 branch whereas, in the latter case, the
system stabilizes along the branch Ω3, consistently with theoretical predictions.

2.3.2 Subcritical regime

Numerical investigations carried out in the subcritical regime make use of the follow-
ing parameters: water-to-plant diffusion ratio d = 103 and rainfall A = 0.02. These
parameters provide a critical value of plant loss Bc = 9.378×10−3, critical wavenum-
ber kc = 5.62×10−2 and Landau coefficient L = −5.69×10−5 < 0. As can be noticed,
the much smaller value of critical wavenumber suggests that the excited wavelengths
are much larger than those observed in the supercritical regime, consistently with
previous results [76]. For this reason, the computational domain has been enlarged
to D = 103. Moreover, since subcritical pattern dynamics are expected to occur over
much longer timescales, the spatio-temporal evolution is observed over a wider time
window t ∈ [0, 2 × 105].

Two main considerations can be drawn from the bifurcation diagram obtained in
the subcritical regime, shown in Fig.2.3. First, the primary branch undergoes a sub-
critical bifurcation at B0 (corresponding to ζ = Q2

0) where two unstable periodic
branches originate from the conductive states, become stable at the Eckhaus thresh-
old BE,0 < B0 and still survive for B > B0 (ζ > Q2

0). Second, the secondary branches
(n ≥ 1) undergo a restabilizing bifurcation for BE,n > Bn (ζE,n > ζn).

Therefore, two striking features appear markedly in contrast with the analysis
developed in the framework of CRGL equation: the existence of periodic solutions
beyond the predicted threshold and the occurrence of restabilizing bifurcations for
higher order branches too. Evidently, WNA previosly developed fails to describe this
phenomenon as it is based on the assumption that pattern amplitude behaves as
O(ϵ) close to onset. The approach based on CRGL equation appears to be, thus, not
suitable to predict the occurrence of restabilizing bifurcations at large amplitudes,
whose description requires WNA nonlinear expansion to be pushed forward to higher
orders.

The features exhibited by the bifurcation diagram in Fig.2.3 are, indeed, fully
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Figure 2.3: Diagram of the first three subcritical bifurcating branches. The bifurcation
points of the conductive branch Bn are indicated in the bottom part of the figure,
whereas the Eckhaus thresholds BE,n are shown in the top part.

compatible with results obtained in the framework of CQRGL equation (summarized
in Table 2.3). Several considerations may be addressed on this point. First of all, the
occurrence of EI on the primary branch at ζE,0 < Q2

0 confirms that the numerically-
computed value of the coefficient R̃ is negative and fulfills the restriction (2.41).
Moreover, the secondary branches originating from the unstable conductive state do
exhibit Eckhaus restabilizing bifurcations for values of the control parameter larger
than existence threshold, i.e. BE,n > Be,n. Furthermore, each n-th order branch
undergoes exactly (n − 1) secondary unstable bifurcations (as in the supercritical
regime), in agreement with the numerical values of the coefficient k̃∗

n that always fall
in the range n < k̃∗

n < n+ 1.
Let us finally comment that the bifurcation diagram drawn in Fig.2.3 has been

computed for different inertial times (by varying them over different order of mag-
nitudes) obtaining identical results, so verifying the independence of existence and
Eckhaus thresholds on inertial effects. The theoretical values of Eckhaus threshold of
the first three branches originating from the conductive state arising from cubic and
quintic analysis are reported in Table 2.5. The previous theoretical values are then
compared to the numerical ones, obtaining a satisfying agreement in all cases. Of
course, theoretical values deviate away from numerical ones as far as the dimension-
less distance from the threshold is increased, as expected from WNA. It should be
finally noticed that, in relation to both Figs. 2.1 and 2.3, the fact that the bifurcation
points are so close from each other is strictly related to the range of validity of WNA,
i.e. not so far from threshold.
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Branch k̃∗
n BP theoretical theoretical numerical

(cubic) (quintic)
×10−5 ×10−5 ×10−5

Ω0 0.8 Be,0 939 938 938
BE,0 938 938 938
B0 939 939 940

Ω1 1.9 Be,1 942 939 939
B1 942 942 943
BE,1 − 940 940

Ω2 2.4 Be,2 945 941 942
B2 945 945 947
B2,2 − 948 957
BE,2 − 949 960

Table 2.5: Comparison between theoretically-estimated and numerically-computed
bifurcation points for the first three periodic branches characterizing the subcritical
regime.

Let us now inspect the spatio-temporal evolution of patterns resulting from vari-
ation of the control parameter B along the different branches characterizing the bi-
furcation diagram of Fig.2.3. To achieve this goal, the governing system is integrated
numerically by using the same boundary and initial conditions as the ones adopted
in the supercritical regime. Results of this analysis are shown in Fig.2.4. According
to the previous values of critical parameters together with the scaling of variables
(2.33), the dimensionless value of critical wavenumber becomes Qc = 17.89. There-
fore, the finite geometry shall select a primary mode with wavenumber Qc+Q0 = 18,
i.e. the computational domain shall accommodate D = 9Λ. Indeed, by choosing a
value BE,0 < B < B0, starting from a small perturbation of the branch Ω0, the
primary branch results to be stable even for values of the control parameter smaller
than the primary bifurcation threshold, so confirming the subcritical character (see
Fig.2.4(a)). Let us now set the initial condition as a small perturbation of the branch
Ω1, which is characterized by Qc + Q1 = 17 and D = 8.5Λ, and choose a control
parameter which falls into the range B1 < B < BE,1 or BE,1 < B < B2, i.e. respec-
tively slightly below or above the Eckhaus threshold of the first secondary branch
(predicted by quintic GL equation). Results reveal that, in the former case, the sys-
tem undergoes a phase slip and finally converges towards the stable Ω0 branch (see
Fig.2.4(b)). In the latter case, the system remains on the stable Ω1 branch, prov-
ing the occurrence of a restabilizing bifurcation (see Fig.2.4(c)). The instability of
the last secondary branch for values smaller than Eckhaus threshold can be proved
by setting the initial condition as a small perturbation of Ω2 (Qc + Q2 = 19 and
D = 9.5Λ) and choosing B2 < B < BE,2. As shown in Fig.2.4(d), the system selects
a different wavelength and stabilizes along the stable Ω0 branch. On the contrary, if
the control parameter is chosen in such a way that B > BE,2, no phase slips occurs
and the system stabilizes on the Ω2 branch, as depicted in Fig.2.4(e). In all cases,
results agree with theoretical predictions developed in previous sections.
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Let us finally comment that all the simulations reported in this section have been
obtained by integrating numerically the hyperbolic model by using τw = 10−2 and
τu = 0.9, that represent a good approximation of the behavior close to the parabolic
limit in the subcritical regime. In the next section, the behavior far away from the
parabolic limit is explored in more detail.

2.3.3 Spatio-temporal dependence of phase slip

Let us characterize more deeply the phenomenon of phase slip taking place during
Eckhaus-driven dynamics, with more emphasis on the role played by hyperbolicity.

As previously mentioned [90, 96, 105, 106], a phase slip may be defined as a solution
of the GL equation whose zeros of the pattern amplitude

∣∣Ω(x, t)
∣∣ vary as a function

of space and time. Let us call tslip and xslip, respectively, the first time instant and
the spatial location at which such an event takes place. Due to the impossibility to
predict these values theoretically, ad-hoc numerical investigations are performed with
the twofold aim of: (i) elucidating how inertial times may affect this phenomenon in
the supercritical and subcritical regimes and (ii) establishing strategies to control
these quantities independently of each other.

Let us now investigate how the time and the space at which phase slip takes place
depend on the model parameters and the initial conditions. In this context it will

Figure 2.4: Spatio-temporal evolution of subcritical pattern dynamics obtained inte-
grating numerically the hyperbolic Klausmeier model (2.1),(2.2) with the following
parameter set: D = 103, A = 0.02, d = 103, τw = 10−2, τu = 0.9. The control
parameter B is varied as follows: (a) BE,0 < B < B0, (b) B1 < B < BE,1, (c)
BE,1 < B < B2, (d) B2 < B < BE,2 and (e) B > BE,2. The different initial condi-
tions here used are specified in the main text.
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be emphasized how inertial times represent, effectively, additional degrees of free-
dom that may be used to enrich the scenario of transient dynamics. Indeed, in the
parabolic version of the Klausmeier model [41, 53, 65, 66], the linearized problem giv-
ing rise to Turing threshold is completely determined by all model parameters, i.e.
A, B and d, as deduced in (2.5),(2.6). These parameters also specify the stationary
amplitude of each branch of quantized periodic state. Consequently, no free param-
eters are available to characterize the evolution of the system during the transient
regime. On the contrary, in the hyperbolic extension it is possible to manage two ex-
tra parameters, i.e. τu and τw, that are the inertial times of the involved species and
that are always present in any physical system. As shown in the previous sections,
changes applied to inertial times do not yield any variation of existence and stability
thresholds, but it is expected that they play a relevant role during transient regime.

To this aim, let us integrate numerically the hyperbolic system by fixing the param-
eters A, B, d and τu, and varying the phenomenological coefficient τw. In the first set
of investigations, the parameters are chosen in such a way dynamics fall into the su-
percritical regime. In particular, the plant loss is chosen in the range Be,2 < B < BE,2
and the initial condition is set as small perturbation of the unstable branch Ω2, so
that the system is expected to undergo an Eckhaus-driven transition towards the
stable branch Ω1 (as depicted in Fig.2.2(d)). Results are shown in Fig.2.5 where τw
is varied from 10−2 to 10. It can be noticed that, as the parameter τw increases, the
phase slip takes place earlier, leaving its spatial location at the edges of the domain
unaltered. Moreover, dynamics reported from (e) to (a) represent progressive devi-
ations from the parabolic limit and allow to appreciate how much longer transient
regimes may be experienced by varying a single inertial-related parameter.

To describe in more detail the control of the only time to phase slip, let us char-
acterize its functional dependence. From the numerical standpoint, keeping in mind
(2.7)2 and (B.12), a useful way to approximate the occurrence of a zero of pattern
amplitude consists of searching where and when the current state U(x, t) crosses the
steady-state US . To check the validity of the previous statement, let us depict the
trajectory followed by the field variables from the initial state Uin (taken as small
perturbation of the unstable Ω2 branch) towards the stationary patterned state Uend
(stable patterned branch Ω0). As illustrative examples, the trajectories correspond-
ing to three different values of τw = 10−2, 10 and 50 are shown in Fig.2.6(a) for the
supercritical regime, whereas those corresponding to τw = 10−2, 1 and 10 for the sub-
critical one are depicted in Fig.2.7(a). It is found that, independently of the value of
τw, all the trajectories cross the steady homogeneous state US at the same location:
xslip = 84 in the supercritical regime and xslip = 276 in the subcritical one. Such an
intersection occurs at longer times as the phenomenological parameter τw is reduced,
as denoted by the green squares in Fig.2.6(b) and Fig.2.7(b), and consistently with
the meaning of inertial time.

The above observations suggest to correlate the time to phase slip tslip with the
linear growth rate λ(1)

n (see expressions (2.27) and (2.38)). Indeed, once the growth
factor is recasted in the original time variables, say λ(1)

n , one argues that it depends
linearly on the parameters ν (in the supercritical regime) or ν (in the subcritical one),
which both bring the contribution from inertia. Indeed, by plotting the dependence
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Figure 2.5: Spatio-temporal evolution of patterns deduced from numerical integration
of the hyperbolic model. The common parameters are: D = 200, A = 2.8, d = 103,
τu = 10−2 and Be,2 < B < BE,2. The parameter τw is varied as follows: (a) τw = 10,
(b) τw = 7, (c) τw = 3, (d) τw = 2 and (e) τw = 10−2.

of tslip as a function of λ(1)
n , with n = 2, two different linear relationships are retrieved

in log-log scale, as depicted in Fig.2.6(c) for the supercritical regime (with adjusted
r-squared value r2

a = 0.999), and in Fig.2.7(c) for the subcritical one (r2
a = 0.995).

These results confirm that the time to phase slip tslip, close to onset, is strictly related
to the linear growth rate λ(1)

n in both dynamical regimes.
Notice that the above analysis is carried out by considering values of inertial times

falling either in the ranges τu < τw or τw < τu, obtaining the same functional
dependence. However, the different signs of the proportionality coefficients deduced
in the linear fits indicate that the time to phase slip is negatively correlated with the

linear growth rate in the supercritical regime [104], i.e. tslip ∝∼
(
λ

(1)
2

)− 1
2
, whereas it

is positively correlated in the subcritical one [96], i.e. tslip ∝∼
(
λ

(1)
2

) 1
2
.

Results described so far pointed out that the time at which phase slip occurs
may be controlled by the linear growth rate, leaving the location unchanged. Let
us now inspect whether it is possible to find a strategy to get the opposite scenario,
namely the possibility to modulate the location xslip at which wavelength adjustment
takes place leaving the time to phase slip unaltered. To this aim, since perfectly-
periodic initial conditions may represent an idealization of reality, let us consider an
ecologically-realistic scenario where a defect, localized at x ≡ xdef with amplitude
a, is present in the initial data, as shown schematically in Fig.2.8(a). Let us then
build the scatterplots representative of location xslip to phase slip as a function of
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defect position xdef , obtained for a = 50. Results shown in Fig. 2.8(b) reveal that
the spatial location of phase slip can be modulated linearly (r2

a = 0.999) by varying
the defect position, leaving the time to phase slip almost unchanged. To confirm the
above statements, in Fig.2.9 some examples of spatio-temporal evolution of patterns
obtained for three different locations of a large defect are depicted. As it can be
noticed, the time to phase slip is kept almost fixed at t ≃ 350.

Therefore, the numerical investigations here proposed suggest different strategies
to control, separately, the time and the spatial location at which phase slip takes
place.

Figure 2.6: (a,b) Numerically-computed trajectories u(xslip, t) corresponding to su-
percritical dynamics from a small perturbation of the unstable Ω2 branch (Uin)
towards the stable patterned Ω0 branch (Uend), crossing the homogeneous state US .
Fixed parameters: Be,2 < B < BE,2, d = 103, A = 2.8 and τu = 10−2. Variables:
τw = 50 (solid blue line), τw = 10 (dashed red line) and τw = 10−2 (dotted black
line). In (b), green squares represent the time at which phase slip occurs. (c) Plot
of log(tslip) as a function of −log(λ(1)

2 ). Black squares represent results of numerical
simulations for different value of τw, the solid red line denotes the linear fit.

Figure 2.7: Panels, lines and symbols have the same meaning as in Fig.2.6, but
dynamics falls into subcritical regime. Fixed parameters: B2 < B < BE,2, d = 103,
A = 0.02 and τu = 0.9. Variables: τw = 10, τw = 1 and τw = 10−2.
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Figure 2.8: The control of the spatial location of phase slip. (a) Schematics of the
initial conditions, where xdef denotes the location of a defect and a its amplitude. (b)
Scatterplot representative of the relationship xslip

(
xdef

)
, where black square symbols

represent results of numerical simulations, and the red solid line is the computed best
linear fit. The amplitude of the defect is set to a = 50.

Figure 2.9: Spatiotemporal evolution of patterns with a localized defect in the ini-
tial conditions. Parameters are: D = 200, A = 2.8, d = 103, Be,2 < B < BE,2,
τu = τw = 10−2, a = 50 and (a) xdef = 80 (b) xdef = 100 (c) xdef = 120.

2.4 Concluding remarks
In this chapter, a theoretical study on the EI of stationary patterns in hyperbolic RT
systems over large finite domains was addressed in the supercritical and subcritical
regimes. To this aim, LSA and WNA were first addressed to deduce the equations
governing the pattern amplitude close to criticality. Then, the bifurcation analysis of
the EI was carried out to describe existence and stability thresholds of all bifurcating
branches. Finally, the above analytical predictions were validated by comparison with
results of numerical simulations performed on a model of interest in dryland ecology,
the modified Klausmeier model, where stationary vegetation patterns emerge over
flat arid terrains. These numerical investigations also allowed to get some insights
into the phenomenon of phase-slip.

The main results can be summarized as follows:
(i) It was shown that, while the CRGL equation (2.13) describes satisfactorily well

the features associated to primary and secondary branches of periodic solutions in
the supercritical regime, it is not able to predict the proper range of existence of such
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periodic solutions as well as the restabilizing mechanism that n-th order secondary
branches, with n ≥ 1, undergo in the subcritical regime. The above restrictions were
overcome by pushing WNA up to the fifth order, where the resulting envelope equa-
tion takes the form of CQRGL equation (2.16). To achieve this goal, it was necessary
to deduce the explicit expressions of the main properties of primary and secondary
quantized periodic branches (stationary amplitude Ξn, existence ζe,n and stability
ζE,n thresholds, linear growth rate λ(1)

n ) characterizing the bifurcation diagram in
the subcritical regime in the framework of CQRGL equation. All these quantities
were collected in Tables 2.1–2.3. This approach provided the complete description
of all (n ≥ 0) periodic branches appearing in the bifurcation diagram of subcritical
modes, as can be noticed from the comparative theoretical-numerical results reported
in Tables 2.4 and 2.5.

(ii) From the inspection of numerically-computed bifurcation diagrams (see Figs.2.1,
2.3) and spatio-temporal evolution of patterns (see Figs.2.2, 2.4), it was obtained
the twofold goal of: validating the theoretical predictions arising from multiple-scale
WNA and elucidating the role played by inertial effects that are always present
in any physical system. From the theoretical viewpoint, in particular, it was shown
that hyperbolicity affects the expression of the linear growth rate but leaves the other
quantities (stationary amplitude, existence and stability thresholds) unchanged. This
result suggested that the hyperbolic model provides additional degrees of freedom
that may be used to better characterize transient regimes, in particular the transi-
tion from an Eckhaus-unstable state towards a more favorable stable configuration
through sequences of phase-slips.

(iii) The functional dependence of time and location at which wavelength adjust-
ment takes place is investigated numerically with the main goal of finding strategies
to control these quantities independently of each other. Results revealed that the
time to phase slip may be modulated by varying the inertial times leaving its loca-
tion unaltered. Moreover, it was shown that tslip strongly depends upon the linear
growth rate λ

(1)
n , in both dynamical regimes (as depicted in Figs.2.6 and 2.7). In

particular, results indicate that tslip and λ
(1)
n are negatively correlated in the su-

percritical regime but positively in the subcritical one. On the other hand, it was
numerically shown that, by considering a localized defect into the initial conditions,
it is possible to modulate the location to phase slip leaving the time to phase slip
almost unchanged (see Figs.2.8 and 2.9).



Chapter
3

Oscillatory patterns in
1D hyperbolic RT
systems

In this chapter, the oscillatory behavior of patterned dynamics in one-dimensional
domain is studied by means of hyperbolic RT models.

In the first section, a quite general class of two-compartment 1D hyperbolic RT
systems (1.8)-(1.9) where both species undergo self-diffusion and only one undergoes
advection (ψ = 0) is considered with the main aim of elucidating the role played
by inertial effects in oscillatory periodic patterns. To this aim, LSA techniques are
used to deduce the conditions under which wave (or oscillatory Turing) instability
takes place. Then, WNA is applied to determine the equation which rules the spatio-
temporal evolution of pattern amplitude close to criticality.

Then, the focus is moved to the study of an alternative class of two-compartment
1D hyperbolic RT systems (1.8)-(1.9) in which both species undergo advection and
only one undergoes self-diffusion (d = 0). In this case, LSA is carried out to inspect
the dependence of the wave instability locus on the model parameters, with par-
ticular emphasis on the role played by the combined effect of inertial time and the
advection speeds. Periodic travelling wave solutions are also taken into account to
better characterize modulus and direction of the migration speed of oscillatory peri-
odic patterns. Theoretical predictions are corroborated by numerical investigations
carried out in hyperbolic extensions of the classical Klausmeier model and ecological
implications are also discussed. Finally, it is highlighted how the hyperbolic nature of
the model may provide possible interpretations about some ecological controversial
field observations.

3.1 Two-compartment systems with two self-diffusion
terms and one advection term

The occurrence of travelling patterns in two-compartment 1D hyperbolic RT systems
(1.8)-(1.9) where both species undergo diffusion and only one undergoes advection
(ψ = 0) is here theoretically investigated.
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Under the above-mentioned hypotheses, the class of hyperbolic RT systems (1.8)-
(1.9) reads:

Ut + MUx = N(U, B), (3.1)
being:

U =



u

w

Ju

Jw


, M =



0 0 1 0

0 −ν 0 1
1
τu 0 0 0

0 d
τw 0 0


, N (U, B) =



f(u,w,B)

g(u,w,B)

−Ju

τu

−Jw

τw


. (3.2)

3.1.1 LSA

Let U∗ = (u∗, v∗, 0, 0) be a positive spatially-homogeneous steady-state satisfying
N(U, B) = 0. By looking for solutions of system (3.1)-(3.2) of the form U = U∗ +
Û exp (ωt+ i k x), the following dispersion relation, which gives the growth factor ω
as a function of the wavenumber k, is derived:

τuτwω4 +
(
Ã3 − ikντuτw

)
ω3 +

(
Â2k2 + Ã2 + ikνb̂2

)
ω2+

+
[
Â1k2 + Ã1 + ikν

(
b̂1 − τwk2

)]
ω + Ã0 + ikνb̂0 = 0

(3.3)

with

Ã3 = τu + τw −
(
f∗
u + g∗

w

)
τuτw

Â2 = dτu + τw

Ã2 = 1 − (τu + τw)
(
f∗
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w

)
+ τuτw

(
f∗
ug

∗
w − f∗

wg
∗
u

)
b̂2 = τuτwf∗

u − τu − τw

Â1 = d+ 1 − τwg∗
w − dτuf∗

u (3.4)
Ã1 = (τu + τw)

(
f∗
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∗
w − f∗
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∗
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)
−
(
f∗
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w
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(
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)
k2 + f∗
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∗
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∗
u

b̂0 = f∗
u − k2

where the asterisk denotes that the function is evaluated at the steady state U∗.
It is straightforward to ascertain that, for the homogeneous perturbation k = 0,

the equation (3.3) can be easily factorized and its solutions are:

ω1 = − 1
τu < 0, ω2 = − 1

τw < 0

ω3,4 = 1
2

(
f∗
u + g∗

w ±
√

(f∗
u + g∗

w)2 − 4 (f∗
ug

∗
w − f∗

wg
∗
u)
)
.

(3.5)

Therefore U∗ is stable with respect homogeneous perturbation iff

f∗
u + g∗

w < 0, f∗
ug

∗
w − f∗

wg
∗
u > 0. (3.6)
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As far as non-homogeneous perturbations are concerned, it can be noticed that a
non-vanishing advection term (ν ̸= 0) prevents the occurrence of Turing instability,
because it doesn’t exist a value k ̸= 0 that makes the real and imaginary part of the
quantity Ã0 + ikνb̂0 simultaneously null. Therefore, the attention is focused on the
occurrence of wave instability as a control parameter, say B, is varied. To this aim,
let us look for solutions of the characteristic equation (3.3) having null real part for
some k ̸= 0 and require the transition from negative to positive real part to occur
via a maximum. More precisely, it is assumed ω = −isk, with s = s(k) ∈ R, so that
any perturbation can be recast in the form of a travelling wave with speed s, i.e.
Û exp

[
i k (x− st)

]
. Then, by substituting the previous ansatz into the characteristic

equation and taking the derivative of this latter with respect to k, the following
system is obtained:

k4 − δ2k2 + δ4 = 0
δ1k2 − δ3 = 0
2k
(
2k2 − δ2

)
+
(
∂δ4
∂s − ∂δ2

∂s k
2
)
∂s
∂k = 0

(δ1δ2 − 2δ3)
(
δ1
∂δ3
∂s − δ3

∂δ1
∂s

)
− δ2

1
(
δ1
∂δ4
∂s − δ3

∂δ2
∂s

)
= 0

(3.7)

where
δ1 = ν+Â1s+νb̂2s2−Ã3s3

(τus2−1)(τws2+ντws−d) ,

δ2 = Ã2s2−b̂1νs+df∗
u+g∗

w

(τus2−1)(τws2+ντws−d) ,

δ3 = νf∗
u−Ã1s

(τus2−1)(τws2+ντws−d) ,

δ4 = (f∗
ug

∗
w−f∗

wg
∗
u)

(τus2−1)(τws2+ντws−d) .

(3.8)

System (3.7) defines implicitly the critical value Bc of the control parameter at
which wave instability develops, together with the critical wavenumber kc, the wave
speed s and its derivative with respect to the wavenumber ∂s/∂k. Therefore, the
presence of inertia affects not only the instability threshold but also the wavenumber
of the emerging pattern. This result differs from what was observed in the case of
pure stationary Turing patterns, where hyperbolicity does not affect such quantities
but plays an active role during transient regime [76, 77].

For comparison, results of wave instability in the case of parabolic models are
discussed in Appendix C.

3.1.2 WNA

As it is well known, LSA is only valid for small times and infinitesimal perturba-
tions. For this reason, the transition to the new spatially nonuniform state is usually
investigated by means of WNA which, by using a standard perturbative approach,
provides an approximate analytical description of the perturbation dynamics. Here,
the multiple scale method is employed to derive the amplitude equation describ-
ing the dynamics close to the critical bifurcation parameter Bc at which instability
develops [5, 6, 15, 16, 58, 76, 81, 110, 111].
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By using

U = U − U∗ (3.9)
L∗ = (∇N)∗ (3.10)

NL∗ =
∑
k≥2

1
k!

[(
U · ∇

)(k)
N
]∗

(3.11)

where ∇ and (V · ∇)(j) are defined as in Section 2.1, system (3.1) can be cast in the
following form

Ut +MUx = L∗U + NL∗. (3.12)
The field vector U and the control parameter B are expanded with respect to a

small positive parameter ε ≪ 1; moreover, two time and spatial scales are introduced
as follows:

U = εU1 + ε2U2 + ε3U3 +O
(
ε4
)

B = Bc + ε2B2 +O
(
ε4
)

∂
∂t → ∂

∂t + ε2 ∂
∂T2

∂
∂x → ∂

∂x + ε ∂
∂X

(3.13)

Here, the capital letters denote the slow scale, the lowercase ones represent the fast
scale. The use of two spatial scales is justified whenever patterns emerge and propa-
gate over large spatial domains in the form of travelling wavefronts.

Then, substituting all the above expansions into the governing system (3.12) and
collecting terms of the same orders of ε, the following set of linear partial differential
equations is obtained:

at order 1 ∂U1
∂t + M∂U1

∂x = L∗
cU1

at order 2 ∂U2
∂t + M∂U2

∂x + M∂U1
∂X = L∗

cU2 + 1
2

(
U1 · ▽

)(2)
N|∗c

at order 3 ∂U3
∂t + ∂U1

∂T2
+ M∂U3

∂x + M∂U2
∂X =

= L∗
cU3 +B2

dL∗

dB

∣∣∣
c
U1 +

(
U1 · ▽

) (
U2 · ▽

)
N|∗c + 1

6

(
U1 · ▽

)(3)
N|∗c

(3.14)
where the subscript “c” denotes that the quantity is evaluated at the critical value
of the control parameter. We now look for solutions Ui = Ui(z) with z = x− st, so
that the system (3.14) can be written as a system of ordinary differential equations:

at order 1 d U1

d z = K∗
c U1 (3.15)

at order 2 d U2

d z = K∗
c U2 + (M − sI)−1

{
1
2

(
U1 · ▽

)(2)
N|∗c − M∂U1

∂X

}
(3.16)

at order 3 d U3

d z = K∗
c U3 + (M − sI)−1 ×
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B2

dL∗
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)(3)
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}
(3.17)
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where I is the identity matrix and

K∗
c = (M − sI)−1L∗

c (3.18)

According to WNA developed in Appendix D, the solutions of systems (3.15) and
(3.16), satisfying periodic boundary conditions, can be expressed as:

U1 = Ω(X,T2)ei kczd(i kc) + Ω(X,T2)e− i kczd(− i kc) (3.19)

U2 = ∂Ω
∂X

ei kczg + ∂Ω
∂X

e− i kczg + Ω2e2 i kczq + Ω2
e−2 i kczq + 2q0|Ω|2 (3.20)

where the complex pattern amplitude Ω = Ω(X,T2) obeys the CCGL equation

∂Ω
∂T2

= (ρ1 + i ρ2) ∂
2Ω

∂X2 + (σ1 + iσ2) Ω − (L1 − iL2) Ω |Ω|2. (3.21)

The coefficients appearing in (3.19)-(3.21) are given in Appendix D.
As known, two different qualitative dynamics of the CCGL equation can be ob-

served: L1 > 0 corresponds to the supercritical bifurcation case while L1 < 0 to
the subcritical one. The former exists for above-threshold values of the control pa-
rameter only, exhibits a small amplitude close to onset and the wavelength of the
excited pattern is close to the critical value 2π/kc. The latter exists for both below-
and above-threshold values, exhibits hysteresis and has a large amplitude at onset
such that the WNA may only provide qualitative information on the excited patterns
[1, 5, 6].

Remark 1. The CCGL equation (3.21) deduced in the more general framework of
hyperbolic systems appears formally unchanged with respect to the classical one
deduced in parabolic models [58]. It can be indeed verified that the expressions of
the coefficients there appearing may be obtained from the ones appearing in (3.21)
by setting the inertial times to zero. Of course, each of these coefficients encloses
a dependence on the inertial times which, acting as additional degrees of freedom,
offers a richer scenario of spatio-temporal dynamics with respect to the parabolic
counterpart, as it will be shown below.

3.1.2.1 Coherent structure solutions of the CCGL equation

Let us now focus our attention on those solutions of the CCGL equation that are
referred to as coherent structures, and in particular to the one-parameter family of
solutions localized in space characterized by features uniformly translating with a
constant velocity v [1, 5, 84, 87, 112–114], i.e:

Ω(X,T2) = Q(ξ)eiϕ(ξ), ξ = X − vT2 (3.22)

Substituting this ansatz into the CCGL equation (3.21) and indicating by κ = ϕξ,
we get a system of three ordinary differential equations:

Qξ = R

ρ2Qκξ − ρ1Rξ = (v − 2ρ2κ)R+
(
σ1 − ρ1κ2

)
Q− L1Q3

ρ2Rξ + ρ1Qκξ = −2ρ1κR+
(
ρ2κ2 − σ2 − vκ

)
Q− L2Q3

(3.23)
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The dynamical system (3.23) admits two fixed points in the form F∗ = (R∗, Q∗, κ∗)
given by: F∗

1 = (0, 0, κ0), with κ0 an arbitrary constant, and F∗
2 =

(
0, Q̃, κ̃

)
, where

the constants Q̃ and κ̃ are defined by:

Q̃ =
√

σ1−ρ1κ̃2

L1

(ρ1L2 + ρ2L1) κ̃2 − vL1κ̃− (σ2L1 + σ1L2) = 0
(3.24)

The fixed point F∗
1 defines a null-amplitude patterned state Ω = 0 that is represen-

tative of the spatially-homogeneous steady state U∗ undergoing the spatially-driven
destabilization. On the other hand, the plane-wave solution of the CCGL equation
associated to the fixed point F∗

2, i.e.

Ω(X,T2) = Q̃ei(κ̃X+ω̃T2) with ω̃ = −κ̃v (3.25)

represents a particular case of coherent structure named phase winding solution [1, 5,
84, 87, 113] and describes a travelling pattern characterized by a total wavenumber
ktot = kc + ϵκ̃ and angular frequency ωtot = kcs − ϵ2ω̃. If the wave bifurcation is
supercritical (L1 > 0), under the assumptions that σ1 > 0 and ρ1 > 0, according to
(3.24)1, such a solution exists if

−
√
σ1
ρ1

< κ̃ < +
√
σ1
ρ1

(3.26)

so that there is a band of permitted wavenumbers around κ̃ = 0 and the second-order
correction of the angular frequency takes the form:

ω̃ =
[
(σ2L1 + σ1L2) − (ρ1L2 + ρ2L1) κ̃2

]
/L1 (3.27)

Since we deal with three unknowns (κ̃, Q̃ and ω̃) and two conditions arise from the
CCGL equation, one parameter needs to be estimated from numerical simulations.
For instance, κ̃ can be deduced by comparing the numerically-computed value of
the total wavenumber ktot with the theoretical critical wavenumber kc, whereas the
values of amplitude Q̃ and angular frequency ω̃ can be consequently obtained via
(3.24)1 and (3.27), respectively.

To investigate the stability of the phase winding solution, we can proceed, as usual
in the literature, by perturbing the amplitude (3.25) as follows:

Ω(X,T2) =
[
1 + a(X,T2)

]
Q̃ei(κ̃X+ω̃T2)

a(X,T2) = Ψ(T2)ei lX + Ξ(T2)e− i lX
(3.28)

where Ξ is the complex conjugate of Ξ and l denotes the small perturbation of the
wavenumber κ̃, namely we look for long-wave effects. After some algebraic manipu-
lations, we end up with the system:

ΨT2 =
[
−l (l + 2κ̃) (ρ1 + i ρ2) − Q̃2 (L1 − iL2)

]
Ψ − (L1 − iL2) Q̃2Ξ

ΞT2 =
[
−l (l − 2κ̃) (ρ1 − i ρ2) − Q̃2 (L1 + iL2)

]
Ξ − (L1 + iL2) Q̃2Ψ

(3.29)
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Then, looking for the usual exponential dependence of Ψ and Ξ on T2, in the limit
of large wavelengths (small l), one retrieves a necessary condition for the stability of
plane wave structures, named Benjamin-Feir-Newell condition [1, 2, 6, 58, 87], that
reads:

1 − ρ2L2
ρ1L1

> 0. (3.30)

Remark 2. It should be finally noticed that all the features characterizing the phase
winding solution, i.e. amplitude Q̃, wavenumber κ̃ and angular frequency ω̃, together
with its stability, inherit the functional dependence on the inertial times from the
coefficients of the CCGL equation (3.21). Therefore, it is expected that hyperbolicity
effects may manifest, not only during the transient regime from the homogeneous
steady state toward the patterned state (the heteroclinic orbit of (3.23) joining F∗

1
and F∗

2) but also modifying the value of the above-mentioned key features of the
phase winding solution and, possibly, its stability.

3.1.3 An illustrative example: the extended Klausmeier model

Let us take into account the pattern formation process in dryland ecology through
the hyperbolic generalization [75–77] of the extended Klausmeier model [46, 58],
whose dimensionless 1D version belongs to the class of systems (3.1),(3.2). In this
framework, the field variables u(x, t) and w(x, t) and the advection speed ν assume
the same meaning of those shown in Section 1.3. In detail, this version of the model
accounts for a double mechanism for the motion of surface water. First, the downhill
water flow on slopes is accounted by an advection term. Second, dispersal of surface
water is mimicked via a diffusion term that aims to capture the movement induced
by spatial differences in infiltration rate [46]. The source terms are the same of those
depicted in (1.2) and follow the original version provided by Klausmeier [41].

Spatially-homogeneous steady states of model (3.1),(3.2) with Klausmeier kinetics
(1.2) and their stability toward spatially-homogeneous perturbations can be achieved
as in Section 1.4 and Appendix B, respectively. To prove that the state U∗

S may be
destabilized via non-homogeneous perturbations, and can thus undergo wave insta-
bility, we need to solve the system (3.7),(3.8). Unfortunately, owing to its highly
nonlinear nature, information on the locus of wave instability, together with the
dependence of the critical parameters on the inertial times, cannot be obtained ana-
lytically. Therefore, by solving the above system numerically, we found that it admits
real solutions representing the values of the control parameter Bc, wavenumber kc,
wave speed s and its derivative with respect to k, at the onset of instability. Results of
this investigation are shown in Fig.3.1, where the locus of wave instability depicted in
the (B,A) parameter plane (solid lines) is obtained by fixing the parameters d = 100
[46, 115] and ν = 182.5 [41] and varying the two inertial times τu and τw. In the
same figure we also represent by circles the locus obtained in the parabolic case, i.e.
from the numerical solution of (C.4), which gives real and positive root by taking
the plus sign. As it can be noticed, this latter coincides with the locus deduced for
very small inertial times (black line), as expected. It is worth noticing that, when
the system moves away from the parabolic limit, the locus of wave instability pro-
gressively shifts up so enlarging the region where non-stationary patterns may be
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Figure 3.1: Solid lines represent the loci of wave instability in the (B,A) parameter
plane obtained by solving numerically the system (3.7),(3.8) for different values of
inertial times. Symbols denote the locus obtained in the parabolic case, resulting
from integration of equation (C.4). The bottom dashed line defines the condition
A = 2B, below which the only desert state exists. Fixed parameters: d = 100 and
ν = 182.5.

observed. This is consistent with previous results obtained for the hyperbolic gen-
eralization of the original Klausmeier model, so confirming that the hyperbolicity
destabilizes the system and allows to observe oscillatory periodic patterns, i.e. uphill
migrating banded vegetation in the context of dryland ecology, over a wider region
of the parameter plane [75].

A first check on the validity of these analytical predictions has been carried out
by inspecting the wavenumber dependence of the four roots of the characteristic
polynomial (3.3) at the three points P1, P2 and P3 indicated in the inset of Fig.3.1,
for different couples of inertial times. Results are shown in Fig.3.2 (top row panels
(a)-(c) correspond to P1, middle row panels (d)-(f) to P2 and bottom row panels (g)-
(i) to P3) for the largest eigenvalue only (being the real part of the other three roots
always negative). For brevity, we refer to the couple (τu, τw) =

(
10−5, 10−5

)
(whose

corresponding locus is the black curve in Fig.3.1) as setup I; the couple (0.5, 1) as
setup II (blue curve in Fig.3.1) and (0.5, 100) as setup III (red curve in Fig.3.1).
Setup I is representative of the behavior close to the parabolic limit, while setups II
and III mimic dynamics that progressively deviate away from it.

Let us investigate, first, the locus of roots related to P1. Results related to setups I
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and II (panels (a) and (b)) reveal that all roots have negative real part, denoting that
the state U∗

S is also stable with respect to non-homogeneous perturbations. On the
contrary, in setup III (panel (c)), there exists a range of wavenumber where one root
has positive real part and non-null imaginary part, so pointing out a destabilization
of the steady state. These observations are consistent with the predictions reported
in Fig.3.1 because, in setups I and II, the investigated point is outside the wave
instability region but, in setup III, it is located inside. About the point P2, in
setups II and III (panels (e),(f)) there exists a range of k where the real part of
the most unstable root becomes positive. On the contrary, in setup I (panel (d)),
the real part of this root keeps negative, consistently with its location with respect
to the bifurcation loci. Finally, at point P3, for each of the chosen setups (panels
(g),(h),(i)), there exists a range of k where the real part of the most unstable root
becomes positive, consistently with the fact that this point always lies inside the
wave instability region.

Another confirmation of the analytical predictions may be achieved by integrating
numerically the governing system together with periodic boundary conditions and
using small sinusoidal fluctuations about the steady state U∗

S as initial conditions.

Figure 3.2: Wavenumber dependence of the real (left axes, continuous lines) and
imaginary (right axes, discontinuous lines) part of largest root of (3.35) evaluated
for A = 2.8 at the points P1 (B = 0.40, panels (a)-(c)), P2 (B = 0.41, panels (d)-(f))
and P3 (B = 0.43, panels (g)-(i)) indicated in Fig.3.1, for different couples of inertial
times (τu, τw). In detail, setup I: (10−5, 10−5), panels (a),(d),(g); setup II: (0.5, 1),
panels (b),(e),(h); setup III: (0.5, 100), panels (c),(f),(i).
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Simulations have been performed by means of COMSOL Multiphysics® [108] over
a time window t ∈ [0, 50], considering a spatial domain of length lD = 100 (unless
specified differently). Results of this investigation, which make use of the same pa-
rameter set as the one used in Fig.3.2, are reported in Fig.3.3. In agreement with the
above-mentioned predictions, it is possible to notice that, when all the roots have
negative real parts, the initial perturbation dies out and the system converges to-
ward the stable, spatially-uniform, vegetated state U∗

S , see panels (a),(b),(d). On the
contrary, if there exists a range of unstable wavenumbers, then the system evolves
toward a periodic patterned state that oscillates in time, representative of an uphill
migrating vegetation band, see panels (c),(e)-(i).

We can also numerically verify whether the range of unstable wavenumbers depends
on inertia. It is known that, if a non-homogeneous perturbation is applied to a state
U∗ falling within the wave instability region, the system tends to form a travelling
pattern whose wavenumber is close to the one of the most unstable modes, i.e. the
mode exhibiting the largest growth rate. The range of unstable wavenumbers that
is created when the control parameter is above the critical value Bc degenerates
into the single value kc at onset. To address this point, we track the variations in
the (B, k) plane of the root of the characteristic polynomial (3.35) associated to
the most unstable mode, for different values of inertial times. Results are shown in
Fig.3.4, where the wavenumber of the mode exhibiting the largest growth rate is
depicted by dashed lines whereas the range of unstable wavenumbers is delimited by
solid lines. When we move away from the parabolic limit (from black to red curves
in the figure), the role played by inertia becomes manifold: it decreases the lowest
value of the control parameter (plant loss) at which instability may form, it modifies
the wavenumber of the most unstable mode and also enlarges significantly the range
of unstable wavenumbers.

Furthermore, by solving numerically the system defining theoretically the wave
bifurcation locus (3.7),(3.8), we can quantitatively estimate the wave speed s at the
onset of instability as a function of inertial times. From the analysis of the results
depicted in Fig.3.5, we infer that the values of the inertial times affect directly and
indirectly through the variation of Bc the migrating speed at the onset of instability,
as it varies from about 0.8 (close to the parabolic limit) to 1.0 (away from it), i.e.
hyperbolicity may increase the wave speed up to 30%. It should be noticed that the
fuzzier behaviour shown in the top right corner of Fig.3.5 is not easily predictable
as the highly nonlinear dependence of migration speed on the inertial times makes
it prohibitive. To get a validation of these results, numerical integration on the gov-
erning system is again performed over a larger time window t ∈ [0, 200] and a larger
spatial domain lD = 200. We use the parameter set corresponding to the points Q1
and Q2 depicted in Fig.3.5 and choose the control parameter B in such a way the
distance from the threshold is ϵ2 = 10−3 in both cases. Then, in order to extract
the critical values of angular frequency ωc and wavenumber kc, we perform two Fast-
Fourier-Transforms (FFTs) on the variable u(x, t), by fixing either space or time.
In detail, in the former case, the solution u(x, t) is evaluated at x = lD/2 while, in
the latter case, it is set at t = tend. According to the results shown in Fig.3.6, each
resulting spectrum contains several peaks, the dominant of which gives information
on the angular frequency ωc and the wavenumber kc of the main mode, respectively.
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Finally, the migrating speed value is simply given by the ratio s = ωc/kc. Following
this procedure, we get: for the point Q1, s = 0.301/0.376 = 0.801, in excellent agree-
ment with the value extracted from system (3.7),(3.8), that is equal to s = 0.807;
for the point Q2, the value s = 0.380/0.410 = 0.926, in good agreement with the
theoretical value s = 0.923. These results reinforce our previous conclusion on the
non-negligible role played by inertial times: apart from affecting the migrating speed,
they also alter both angular frequency and wavenumber of the emerging pattern.

So far, we have validated all the theoretical predictions connected to LSA developed
in Section 3.1.1. Let us now focus on those arising from multiple-scale WNA whose
general formulation has been given in the previous section. In the specific case of
the hyperbolic extension of the Klausmeier model, the explicit expressions of the
quantities here involved are reported in Appendix D.

As known, the sign of the real part of the Landau coefficient determines the su-
percritical (if L1 > 0) or subcritical (if L1 < 0) character of the generated patterns.
Here, we aim to inspect how such a character could be altered by a suitable combina-
tion of inertial times. In Fig.3.7 we have addressed numerically this investigation, by
using the same set of parameters as those used to build Fig.3.5. In the figure, the col-
ored (white) areas denote a supercritical (subcritical) behavior. These results reveal

Figure 3.3: Spatio-temporal dynamics of vegetation biomass u(x, t) corresponding to
the panels shown in Fig.3.2 obtained via numerical integration of system (3.1),(3.2)
with Klausmeier kinetic (1.2).



3. Oscillatory patterns in 1D hyperbolic RT systems 45

0.40 0.42 0.44
0.2

0.3

0.4

0.5

0.6

 

 

W
av

en
um

be
r k

 

Plant loss B 

 u=10-5, w=10-5 (setup I )
 u=0.5, w=1 (setup II )
 u=0.5, w=100 (setup III )

Figure 3.4: (Solid lines) Range of unstable wavenumbers as a function of the plant
loss B for different values of inertial times. (Dashed lines) The wavenumber of the
perturbation with the larger growth rate. (Squares) The lowest plant loss value Bc at
which that steady state U∗

S undergoes wave instability and that identifies the critical
wavenumber kc.

that, for relatively small values of the inertial times, namely close to the parabolic
limit (bottom left corner of the figure), patterns exhibit a supercritical behavior.
For increasing values of inertial times, hyperbolicity may give rise to a subcritical
instability.

Let us now inspect whether these predictions may be corroborated by numerical
simulations. First, the supercritical character associated to the points Q1 and Q2
can be extracted from Fig.3.6, where patterns slightly above threshold exhibit small
amplitude, do not exist for sub-threshold values of the control parameter and have
a wavenumber very close to kc. Indeed, the numerically-deduced values, i.e. kc =
0.376 in Fig.3.6(c) and kc = 0.410 in Fig.3.6(f), are in close agreement with the
theoretical ones deduced from (3.7),(3.8),(D.2), i.e. kc = 0.376 and kc = 0.403,
respectively. To test whether a subcritical instability takes place at Q3, simulations
are performed with a initial condition thet is set, at first, as a small sinusoidal
perturbation of the steady state and the control parameter is slightly smaller than the
critical value. Results indicate that the initial perturbation simply dies out and the
system converges towards the stable homogeneously vegetated area, see Fig.3.8(a).
Then, we increase the control parameter slightly above threshold and, as expected,
large amplitude patterns are generated, see Fig.3.8(b) (notice the larger scale in the
color bar in comparison with those of Fig.3.6(a),(d)). Finally, we take the final state
of this latter simulation as the initial condition of a new simulation where the control
parameter is set to the same below-threshold value as the one used to build Fig.3.8(a).
Interestingly, patterns still survive, so denoting the hysteretic behavior typical of a
subcritical instability.

Finally, an investigation is performed on the one-parameter family of coherent
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Figure 3.5: Density plot of migrating speed s at onset of instability (B = Bc) as
a function of the inertial times τu and τw. Fixed parameters: ν = 182.5, d = 100,
A = 2.8.

Figure 3.6: (a,d) Snapshots of migrating vegetation patterns. (b,e) FFT of the time-
dependent solution evaluated at a fixed location within the domain, u(lD/2, t). (c,f)
FFT of the space-dependent solution evaluated at the final simulation time, u(x, tend).
Panels in the top (bottom) row are obtained by using the parameter set corresponding
to point Q1 (Q2) depicted in Fig.3.5. Note that the arising FFT spectra contain some
higher-order harmonics (mainly, the component proportional to exp(2 i kcz)) due to
the slow modulation of the pattern close to the onset [112].
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Figure 3.7: Contour plot of L1 as a function of the inertial times τu and τw. Colored
(white) areas denote positive (negative) values of L1. The parameter set is the same
as the one reported in Fig.3.5.

Figure 3.8: Snapshots of spatio-temporal evolution of vegetation biomass correspond-
ing to the point Q3 shown in Fig.3.7 for (a) B = 0.403, (b) B = 0.405 and (c)
B = 0.403. The initial condition in simulations (a) and (b) is taken as a small peri-
odic perturbation of the steady state U∗

S whereas in (c) it is given by the final state
of (b). The critical value of the control parameter is Bc = 0.404.

structures, solutions of the CCGL equation, and a comparison between the analytical
predictions and numerical simulations is addressed. The discussion is here limited to
the supercritical regime by considering those regions of the (τw, τu) plane where the
real part of the Landau coefficient keeps positive (colored areas in Fig.3.7). Then, we
study the sign of the necessary condition for stability given by the Benjamin-Feir-
Newell criterion (3.30) and report the results in Fig.3.9. Here, the white (orange) color
denotes an area where patterns are unstable (may be stable). Our results indicate
that, in a wide region enclosing the parabolic limit (point Q1), i.e. for τw < 2 and
independently of the value of τu, the abovementioned criterion is always satisfied
and patterns may be stable. In this region, a slow modulation of travelling patterns
is observed, as shown in Fig.3.10(a). Far away from the parabolic limit, there exist
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values of inertial times that may lead to destabilization of patterns, as it happens
in the subregion of the (τw, τu) plane depicted in Fig.3.9. Indeed, considering the
inertial times corresponding to point Q4, the wavetrain structure may break up into
a sequence of unequal pulses [5], as depicted in Fig.3.10(b).

Then, the role of inertial effects on phase winding solutions, i.e. on the fixed points
F∗

1 and F∗
2 of system (3.23), is inspected. In this analysis, the inertial times are set

in such a way they correspond to points Q1 and Q2 and keep the dimensionless
distance from the threshold fixed at ϵ2 = 10−2. The governing system is integrated
over a larger time window t ∈ [0, 1000] in order to allow transient regime to expire
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Figure 3.9: Plot of the Benjamin-Feir-Newell necessary condition for stability in the
supercritical regime. Colored (white) areas denote regions where the condition (3.30)
is (is not) fulfilled.

Figure 3.10: Proof of the Benjamin-Feir-Newell instability condition showing the
spatial profiles of the patterned configurations obtained at points Q1 (a) and Q4
(b) represented in Fig.3.9(a). To improve the visibility of the wavetrain structure
breaking, the computational domain has been enlarged to lD=400.
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Figure 3.11: (a,b) Comparison between the numerical simulation arising from the
integration of the governing system (solid lines) and the analytically-deduced phase
winding solution U = εU1 together with (3.19),(3.24)-(3.27) (dashed lines). The
set of parameters correspond to the points Q1 (a) and Q2 (b) with ϵ2 = 10−2. (c)
Results of numerical integration of system (3.23) representative of the heteroclinic
orbits joining the fixed points F∗

1 and F∗
2 [black (red) curve stands for dynamics

around point Q1 (Q2)]. The initial condition is set as a small perturbation of F∗
1.

and the system to reach a steady travelling patterned configuration. These are de-
picted in Figs.3.11(a),(b) by solid lines. To determine the extra parameter involved
in the phase-winding solution κ̃, a comparison between the theoretical critical value
kc and the total wavenumber of the observed pattern ktot is performed. This value
is then used in (3.24),(3.27) to compute the amplitude Q̃ and the second-order cor-
rection of the angular frequency ω̃, respectively. Then, the corresponding analytical
phase winding solutions are built via (3.25). Results are represented in the previously
mentioned figures via dashed lines and reveal a satisfying agreement with those aris-
ing from numerical simulations. Moreover, system (3.23) is integrated to describe
the heteroclinic orbits joining the fixed points F∗

1 (unstable) and F∗
2 (stable) in the

two configurations represented by the points Q1 and Q2. The initial condition is set
as a small perturbation of F∗

1 in both cases. The resulting fronts are depicted in
Fig.3.11(c) and confirm that inertial effects take a relevant role, not only in mod-
ulating the duration of the transient regime from the homogeneous steady state to
the patterned state, but also in modifying the amplitude, the wavenumber and the
angular frequency of the travelling patterns.

3.1.4 Concluding remarks

In this section, a class of hyperbolic reaction-advection-diffusion system for two
species, one of which undergoes both self-diffusion and advection while the other
one has a diffusive character only, is considered. The hyperbolic structure of the
model accounts for the biological inertia of both the involved species and allows a
better description of transient phenomena characterized by waves evolving in space
over a finite time. On this general framework, it is carried out, first, LSA to deduce
the conditions under which wave instability, responsible for the occurrence of non-
stationary spatial patterns, takes place. Then, by applying multiple-scale WNA the
amplitude equation describing the slow modulation in space and time near criticality
is determined.

All theoretical findings enclose the parabolic limit as particular case, when the
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inertial times tend to zero. In particular, it has been shown that the resulting CCGL
equation is formally unchanged with respect to the classical one obtained in parabolic
framework, but the coefficients here involved exhibit a strong dependence on inertial
times.

Moreover, to better emphasize the role of hyperbolicity, an inspection on coherent
structures of the CCGL equation, whose fixed points are in the form of phase winding
solutions, is performed. For this class of solutions we have determined the expressions
of the key features and established the necessary condition for stability.

The previous theoretical predictions have been tested on an illustrative exam-
ple, the extended Klausmeier model, describing the formation and the migration of
vegetation patterns over a sloping semiarid terrain. Numerical investigations have
validated our findings and have allowed to draw several conclusions about the role
played by inertia. It has been indeed proven that inertial times:

i) enlarge both the wave instability region in the parameter plane where travelling
patterns may be observed and is less selective on the range of unstable wavenum-
bers. Thus, inertia allows to destabilize the spatially homogeneous steady state
over a wider set of model parameters (see Figs.3.1-3.4);

ii) vary the key features associated to migrating patterns, speed, wavelength and an-
gular frequency, leaving all the other model parameters unchanged (see Figs.3.5,3.6);

iii) affect the supercritical or subcritical nature of patterns at onset (see Figs.3.7,3.8);

iv) exert influence on localized coherent structures, and in particular on the fronts
connecting the plane-wave state to the unstable spatially-homogeneous steady
state. In particular, it has been shown that inertia takes a role, not only during
transient regime, but also modifies the amplitude, the wavenumber, the angular
frequency and the stability of the phase winding solution associated to the plane
wave (see Figs.3.9,3.11).

In the light of the above statements, it has to be emphasized that hyperbolic models
provide additional degrees of freedom that can be used to better model experimental
observations.

In this framework, it is planned to extend the hyperbolic framework to the case
in which both species undergo diffusion and advection, so enabling the possibility of
exploring an even richer set of dynamics.
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3.2 Two-compartment systems with two advection terms
and one self-diffusion term

In this section, the occurrence of oscillatory patterns in two-compartment 1D hy-
perbolic RT systems (1.8)-(1.9) where both species undergo advection and only one
undergoes self-diffusion (d = 0) is taken into account.

In the context of dryland ecology, such a model is an attempt to mimic some eco-
logical observations. In particular, regular striped patterns formed along the hillsides
of many arid and semi-arid environments are believed to exhibit a non-stationary
behavior that manifests itself as an uphill migration of bands. However, a larger
availability of field data has brought out some controversial interpretations about
the effective motion of these patches [68, 70]. In some previous works [47–52, 54],
the origin of the above-mentioned controversy was attributed to the phenomena of
mobilization, transport and germination of seeds, which can be gathered under the
name of secondary seed dispersal. It is indeed known that, in sloped terrains, seeds
undergo both a primary dispersal from the plant to the ground followed by a sec-
ondary dispersal due to their transport in overland flow. This phenomenon has been
included in several parabolic models (to cite a few, [43, 47, 49–51, 67]). In partic-
ular, in Ref.[67] secondary dispersal of seeds was included in the framework of the
Klausmeier model [41]. The aim of the section is to generalize the results obtained
in Ref.[67] and inspect how the dynamics of non-stationary vegetation stripes are
affected by the simultaneous action of inertial effects and secondary seed dispersal.
Therefore, the analysis here shown will be deducted in the case of the hyperbolic
framework of the secondary seed version of the Klausmeier model [41, 67]. In detail,
in order to characterize the features of the emerging migrating patterns, LSA has
been performed with particular emphasis on the deduction of the threshold condi-
tion for wave instability responsible for the onset of oscillatory periodic patterns.
Moreover, to gain more insights into the mechanisms underlying the pattern propa-
gation speed, travelling wave solutions have been also taken into account. Analytical
predictions have been corroborated by numerical simulations and a qualitative com-
parison with some ecological field observations is performed. Finally, the focus is
moved to analytical approximations in order to extract qualitative information on
the behaviour of both migrating and stationary patterns.

3.2.1 Model description

This analysis originates from the classical parabolic version of the Klausmeier model
[41]. Here, water diffusion is neglected since the advection contribution is generally
dominant on slopes. Later in Ref.[67], this model was extended to include the sec-
ondary seed dispersal phenomenon and took the 1D dimensionless form: u

w


t

−

 1 0

0 0


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w
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x

=
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g(u,w,B)

 (3.31)

where the subscript stands for the partial derivative with respect to the indicated
variable, the x-axis points along uphill direction and the advection speeds of plant
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and water are denoted by ψ and ν, respectively. Kinetic functions are given as in
(1.2).

To account for the presence of biological inertia [18, 24, 27, 71, 72], as well as
to provide a better description of pattern propagation, hereafter we consider its
hyperbolic generalization obtained by means of ET theory [38]. As can be easily
noticed, it is enclosed in the general framework (1.8)-(1.9) proposed in Section 1.3
by neglecting a diffusive term (d = 0). The model reads:

Ut + MUx = N(U, B), (3.32)

with

U =


u

w

Ju

 , M =


−ψ 0 1

0 −ν 0
1
τu 0 0

 , N (U, B) =


f(u,w,B)

g(u,w,B)

− 1
τuJu

 (3.33)

being τu and Ju(x, t) the inertial time and the dissipative flux, respectively, associ-
ated to plant evolution.

Spatially-homogeneous steady states of model (3.32),(3.33) with Klausmeier ki-
netic (1.2) can be easily achieved as in Section 1.4. According to literature, since
secondary seed dispersal represents a small percentage of water advection speed, it
is realistic to assume ψ ≪ ν [67].

3.2.2 Wave bifurcation analysis

In order to investigate the nature of the steady states, a linear stability analysis for
the PDE system (3.32),(3.33) is now carried out. Due to its high variability given by
natural, human and herbivory effects, the plant loss B is considered as the control
parameter. Then, by perturbing the steady state, namely by looking for solutions in
the form of U = U∗ + Û exp (ωt+ i k x), we get(

ωI + ikM − (∇N)∗) Û = 0 (3.34)

where I denotes the identity matrix, ∇ ≡ ∂/∂U represents the gradient with respect
to the field variables and the asterisk indicates the evaluation at U∗. Searching non-
trivial solutions of (3.34) leads to the following characteristic equation:

τuω3 +
[
A1 − ikτu (ν + ψ)

]
ω2 +

{
A2 + ik

[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]}
ω+

+A3 + ik
[
νf∗

u + ψg∗
w − νk2

]
= 0

(3.35)
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where
A1 = 1 − τu (f∗

u + g∗
w)

A2 = Â2k2 + Ã2

Â2 = 1 − τuνψ

Ã2 = τu (f∗
ug

∗
w − g∗

uf
∗
w) − (f∗

u + g∗
w)

A3 = Â3k2 + Ã3

Â3 = − (g∗
w + νψ)

Ã3 = f∗
ug

∗
w − g∗

uf
∗
w

(3.36)

Let us now focus on the occurrence of the wave instability. By considering LSA,
it can be easily noticed that it conducts to the same results as in Appendix B for
the local stability under a homogeneous perturbation (k = 0). On the other hand,
taking into account non-homogeneous perturbations around the desert state U∗

D, the
dispersion relation can be factorized and its solutions are given by:

ω1 = −1 + iνk

ω2,3 = 1
2

(
−B − 1

τu + iψk ±
√(

B − 1
τu

)2
− k2

(
4
τu + ψ

)2
+ 2iψk

(
1
τu −B

))
.

(3.37)
Consequently, U∗

D is always stable under both homogeneous and non-homogeneous
perturbations, being the real parts of all eigenvalues negative ∀k.

Thus, only the homogeneously-vegetated state configuration that can give rise
to oscillatory periodic patterns is U∗

S . In particular, looking for solutions of the
dispersion relation (3.35) with Re{ω} = 0 and Im{ω} ≠ 0 for some k ̸= 0, setting to
zero the real and imaginary parts and combining the resulting equations, the critical
wavenumber at the onset of instability is ruled by:

θ1k
6 + θ2k

4 + θ3k
2 + θ4 = 0 (3.38)

where

θ1 = A1β2
1 + β1β3

[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
− β2

3Â3,

θ2 = 2β1β2A1 + (β1β4 + β2β3)
[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
− 2β3β4Â3 − β2

3Ã3,

θ3 = A1β2
2 + β2β4

[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
− Â3β2

4 − 2Ã3β3β4,

θ4 = −β2
4Ã3,

β1 = −(τu)2Â3 (νg∗
w + ψf∗

u) − νA2
1,

β2 = −(τu)2Ã3 (νg∗
w + ψf∗

u) +A2
1 (νf∗

u + ψg∗
w) ,

β3 = A1
[
τuf∗

u − 1 − (τu)2νψ (f∗
u + g∗

w)
]

− (τu)2 (f∗
uψ + g∗

wν)
[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
,

β4 = τuA1Ã3 −A2
1Ã2.

(3.39)
The locus at which wave instability occurs may be obtained by imposing that the cu-
bic equation (3.38) in k2 admits three real roots, two of which are equal to each other,
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positive and representative of the critical squared wavenumber k2
c . Consequently, the

wave instability locus is implicitly defined by:

27θ2
4θ

2
1 − θ2

3θ
2
2 + 4θ3

3θ1 + 4θ4θ
3
2 − 18θ4θ3θ2θ1 = 0. (3.40)

Note that, the wave instability locus (3.40) here obtained reduces to the one ob-
tained in the parabolic model [67] for τu → 0. Unfortunately, due to the highly
nonlinear dependence of (3.40) from the plant loss B, information can be extracted
from numerical investigations only.

In Fig.3.12 the loci of wave instability (3.40) are depicted by solid lines in the
(B,A) parameter plane for different inertial times τu ∈ [1, 100], fixing ν = 182.5
and ψ = 1. For comparison, in the same figure the parabolic locus is also shown
(red circles), pointing out a close agreement with the one obtained in the hyperbolic
model for small inertial times τu ≤ 1.

On the other hand, by moving away from the parabolic limit, the locus of wave
instability shifts up so enlarging the region where oscillatory periodic patterns may
be observed, in line with our previous results [77, 78, 81]. To confirm this theoretical
prediction, let us consider the point P1 = (0.38, 2.8) in the parameter plane (see
top inset in Fig.3.12) and inspect the wavenumber dependence of real and imaginary
parts of the roots of the characteristic equation as the inertial time is varied. Results
shown in Fig.3.13(a) reveal that for τu = 10, the real part of the largest eigenvalue
is always negative so proving that P1 lies outside the wave instability region. On
the other hand, for τu = 20 and τu = 100, the existence of ranges of unstable
wavenumbers confirm the upward shift of the locus of wave instability that has led
P1 to fall within the instability region (see Figs.3.13(b),(c)).

Additional numerical investigations are also performed to better understand the
roles of inertial time τu and advection speeds ψ and ν on the bifurcation threshold
Bc. In particular, results shown in Fig.3.14(a) are obtained for a fixed value of ψ = 1
whereas those depicted in Fig.3.14(b) correspond to the case ν = 182.5. In detail,
for a fixed value of secondary seed dispersal and independently of the inertial time,
the decrease of water advection speed leads to an increase of the critical value of the
control parameter which in turn represents a reduction of the instability region (see
Fig.3.14(a)). This result agrees with the theoretical expectation that the formation
of oscillatory patterns requires a non-null water advection speed. On the other hand,
for a fixed value of water advection speed, the behavior of the instability threshold
depends on the distance from the parabolic limit. Indeed, as depicted in Fig.3.14(b),
for τu ≲ 10−1, the critical value of control parameter is almost unaffected by the
strength of secondary seed dispersal. On the contrary, far away from the parabolic
limit, the role of seeds advection speed becomes more relevant. In fact, as the pa-
rameter ψ decreases, the wave instability region enlarges.

Let us now inspect the properties exhibited by oscillatory patterns by moving
along the bifurcation locus. To this aim, let us fix three different points on the
locus obtained for τu = 10 as shown in the bottom inset of Fig.3.12 and precisely:
P2 = (0.244, 1.5), P3 = (0.270, 1.7) and P4 = (0.293, 1.9). For these points, in Fig.3.15
the wavenumber dependence of the most unstable mode at onset, characterized by
angular frequency ωc and critical wavenumber kc, is tracked. Since the imaginary
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Figure 3.12: Solid lines represent the loci of wave instability in the (B,A) parameter
plane for different values of inertial time. Red circles denote the locus obtained in
the parabolic case. The bottom dashed line defines the condition A = 2B, below
which only desert state exists. Insets give zooms over the indicated areas. Points Pi
(i = 1, ..., 4) represent different configurations in the (B,A) plane which are used in
Figs.3.13-3.16. Stars denote Turing bifurcation points obtained as the inertial time
is varied.

Figure 3.13: Wavenumber dependence of the real (black lines) and imaginary (red
lines) part of largest root of (3.35) evaluated at P1 = (0.38, 2.8) indicated in the top
inset of Fig.3.12, for different inertial times: (a) τu = 10, (b) τu = 20 and (c) τu = 100.
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Figure 3.14: Inertial time dependence of the wave instability threshold obtained for
A = 2.8, (a) ψ = 1 and (b) ν = 182.5.

part determines the modulus and direction of pattern speed s = −Im{ωc}/kc, uphill
(downhill) motion is observed for Im{ωc} < 0 (Im{ωc} > 0) whereas stationary pat-
terns originate for Im{ωc} = 0. Theoretical predictions reveal that downhill motion
takes place at the point P2 (see Fig.3.15(a)), patterns become stationary at P3 (see
Fig.3.15(b)) whereas they move uphill at P4 (see Fig.3.15(c)). To check the validity
of the above results, the governing system (3.1),(3.2) is integrated numerically by
means of COMSOL Multiphysics®[108] in the computational domain x ∈ [0, 200]
over the time window t ∈ [0, 200]. Moreover, periodic boundary conditions are used
and a small perturbation of the steady state U∗

S is taken as initial condition, namely
patterns originating from degradation of homogeneous vegetation are here consid-
ered [67, 116]. Results of numerical simulations confirm our predictions, as shown in
Fig.3.16.

The above theoretical results are in line with some body of literature [41, 117],
which predicts that vegetation groves move upslope as a result of a larger availability
of moisture in the upslope margin of the band. Moreover, the presence of downslope
seed transport offers a stabilizing mechanism that reduces the bands’ migration speed
and can even reverse the direction of propagation [47, 48, 50]. However, it should be
mentioned that the occurrence of upslope and downslope migration of bands is still
under debate due to some controversial field evidences [47, 68, 70]. In particular, the
theoretical observation of downhill movement of bands is sometimes interpreted as
a regime in which pattern migration is, instead, precluded [47]. This issue will be
investigated in more detail later on.

According to such ecological considerations, let us describe more accurately the
occurrence of stationary patterns in a framework enclosing advective terms. To this
aim, let us look for solutions of the dispersion relation (3.35) characterized by:ω = 0

∂Re{ω}
∂k = 0

(3.41)

These constraints lead to the following system that defines a Turing point in the
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(B,A)-plane and the critical wavenumber kc at which such an instability occurs:

kc =
√

νf∗
u+ψg∗

w
ν

ν (f∗
ug

∗
w − f∗

wg
∗
u) − (νf∗

u + ψg∗
w) (νψ + g∗

w) = 0

(g∗
w + νψ)

[
(1 − τuνψ) (νf∗

u + ψg∗
w) + τuν (f∗

ug
∗
w − f∗

wg
∗
u) − ν (f∗

u + g∗
w)
]
+

+ν (νf∗
u + ψg∗

w)
[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
= 0

(3.42)
As it can be noticed, the existence of (3.42)1 implies a restriction on the upper limit
of seed advection speed

ψ ≤ Bν

1 + u2
S

(3.43)

Moreover, (3.42)3 denotes the dependence of the Turing point on hyperbolicity. In-
deed, by varying the inertial time, the occurrence of stationary patterns takes place
at different points in the (B,A)-plane, as represented by the stars in Fig.3.12. In
particular, decreasing the inertial time, the Turing point moves upward along the bi-
furcation locus, so enlarging the range in which downhill motion is observed. Notice
that, for τu = 1 no star is shown since it is out of the meaningful ecological range.
To describe the inertial time dependence of the Turing point BT

c , we solve system

Figure 3.15: Wavenumber dependence of the real (black lines) and imaginary (red
lines) part of largest root of (3.35) evaluated at the points P2 (a), P3 (b) and P4 (c)
indicated in Fig.3.12 for τu = 10.

Figure 3.16: Spatio-temporal dynamics of vegetation biomass u(x, t) obtained by
integrating numerically the governing system (3.1)-(3.2) by using the parameters
associated to the panels reported in Fig.3.15.
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Figure 3.17: Turing threshold BT
c dependence on the inertial time τu. Black squares

represent analytical results, whereas red line denotes the best fit. Fixed parameters:
ν = 182.5 and ψ = 1. Parameters appearing in the best fit function: y0 = 25.15,
y1 = −15.97, y2 = −8.68 and y3 = 0.25.

(3.42) for fixed values of ν and ψ. Results are shown in Fig.3.17 where the function
that best approximates data is also depicted.

Finally, let us report some quantitative field estimations of migration speeds of
vegetation patches extracted from Table 12.2 in [68] and [70], which gather exper-
imental results from several arid regions. Those data pointed out that dynamics in
sloped terrains range from the quasi-stationary case, corresponding to almost null
migration speed, as observed in Mexico [118], Mali [119], Somalia [120] and Australia
[70], to uphill motion with speed up to a 1.5 m/year, as in Mexico [118], Mali [119]
and Sudan [121]. To address a direct comparison with such data, let us recast the
dimensionless migration speed s and the time t in the original dimensional variables
S [m/year] and T [year], respectively. By using the numerical estimates of the ecolog-
ical parameters provided by Klausmeier in [41], it can be obtained: migration speed
S = 2s [m/year] and time T̃ = t/4 [year]. Note that, the inertial time τu scales
with the same law as t, i.e. T = τu/4. Then, the dependence of S(T ) is reported
in Fig.3.18 for different values of ν and ψ. Results in panel (a) reveal that, for a
fixed value of ν and for small values of inertial times, pattern speed S changes pro-
gressively sign from positive to negative as the seed advection speed ψ increases.
On the contrary, for large values of inertial times, migration speed keeps positive
and approaches asymptotically the null value far away from the parabolic limit. This
behavior holds independently of the value of the water advection speed, as proven
in Fig.3.18(b), which is obtained for ψ = 1 and variable ν. These intriguing results
allow to claim that the hyperbolic model may provide satisfying interpretations of
ecological observations both when patterns migrate uphill [68] and when they are
believed to be stationary [70]. Indeed, in the former case, the theoretically-predicted
maximum speed value, about 1.2 m/year, is in close agreement with the experimental
one 1.5 m/year (reported in Sudan, [68, 121]) for ψ < 1. This result may suggest
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Figure 3.18: Migration speed S at onset of instability (B = Bc) as a function of the
inertial time T for different values of ψ (a) and ν (b). In (a) the water advection
speed is set as ν = 182.5 whereas in (b) the seed advection speed is fixed at ψ = 1.

that the uphill migration of patterns has to be associated with a very small percent-
age of seed advection, an increase of which would lead to the opposite behaviour. In
the latter case, the vanishing migration speeds obtained for large values of inertial
time yield patterns to behave as they were almost stationary, independently of the
strength of secondary seed dispersal. On the other hand, close to the parabolic limit,
the agreement with field data would require to set both an upper bound (3.43), to
exclude the occurrence of downhill migration [47], and a lower bound, to prevent
propagation speed to achieve very large values.

3.2.3 Periodic travelling waves

The analyses carried out in the previous sections have shed some light on the role
played by inertial time and advection terms in the mechanism of formation of os-
cillatory periodic patterns. In this section, let us focus in more detail on the char-
acterization of the pattern speed s in the proposed hyperbolic model (3.32),(3.33).
For this reason, we look for solutions of the governing system in the form of periodic
travelling waves, namely U(x, t) = U(z) with z = x − st. This leads to recast the
original PDEs system in terms of the following ODEs one:

(M − sI) dU
dz

= N(U, B) (3.44)

It is trivial to notice that (3.44) admits the same three steady states of (3.32),(3.33).
Moreover, since we are interested in the occurrence of wave instability, we focus
our analysis on the homogeneously vegetated state U∗

S only. Therefore, searching
for solutions in the form of U = U∗

S + Û exp (ωz), the following cubic characteristic
equation with real coefficients is obtained:

ω3 +D1ω
2 +D2ω +D3 = 0 (3.45)
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where
D1 = −s2A1+s

[
τu(νf∗

u+ψg∗
w)−(ν+ψ)

]
+Â3

(ν+s)(τus2+τuψs−1) ,

D2 = sÃ2−(νf∗
u+ψg∗

w)
(ν+s)(τus2+τuψs−1) ,

D3 = − Ã3
(ν+s)(τus2+τuψs−1) .

(3.46)

Then, Routh-Hurwitz criterion is applied to determine the local stability of U∗
S ,

namely:
Re{ω} < 0 ∀ω ⇐⇒ D1 > 0 D3 > 0 D1D2 −D3 > 0 (3.47)

The first two conditions lead to:

(i) if τuf∗
u − 1 > 0 ∧ s4 > s2 ⇒ s1 < s < min {s2, s3}

(ii) if τuf∗
u − 1 > 0 ∧ s4 < s2 ⇒ s1 < s < s3 ∨ s4 < s < s2

(iii) if τuf∗
u − 1 < 0 ∧ s1 > s3 ⇒ max {s1, s4} < s < s2

(iv) if τuf∗
u − 1 < 0 ∧ s1 < s3 ⇒ s1 < s < s3 ∨ s4 < s < s2

(3.48)

where

s1,2 = 1
2

(
−ψ ∓

√
ψ2 + 4/τu

)
,

s3,4 = 1
2Ã1

[
τu (νf∗

u + ψg∗
w) − (ν + ψ) ∓

√[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]2 + 4A1Â3

]
.

(3.49)
Note that (3.54) represents the restrictions provided by the hyperbolic nature of the
model that, as expected, imposes the speed of propagation to be limited. Indeed, in
the parabolic limit τu → 0, the previous conditions reduce to:
s < s̃3 ∨ s > s̃4[
s2 + (ψ + ν) s+ ψν + g∗

w

] [
(g∗
w + f∗

u) s+ ψg∗
w + νf∗

u

]
− (s+ ν) (f∗

ug
∗
w − f∗

wg
∗
u) > 0
(3.50)

where
s̃3,4 = −1

2

[
ψ + ν ±

√
(ψ − ν)2 − 4g∗

w

]
(3.51)

which highlight the absence of an upper limit, so allowing the possibility to achieve
the paradox of an infinite propagation speed.

On the other hand, violation of the last condition in (3.55) defines the locus of
Hopf instability:{

−s2A1 + s
[
τu (νf∗

u + ψg∗
w) − (ν + ψ)

]
+ Â3

} [
sÃ2 − (νf∗

u + ψg∗
w)
]

+Ã3 (ν + ψ)
(
τus2 + τuψs− 1

)
= 0.

(3.52)

As known [64, 122, 123], the occurrence of Hopf bifurcation at U∗
S to a small ampli-

tude periodic solution of the ODEs system (3.44) corresponds to a travelling wave
solution of the PDEs system (3.32)-(3.33).
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Unfortunately, due to the highly nonlinear structure of the implicit locus (3.52)
on the plant loss B, information can only be extracted numerically. Outcomes of
this analysis are shown in Fig.3.19 where the locus of Hopf instability is depicted for
different values of the inertial time τu, considering ν = 182.5, ψ = 1 and A = 2.8.
This parameter set falls into setup (iii) of (3.54). In the same figure, the horizontal
lines represent the constraints s = s1 and s = s2, whereas the condition s = s4 is not
depicted as it always lies below the Hopf locus and brings no contribution. Consider-
ing the whole restrictions, the stability region varies with the inertial times as shown
in Fig.3.20, where all the quantities have been recast in the original dimensional
variables (according to [41], the plant mortality B is related to the dimensionless one
by B = 4B). As it can be noticed, despite larger values of inertial times enlarge the
region defined by the Hopf locus (as one can argue from Fig.3.19), they progressively
restrict the set of allowed speed, according to the stability conditions (3.54)(iii), as
depicted by the colored areas in Fig.3.20.
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Figure 3.19: Loci of Hopf instability in the (B, s) parameter plane for different values
of inertial time τu. Horizontal lines denote the constraints arising from eq.(3.54).
Fixed parameters: ν = 182.5, ψ = 1 and A = 2.8.

Figure 3.20: Stability regions for travelling waves in the (B, S) plane as the inertial
time is varied: (a) τu = 10−2, (b) τu = 0.1 and (c) τu = 0.5.
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Figure 3.21: (a) Locus of Hopf instability in the (B, s) plane for τu = 0.1. (b) The
corresponding bifurcation diagram obtained for B = 0.5. The parameter set is the
same as the one used in Fig.3.19.

Finally, to gain more insights into this phenomenon, we fix the inertial time at
τu = 0.1 and compare the theoretical predictions (3.54)(iii),(3.52) with the numerical
ones extracted from the bifurcation diagram obtained for B = 0.5 and built by the
XPPAUT tool [124]. Results are shown in Fig.3.21. In both panels of this figure, the
yellow squares define the upper and lower bounds of the admitted wave speed within
which the limit cycle (represented by blue circles in the right panel) is observed. As it
can be noticed, the excellent agreement here obtained provides a further confirmation
of the analysis here carried out.

All the above described results fully agree with the ones depicted in Fig.3.18 and
point out that, moving far away from the parabolic limit, pattern dynamics becomes
almost stationary. Interestingly, by direct comparison with field data, our findings
might, in turn, provide a strategy to estimate the order of magnitude of inertial
effects taking place in dryland vegetation dynamics.

3.2.4 Approximated loci of migrating and stationary patterns

In this subsection, an insight into the numerical results conducted previously is first
presented with the main aim of extracting qualitative information on emerging trav-
eling patterns. Then, an analytical approximation is discussed to better characterize
the migrating and stationary patterns behaviours. In all the subsequent analyses, the
water advection speed is set to ν = 182.5, in line with literature values [41].

Firstly, let us focus on the dependence of the critical values of control parameter Bc
and wavenumber kc at the onset of wave instability on inertial time τu and secondary
seed strength ψ, as theoretically predicted by (3.38) and (3.40), respectively. Results
depicted in Fig.3.22 for A = 1.7 confirm that, close to the parabolic limit, i.e. τu ≲ 1,
the critical values do not appreciably vary with τu and ψ. On the other hand, as we
progressively move away from the parabolic limit, effects due to hyperbolicity and
secondary seed dispersal become evident (see also Fig.3.14(b)). Indeed, even a small
increase in ψ yields simultaneously a significant decrease of the critical wavenumber,
so giving rise to periodic patterns with larger wavelengths, and an increase of the
critical control parameter, which implies a reduction of the pattern forming region.
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In order to gain a deeper understanding on the phenomenon of wave instability,
let us track the wavenumber dependence of the roots of (3.35) for two points in the
(τu, Bc)-plane, as reported in Fig.3.22(a). In particular, the points P1 and P2 are
chosen in such a way they may be representative of dynamics occurring close to and
far from the parabolic limit, respectively. Results are depicted in Fig.3.23(a)-(d) for
ψ = 0.2 and in Fig.3.23(e)-(h) for ψ = 0.8. In this figure, panels on the left (right)
depict the real (imaginary) parts of the roots of the characteristic equation (3.35)
evaluated at P1 [panels (a),(b),(e),(f)] and P2 [panels (c),(d),(g),(h)]. As it can be
noticed, at the configuration P1, eq.(3.35) admits always roots with negative real part
(see Fig.3.23(a,e)), in line with the theoretical prediction reported in Fig.3.22(a) that
this point lies outside the wave bifurcation locus, for all considered values of ψ. On
the contrary, at P2, there is at least one root with positive real part, so that this point
lies inside the pattern forming region for any considered value of ψ, see Fig.3.23(c,g),
consistently with result of Fig.3.22(a).

To further confirm the theoretically predictions here carried out on wave insta-
bility, system (3.32),(3.33) is now integrated numerically by means of COMSOL
Multiphysics® [108] in a domain x ∈ [0, 200] over a time window t ∈ [0, 200]. A small
perturbation around the state U∗

S is taken as initial condition and periodic boundary
conditions are considered. Results are depicted in Fig.3.24 and validate our previous
findings. Indeed, at point P1 (panels on the left), the perturbation is absorbed and the
system relaxes towards the homogeneous steady state, whereas at point P2 (panels
on the right) the spatial perturbation destabilizes the state and generates a traveling
pattern. This observation highlights the role of inertia in modifying the wave bifurca-
tion threshold. At the same time, the comparison between Fig.3.24(b) and (d) allows
to elucidate the role of secondary seed dispersal. In fact, as its strength is increased,
the migration speed is reduced (notice the smaller slope of bands in (d) with respect
to (b)), as a consequence of a larger amount of seeds transported downhill by the
overland flow.

Let us now address some investigations to extract additional information from the

Figure 3.22: Inertial-time dependence of (a) the critical value of control parameter at
the onset of wave instability Bc and (b) its associated wavenumber kc, for different
values of seed advection speed ψ. Fixed parameter: A = 1.7.
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Figure 3.23: Real (left panels) and imaginary (right panels) parts of the roots ω1,2,3
of the characteristic polynomial (3.35) as a function of the wavenumber, obtained for
ψ = 0.2 [panels (a)-(d)] and ψ = 0.8 [panels (e)-(h)]. Panels (a),(b),(e),(f) correspond
to the point P1, whereas (c),(d),(g),(h) to P2. Blue, red and black lines are represen-
tative of ω1, ω2 and ω3, respectively. Fixed parameters: A = 1.7 and B = 0.25.
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Figure 3.24: Spatio-temporal evolution obtained by numerical integration of the gov-
erning system in the configurations P1 (left panels) and P2 (right panels). Results in
the top row are obtained for ψ = 0.2 whereas those in the bottom row for ψ = 0.8.
Other parameters as in Fig.3.23.

characteristic equation. In particular, let us track the behavior of the three complex
roots of the eq.(3.35) with the aim of identifying and determining at least an ap-
proximate expression of the functional dependence of the root responsible for the
stability character of the steady state. Let us denote the roots as

ω1 = α+ iβ, ω2 = γ + iδ, ω3 = θ + iζ, (3.53)

where α, β, γ, δ, θ, ζ ∈ R. Then, by substituting (3.53) into (3.35), the following
system in six unknowns (α, β, γ, δ, θ, ζ) is obtained:

α+ γ + θ = 1 + u2
S −B − 1

τu

β + δ + ζ = k (ν + ψ)

θ (α+ γ) − ζ (β + δ) + αγ − βδ =
[
τuB

(
u2
S − 1

)
+ 1 + u2

S −B + (τuνψ − 1) k2
]
/τu

ζ (α+ γ) + θ (β + δ) + αδ + βγ = k

[
νB − ψ

(
1 + u2

S

)
− (ν + ψ) /τu

]
θ (βδ − αγ) + ζ (αδ + βγ) =

[
B
(
u2
S − 1

)
+
(
1 + u2

S − νψ
)
k2
]
/τu

ζ (βδ − αγ) − θ (αδ + βγ) = k

[
νB − ψ

(
1 + u2

S

)
− νk2

]
/τu

(3.54)
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Owing to the nontrivial structure of the above system, some simplifying assump-
tions are needed. One of them has an ecological foundation, i.e. ψ ≪ ν, as the
rate at which seeds are passively transported downhill by the overland flow is quite
small in comparison with the water advection speed [41, 45, 64]. Some others can
be deduced mathematically from the inspection of the qualitative behaviour of the
roots reported in Fig.3.23. In particular, noticing that the real and imaginary parts
of ω3 are different orders of magnitude larger than those of the other roots, it is
reasonable to assume that ζ ≫ |δ|, |β| and |θ| ≫ |α|, |γ|. Consequently, according to
(3.54)1 and (3.54)2, the real and the imaginary part of ω3 can be safely approximated
by Re(ω3) ≈ f∗

u + g∗
w − 1

τu and Im(ω3) ≈ kν, respectively. Note that, according to
(B.3), Re(ω3) is thus always negative and indeed such a root does not determine the
stability character of U∗

S .
By considering all the previous assumptions, the system (3.54) can be approxi-

mated as

(
1 + u2

S −B − 1
τu

)
(α+ γ) − kν (β + δ) + αγ − βδ =

[
τuB

(
u2
S − 1

)
+ 1 + u2

S −B + (τuνψ − 1) k2
]
/τu

kν (α+ γ) +
(
1 + u2

S −B − 1
τu

)
(β + δ) + αδ + βγ = k

[
νB − ψ

(
1 + u2

S

)
− (ν + ψ) /τu

]
(
1 + u2

S −B − 1
τu

)
(βδ − αγ) + kν (αδ + βγ) =

[
B
(
u2
S − 1

)
+
(
1 + u2

S − νψ
)
k2
]
/τu

kν (βδ − αγ) −
(
1 + u2

S −B − 1
τu

)
(αδ + βγ) = k

[
νB − ψ

(
1 + u2

S

)
− νk2

]
/τu

(3.55)
so that the approximate expression for the first two roots is:

ω1 ≈ η − γ + i
(
θγ−χ
η−2γ + θ

)
,

ω2 ≈ γ + iχ−θγ
η−2γ ,

(3.56)

where γ is implicitly defined by

4γ4 − 8ηγ3 +
(
5η2 + θ2 − 4µ

)
γ2 − η

(
η2 + θ2 − 4µ

)
γ + ηθχ− χ2 − η2µ = 0 (3.57)

and

η =

{
1−τu

[
B−(1+u2

S)
]}[

B−(1+u2
s)−τuB(u2

s−1)
]
+τuν2k2(B−1)−k2−τu

[
B(u2

S−1−k2)+2k2(1+u2
S)
]{

1+τu[1+u2
S−B]

}2+(τu)2k2ν2
+

+2(τu)2νk2
[
νk2+ψ(1+u2

S)−νB
][

1+τu(1+u2
S−B)

]{[
1+τu(1+u2

S−B)
]2+(τu)2k2ν2

}2 ,

θ = − 1
kν

{(
1
τu + 1 + u2

S −B
)
η +

(
1
τu − νψ

)
k2 +B

(
u2
S − 1

)
+ 1

τu

(
1 + u2

S −B
)

+

+ (B−2−u2
S)
[
B(u2

S−1)+(1+u2
S+νψ)k2

]
+τuνk2

[
νB−νk2−ψ(u2

S+1)
]{

1+τu[1+u2
S−B]

}2+(τu)2k2ν2

}
,

χ = k

{
1−τu

[
B−(1+u2

S)
]}[

νB−(1+u2
s)ψ
]
−νk2+τuν

[
B(u2

S−1)+(B−νψ)k2
]{

1+τu[1+u2
S−B]

}2+(τu)2k2ν2
,

µ = −

{
1−τu

[
B−(1+u2

S)
]}[

B(u2
s−1)+(1+u2

S)k2
]
−νψk2+τuν2k2[k2−B]{

1−τu[1+u2
S−B]

}2+(τu)2k2ν2
.

(3.58)
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To check the validity of the approximated formulation carried out so far, in Fig.3.25
we present the comparison between numerically-computed (solid lines) and approxi-
mated (symbols) values of the complex roots of characteristic equation (3.35). With-
out loss of generality, let us evaluate these roots at the points P1 and P2 previously
introduced. Based on the satisfying agreement achieved in all cases, with particular
focus on the range of wavenumber where the real part of the roots crosses the zero,
it is possible to inspect in more detail the functional dependencies of ω1 and ω2.

Results shown in Fig.3.25 suggest also that ω1 cannot produce any spatial instabil-
ity through Turing or wave instabilities. Indeed, its real part does not cross the real
axis through a maximum. Instead, it may give rise to a different kind of instability
as it originates an infinite range of unstable wavenumbers. Therefore, the only root
that might be responsible for oscillatory or stationary patterns is ω2, whose real part
exhibits the required behavior [see Fig.3.25(b),(e)]. For an oscillatory instability to
take place, we thus need to impose the following conditions (to hold for k ̸= 0):

Re(ω2) = 0
∂Re(ω2)
∂k = 0

(3.59)

that, by virtue of (3.56),(3.57), reduce to:
ηθχ− χ2 − η2µ = 0
∂
∂k

[
ηθχ− χ2 − η2µ

]
= 0

(3.60)

Figure 3.25: Comparison between numerically computed (solid lines) and theoreti-
cally estimated (symbols) roots of the complex characteristic equation (3.35) evalu-
ated at the points P1 [panels (a),(b),(c)] and P2 [panels (d),(e),(f)]. Real parts are
depicted in black, whereas the imaginary ones in red. Root ω1 is represented in panels
(a),(d); ω2 is depicted in (b),(e) whereas ω3 in (c),(f). Fixed parameters: ψ = 0.8,
A = 1.7 and B = 0.25.
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Figure 3.26: The locus at which spatial bifurcations occur for different values of
inertial time τu. Solid lines represent the numerically computed loci, whereas symbols
denote the theoretically approximated predicted ones. Fixed parameters: ψ = 0.8.

Note that, equations (3.60) implicitly define the approximated critical wavenumber
and the locus at which wave bifurcation occurs, respectively. Again, to check the
validity of the approximated bifurcation locus, a comparison with numerical results
arising from the exact expression defined in (3.40) is addressed. Results shown in
Fig.3.26 confirm a satisfactory agreement, for all the considered values of inertial
times, revealing that eq.(3.60) may be safely used as an approximate description of
key features associated to oscillatory patterns near criticality.

With this in mind, the migration speed of the oscillatory pattern at onset, under
the hypothesis that the only excited mode is the one characterizerd by the largest
growth rate, is proportional to Im(ω2) = δ. In particular, positive (negative) values
of δ correspond to patterns migrating downhill (uphill) whereas null values are rep-
resentative of stationary patterns. Therefore, taking into account (3.53) and (3.56),
the approximated locus of stationary patterns is implicitly defined by:

θγ − χ = 0. (3.61)

It should be noticed that such a locus exhibits a dependence on inertial time
through the coefficients θ, γ, and χ. Moreover, due to the implicit definition of γ,
it is necessary to still rely on numerical investigations. However, the approximate
expression (3.61) enables the possibility of evaluating the occurrence of stationary
patterns in the whole parameter plane, being conscious that its validity has to be re-
stricted to close-to-threshold values. To this aim, numerical investigations are carried
out and the results are depicted in Fig.3.27 for different values of inertial time τu.
First of all, let us focus on the behaviour of stationary patterns at the onset of crit-
icality, which corresponds to the intersection in the (B,A)-plane between the locus
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of null-migration patterns (red curve) and the wave instability one (black one). As
it can be noticed, for τu ≤ 1 (panels (a)-(d)), hyperbolicity yields a negligible effect
on such an intersection point, in reasonable agreement with our previous results (see
Fig.3.34), so confirming that τu ≃ 1 can be considered a good approximation of the
parabolic limit. When inertial effects become more relevant, the onset of stationary
patterns takes place for progressively smaller values of the main control parameter
(notice the different scales of the axes in panels (e)-(f)), so enlarging the region char-
acterized by uphill migration of bands. Then, moving away from wave instability
threshold, the behavior of the theoretically-predicted locus of stationary patterns
is non-monotonous with respect to variations of inertial time. Indeed, the region of
uphill migration shrinks from panel (a) to (c) whereas it enlarges from (d) to (f). All
these results are in line with previous theoretical findings [80].

Finally, as illustrative example of out-of-equilibrium dynamics, let us integrate the
governing system (3.32),(3.33) over x ∈ [0, 200] in a time window t ∈ [0, 100] by fixing
the inertial time at τu = 1 and considering the configurations in the (B,A) plane
depicted in Fig.3.28(a). In particular, points Q1 = (0.2, 1), Q2 = (0.23, 1.3) and Q3 =
(0.25, 1.5) correspond to near criticality conditions whereas Q4 = (0.5, 0.18) and
Q5 = (0.5, 0.23) to far-from-threshold ones. Overall results are shown in Fig.3.28(b)-
(f).

In detail, the theoretically-predicted downhill, stationary or uphill motion of bands
observed near criticality at the configurations Q1, Q2 and Q3, respectively, is con-
firmed by numerical simulations, see panels (b)-(d). On the contrary, in far-from-
threshold conditions, numerical results confirm the downhill motion occurring at Q4
(see panel (e)) but contradict the predictions on the uphill motion at Q5, where
patterns still migrate downhill (see panel (f)). These observations provide a rough
estimation of the range of validity of the approximated stationary locus. At the same

Figure 3.27: Loci of wave instability (black lines) and null-migration patterns (red
lines) for (a) τu = 10−5, (b) τu = 10−3, (c) τu = 10−2, (d) τu = 1, (e) τu = 10, (f)
τu = 102. Fixed parameter ψ = 0.8.
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Figure 3.28: (a) Detail of Fig.3.27(d) and configurations Qi (i=1,...,5) in which nu-
merical simulations of system (3.32),(3.33) are performed. Panels (b)-(f) denote the
spatio-temporal evolutions obtained in: (b) Q1, (c) Q2, (d) Q3, (e) Q4 and (f) Q5.
Fixed parameter: ψ = 0.8.

time, such simulations suggest that the downhill motion of bands is the predominant
behavior occurring in out-of-equilibrium conditions.

3.2.5 Concluding remarks

In this section we propose a twofold generalization of the Klausmeier model. Com-
pared to the original parabolic model [41], the one here discussed also accounts for:
(i) secondary dispersal of seeds, through an additional advection term and (ii) in-
ertial effects on the vegetation component, which lead to build up an hyperbolic
framework. Patterned vegetation dynamics are analyzed by means of LSA in order
to deduce and characterize the locus of wave instability as a function of all the model
parameters. Moreover, additional information on the pattern speed are extracted by
means of periodic travelling waves. To inspect the behaviour of stationary and mi-
grating patterns, analytical approximations for the wave instability locus such as for
the pattern speed, the locus of null-migrating patterns, and the excited wavenumber
are provided. Theoretical predictions, which are complemented by numerical simu-
lations, allow to draw several conclusions.

First, the pattern-forming region enlarges (reduces) as the inertial time (seed ad-
vection speed) increases, as depicted in Fig.3.12 and Fig.3.14. Therefore, the presence
of inertia does not only affect transient dynamics, as expected, but also plays an ac-
tive role in allowing pattern dynamics to be observed over a wider range of model
parameters.

Then, the proposed hyperbolic generalization of the Klausmeier model may pro-
vide a satisfying description of experimental data for both migrating and stationary
patterns. Indeed, close to the parabolic limit, the model allows to reproduce both
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directions of pattern propagation as a function of seed advection speed, as shown
in Figs.3.15-3.18. On the contrary, far from the parabolic limit and independently
of secondary seed dispersal, the theoretically-predicted migration speed approaches
the zero value so mimicking the regime of quasi-stationary patterns. The constraints
on the allowed wave speed arising from the hyperbolic nature of the model are par-
ticularly tangible in Figs.3.19,3.20, where the stability region of travelling waves
progressively shrinks as the inertial time is increased.

Finally, the analytical approximation analysis here conducted shows results which
agree well with the numerically ones, see Figs.3.25-3.26. On one hand, near the
parabolic limit, the dynamics of stationary patterns at the onset of criticality are
unaffected by hyperbolicity whereas, on the other hand, far from it inertial effects
favor the presence of uphill patterns, see Figs.3.27-3.28.

Results here obtained might shed some light on the current debate on the mecha-
nisms responsible for the effective migration on vegetation bands along slopes of arid
terrains. At the same time, despite the huge difficulties encountered in addressing
such long-term experimental field observations, a larger and more accurate availabil-
ity of field data might provide an indirect estimation of the order of magnitude of
plant inertia.



Chapter
4

Stationary patterns in 2D
hyperbolic RT systems

In the literature of hyperbolic bio-mathematical models not based on the ET theory,
the occurrence of stationary and non-stationary Turing patterns in the bi-dimensional
framework has been mostly investigated by means of LSA tools and numerical simu-
lations [15, 16, 32–35]. However, no efforts have been there made to address nonlinear
stability analyses aimed to the characterization of these structured solutions. The in-
vestigations carried out here constitute an attempt to fill this gap. In detail, two
widely used patterned planform geometries will be taken into account: rhombs and
hexagons.

In line with the previous chapters, the present study also aims to elucidate the role
played by inertia in the formation of bidimensional stationary patterns. This analysis
is stimulated by the dynamics observed in the context of dryland ecology, where the
interaction-competition between water and vegetation biomass gives rise to several
fascinating patterns with different geometries [7, 41, 53, 58, 60–62, 65, 66].

In this chapter the formation of rhombic and hexagonal Turing patterns in bidi-
mensional hyperbolic RT systems (1.5)-(1.7) is addressed in the case where only a
diffusive character is taken into account (ψ = ν = 0). In order to keep the thesis at a
reasonable length, all the analyses are performed in the context of dryland ecology.
Results can be however generalized by considering generic kinetic terms.

This chapter is organized as follows. In Section 4.1, LSA is performed on the
steady states, with the main aim of determining the conditions under which Tur-
ing instability takes place. This analysis is useful to establish the critical values of
the wavenumber and of the control parameter (here assumed the plant loss), around
which the subsequent analyses originate. In Section 4.2, multiple-scale WNA is ad-
dressed for both rhombic and hexagonal planform geometries, with the aim of deduc-
ing the equations ruling the pattern evolution close to onset and to highlight the role
played by inertia in this context. Finally, numerical simulations are also discussed to
corroborate the theoretical predictions as well as to provide additional insights into
the inertial-dependence of the transient dynamics between an uniform state towards
a patterned state. Concluding remarks are given in the last section.
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4.1 LSA
Under the hypothesis that the two species undergo isotropic diffusive transport only,
the 2D hyperbolic reaction-transport model (1.5)-(1.7) reads:

Ut + M(1)(U)Ux + M(2)(U)Uy = N(U, B) (4.1)

where the 6×6 matrices M(1) and M(2) are expressed as

M(1) =



0 0 1 0 0 0
0 0 0 0 1 0
1
τu 0 0 0 0 0
0 0 0 0 0 0
0 d

τw 0 0 0 0
0 0 0 0 0 0


, M(2) =



0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 0 0
1
τu 0 0 0 0 0
0 0 0 0 0 0
0 d

τw 0 0 0 0


(4.2)

and the vectors of field variables and kinetic terms are given by

U =
[
u ,w , Ju1 , J

u
2 , J

w
1 , J

w
2
]T

N (U, B) =
[
f(u,w,B), g(u,w,B), −Ju1 /τu,−Ju2 /τu, −Jw1 /τw, −Jw2 /τw

]T
.
(4.3)

Its spatially-homogeneous steady states U∗ ≡ [u∗, w∗,Ju∗
,Jw∗ ]T are the same as

those achieved in Section 1.4.
Let us now analyze in detail the local stability character of these steady states

with the goal of establishing the possibility to observe Turing patterns. To this aim,
let us linearize the governing system through

U = U∗ + Ũexp (ωt+ i k1x+ i k2y) (4.4)

which leads to [
ωI + i

(
k1M(1) + k2M(2)

)
− (∇UN)

]∗
Ũ = 0 (4.5)

where the asterisk denotes that the functions are evaluated at U∗, I is 6 × 6 identity
matrix, while ω and k = (k1, k2) represent the growth factor and the wavevector,
respectively. The growth factor ω satisfies the following characteristic equation(

ω + 1
τu

)(
ω + 1

τw

)(
ω4 +A1ω

3 +A2ω
2 +A3ω +A4

)
= 0 (4.6)

where

A1 = 1
τu + 1

τw − (f∗
u + g∗

w) ,

A2 =
(

1
τu + d

τw

)
k2 + τuτw − (f∗

u + g∗
w)
(

1
τu + 1

τw

)
+ f∗

ug
∗
w − f∗

wg
∗
u,

A3 =
[
(d+ 1) τuτw − f∗

u
d
τw − g∗

w
1
τu

]
k2 + (f∗

ug
∗
w − f∗

wg
∗
u)
(

1
τu + 1

τw

)
− (f∗

u + g∗
w) τuτw,

A4 = d
τuτw

[
k4 −

(
f∗
u + g∗

w
d

)
k2 + f∗

ug
∗
w−f∗

wg
∗
u

d

]
,
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and k = |k|. We note that, since ω1 = − 1
τu and ω2 = − 1

τw are always real and
negative, the stability character of the steady state U∗ depends on the sign of the
quartic equation

ω4 +A1ω
3 +A2ω

2 +A3ω +A4 = 0 (4.7)
which formally coincides with the one found in the 1D case [76] except k represents
the modulus of the 2D wavevector. In the absence of diffusion (k = 0), equation (4.7)
can be factorized as(

ω + 1
τu

)(
ω + 1

τw

) [
ω2 − (f∗

u + g∗
w)ω +

(
f∗
ug

∗
w − f∗

wg
∗
u

)]
= 0 (4.8)

so that the steady state U∗ is asymptotically linearly stable iff

f∗
u + g∗

w < 0, f∗
ug

∗
w − f∗

wg
∗
u > 0. (4.9)

Therefore, considering Klausmeier kinetics as in (1.2), as it can be easily noticed,
the desert state U∗

D and the vegetated state U∗
S are stable whereas U∗

L is always
unstable.

In the case of non-homogeneous perturbations, the equation (4.7) evaluated at U∗
D

admits the following explicit solutions

ω3,4 = −1
2

1 + 1
τw

±

√(
1 − 1

τw

)2
− 4 d

τw
k2

 (4.10)

ω5,6 = −1
2

B + 1
τu

±

√(
B − 1

τu

)2
− 4 1

τu
k2

 , (4.11)

so that we can conclude that U∗
D is stable also under non-homogeneous perturbations

provided that

k2 ≤ min
{
τw

4d

(
1 − 1

τw

)2
,
τu

4

(
B − 1

τu

)2
}
. (4.12)

These restrictions on the allowed wavenumbers have an ecological foundation since
damped temporal oscillations about the desert state cannot occur. Consequently,
the only steady configuration that can give rise to periodic patterns is the uniformly-
vegetated state U∗

S . Its stability character can be investigated by means of the Routh-
Hurwitz criterion, which reads

Re ω < 0 ∀ω ⇔ A1 > 0, A3 > 0, A4 > 0, A1A2A3 > A2
3 +A2

1A4 ∀ k.
(4.13)

Therefore, under assumptions (4.9), A1 and A2 are positive for all k and, in turn,
the condition A3 > 0 is redundant. Consequently, the previous conditions reduce to

Re ω < 0 ∀ω ⇔ A4 > 0, A1A2A3 −A2
3 −A2

1A4 > 0 ∀ k (4.14)

that can be expressed as

A4 > 0 for df∗
u + g∗

w < 0 or (df∗
u + g∗

w)2 − 4d (f∗
ug

∗
w − f∗

wg
∗
u) < 0

A1A2A3 −A2
3 −A2

1A4 > 0 for f∗
u <

1
τu

(4.15)



4. Stationary patterns in 2D hyperbolic RT systems 75

Thus, in the case of Klausmeier kinetics (1.2), the necessary conditions for diffusion-
driven instabilities yielding Turing patterns are given by

B − 1 − u2
S < 0

B
(
u2
S − 1

)
> 0

dB −
(
1 + u2

S

)
> 0(

dB − 1 − u2
S

)2
− 4dB

(
u2
S − 1

)
> 0

B < 1
τu

(4.16)

As known, the onset of Turing bifurcation corresponds to the presence of a null
root of the characteristic equation (4.6) for a value of k ̸= 0 which is tantamount to
requiring A4(k2) = 0. Therefore, by assuming B as the main control parameter, its
critical value Bc at the bifurcation threshold is given by

Bc =
3u2

Sc
− 1 + 2uSc

√
2
(
u2
Sc

− 1
)

d
(4.17)

being uSc = A+
√
A2−4B2

c

2Bc
. Consequently, the critical value of the modulus of wavevec-

tor kc can be defined as

k2
c =

√√√√Bc
(
u2
Sc

− 1
)

d
. (4.18)

As can be noticed, hyperbolicity does not affect the instability threshold and the
critical wavenumber of the emerging stationary patterns [75–77, 79]. Moreover, notice
that the results here obtained coincide with the ones obtained in the 1D case (2.5)-
(2.6), where the scalar wavenumber is here replaced by its modulus.

4.2 WNA
Let us now perform a weakly nonlinear stability analysis on the uniform steady
state U∗

S about the critical value of the control parameter Bc determining Turing
instability. Note that, a similar analysis was already performed for two-dimensional
parabolic models [125–132].

To this aim, let us consider the following expansions for the main control parameter
B, the field variables U and the time t as:

B = Bc + ϵB1 + ϵ2B2 + ϵ3B3 +O
(
ϵ4
)

U = U∗
S + ϵU1 + ϵ2U2 + ϵ3U3 +O

(
ϵ4
)

∂
∂t = ϵ ∂

∂T1
+ ϵ2 ∂

∂T2
+ ϵ3 ∂

∂T3
+O

(
ϵ4
) (4.19)

Substituting (4.19) into the governing system (4.1)-(4.3), taking into account the
Klausmeier kinetic (1.2), and collecting terms of the same orders of ϵ, the following
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set of linear partial differential equations is obtained

at order ϵ M(1) ∂U1
∂x + M(2) ∂U1

∂y = L∗
cU1

at order ϵ2 M(1) ∂U2
∂x + M(2) ∂U2

∂y = L∗
cU2 +B1

[
(U1 · ∇U ) ∂N

∂B

]∗
C

+

+1
2

[
(U1 · ∇U )(2) N

]∗
C

− ∂U1
∂T1

at order ϵ3 M(1) ∂U3
∂x + M(2) ∂U3

∂y = L∗
cU3 +B1

[
(U2 · ∇U ) ∂N

∂B

]∗
C

− ∂U2
∂T1

− ∂U1
∂T2

+

+B2
[
(U1 · ∇U ) ∂N

∂B

]∗
C

+ 1
2B

2
1
[
(U1 · ∇U ) ∂2N

∂B2

]∗
C

+

+1
2B1

[
(U1 · ∇U )(2) ∂N

∂B

]∗
C

+ 1
6

[
(U1 · ∇U )(3) N

]∗
C

+

+
[
(U1 · ∇U ) (U2 · ∇U ) N

]∗
C

(4.20)
where L∗

c = (∇UN)∗
c and, for a generic vector V, the expression (V·∇U)(j) works as

in Section 2.1.
In the following sections let us investigate rhombic and hexagonal planform so-

lutions of the governing hyperbolic system. Similar analysis has been done in Refs.
[125–128] for parabolic models.

4.2.1 Rhombic planform analysis

Let us search for solutions of (4.20) at the lowest perturbative order in the form

U1(x, z, T1, T2) = X(x, T1, T2) + Z(z, T1, T2) (4.21)

where
z = x cosϕ+ y sinϕ (4.22)

and ϕ ∈ (0, π). Then, by requiring the secular terms to vanish, the solution (4.21)
satisfying zero-flux boundary conditions reads

U1 = Ω1



r1 cos (kcx)

r2 cos (kcx)

kcr1 sin (kcx)

0

kcdr2 sin (kcx)

0


+ Ω2



r1 cos (kcz)

r2 cos (kcz)

kcr1 cosϕ sin (kcz)

kcr1 sinϕ sin (kcz)

kcdr2 cosϕ sin (kcz)

kcdr2 sinϕ sin (kcz)


(4.23)

where Ω1 (T1, T2) and Ω2 (T1, T2) are the pattern amplitudes along x and z direction,
respectively.

Now inserting (4.23) into the nonhomogeous linear system (4.20) at the second
perturbative order, the requirement that resonant terms vanish leads to

B1 = ∂Ω1
∂T1

= ∂Ω2
∂T1

= 0. (4.24)
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Thus, the solution reads

U2(x, z, T2) = Ω2
1U20 + Ω2

2U02 + Ω1Ω2

(
1

(1 + 2 cosϕ)2 U12 + 1
(1 − 2 cosϕ)2 U21

)
(4.25)

where the vectors U20(x), U02 (z), U12(x+ z) and U21(x− z) are given in Appendix
E. Finally, substituting (4.23),(4.25) into (4.20)3, the elimination of secular terms
leads to the following two cubic SL equations for the pattern amplitudes:

∂Ω1
∂T2

= B2σΩ1 − Ω1
(
L1Ω2

1 + L2Ω2
2
)

∂Ω2
∂T2

= B2σΩ2 − Ω2
(
L1Ω2

2 + L2Ω2
1
) (4.26)

with
σ = Bcr1(2r1+r2d)

(
1−u2

Sc

)
+2u2

Sc
r2(r1+r2d)

(
1+u2

Sc

)
Bc

(
1−u2

Sc

)
r1r2[d−1+dk2

c (τw−τu)] ,

L1 = − (r1+r2d)a1
r1r2[d−1+dk2

c (τw−τu)] ,

L2 = − (r1+r2d)a2
r1r2[d−1+dk2

c (τw−τu)] ,

(4.27)

where the coefficients a1 and a2 are given in Appendix E. Note that, the expressions
of the coefficients σ and L1 are the same as those deduced in the one-dimensional
case [76].

Recalling that σ > 0, system (4.26) admits, apart from the trivial equilibrium
(which is always unstable), the following fixed points (Ω∗

1,Ω∗
2):

for L1 > 0 ⇒ P∗
1,2 =

(
±
√

B2σ
L1
, 0
)
,P∗

3,4 =
(

0,±
√

B2σ
L1

)
,which are stable for L2 > L1

for L1 + L2 > 0 ⇒ Q∗
1,2,3,4 =

(
±
√

B2σ
L1+L2

,±
√

B2σ
L1+L2

)
,which are stable for L1 > L2

(4.28)
It should be noticed that these fixed points are representative of different patterned

configurations. In detail, while P∗
1,2 and P∗

3,4 denote stripes that are perpendicular to
the x-axis and z-axis, respectively, the points Q∗

1,2,3,4 correspond to rhombic planform
patterns.

Owing to the common structure of the denominators of the coefficients appearing
in (4.27), the stationary value of the pattern amplitude and their existence and
stability character (4.28) are independent of inertial times. However, according to
(4.26), the time evolution of the pattern amplitude is strictly ruled by inertia, so
that hyperbolicity plays an active role in determining the transient regime from an
uniform state toward a patterned state and between different patterned states.

To get insight into the properties of the emerging patterns and their dependence
on inertial effects, let us address a numerical investigation on the quantities here
deduced. Firstly, existence and stability conditions of the fixed points defined in
(4.28) are plotted in Fig.(4.1). In detail, Fig.4.1(a) shows the existence condition for
P∗

1,2,3,4, which is expressed by the positiveness of the coefficient L1 as a function
of Bc. It reveals that such patterns exist over a wide range of the critical control
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parameter, i.e. B > B∗ (see the square symbol in the figure). The stability character
of these configurations, depicted in the plane (ϕ, L2

L1
) in Fig.4.1(b), is associated to the

condition L2
L1

> 1, so that stripe patterns can be only observed within given ranges
of ϕ. The same figure is also useful to show the existence and stability conditions for
Q∗

1,2,3,4 that can be easily gathered under the only constraint −1 < L2
L1
< 1.

In order to confirm the previous theoretical predictions as well as to extract in-
formation on the steady configurations corresponding to the abovementioned fixed
points, the governing system is now integrated numerically by means of COMSOL
Multiphysics(R) [108]. The computational domain is a square with sides of length 100
and zero-flux boundary conditions are imposed at each boundary. Results shown in
Fig.4.2 reveal that different stripe patterns can be obtained by considering different
small perturbations of the spatially-homogeneous steady states U∗

S as initial data.
For instance, Fig.4.2(a) corresponds to the fixed points P∗

1,2, whereas panels (b) and
(c) are representative of P∗

3,4 with ϕ = π
2 and ϕ = π

8 , respectively. It should be

noticed that, the theoretically-predicted amplitude pattern
(

Ωtheo = ϵ
√

σ
L1

= 2.9
)

is in a good agreement with the numerical one (Ωnum = 3.0), despite the control
parameter is taken at a relatively large distance from the threshold (ϵ = 10−1).

To elucidate the role played by inertial effects on vegetation pattern dynamics,
the SL system (4.26) is integrated over a time window T2 ∈ (0, 200). The resulting
evolution of the pattern amplitudes in the transient regime is depicted in Fig.4.3
for different inertial times and initial conditions. In particular, Figs.4.3(a,b) show
the behavior of stripes that are perpendicular to x-axis (denoted by P∗

1,2), as the
Ω2-component approaches zero. Figs.4.3(c,d) correspond to stripes perpendicular to
z-axis (denoted by P∗

3,4), as the Ω1-component vanishes once the transient is expired.
Finally, Figs.4.3(e,f) show the configuration in which both steady amplitudes are
non-null (referred to as Q∗

1,2,3,4). These latter solutions are named rhombic planform
patterns, as their geometry differs from stripes. The above results allow to address
a twofold conclusion. On the one hand, the numerically-computed fixed points are

Figure 4.1: Panels (a) and (b) depict, respectively, the existence and stability condi-
tions for P∗

1,2,3,4. Panel (b) encloses both conditions for Q∗
1,2,3,4. The used parameters

are: d = 500, τu = 10−5 and τw = 5 × 10−3. In (b) A = 2.8.



4. Stationary patterns in 2D hyperbolic RT systems 79

Figure 4.2: Snapshots of the steady pattern configurations obtained by integrating
numerically the governing system. Panel (a) corresponds to the P∗

1,2, whereas panels
(b) and (c) denote P∗

3,4 with ϕ = π
2 and ϕ = π

8 , respectively. The used parameters
are: d = 500, τu = 10−5, τw = 5 × 10−3, A = 2.8 and B = 0.455.

in excellent agreement with the theoretically-predicted ones (4.28). On the other
hand, the presence of inertia modulates the duration of the transient regime from the
uniformly-vegetation area toward the patterned state, independently of the geometry
characterizing the steady configuration. Indeed, by leaving the parameter τu fixed
and reducing the inertial time τw, the transient regime progressively shortens.

Let us now further inspect the role of hyperbolicity through numerical integration
of the governing system where the initial data are fixed (and set to a small perturba-
tion of the homogeneously-vegetated area) and the inertial times are varied. Results
are depicted in Fig.4.4(a,b,c) for τw = 5 × 10−3, that represents a configuration very
close to the parabolic limit, and in Fig.4.4(d,e,f) for τw = 50, that is far from it. To
better appreciate the dynamics occurring during the transient regime, snapshots of
the vegetation biomass distribution u(x, y) are reported at different times: t = 200
in panels (a,d), t = 500 in panels (b,e) and t = 1000 in panels (c,f). As can be no-
ticed from Figs.4.4(b,c), in the parabolic regime, at t = 500 the system has already
completed the transition from the uniform state to the rhombic patterned configura-
tion. On the other hand, as reported in Figs.4.4(e)-(f), far from the parabolic limit,
the transition at t = 1000 is still in progress even though it converges towards the
same steady vegetated rhombic configuration. Finally, it is interesting to address a
direct comparison between the numerical solution obtained by integrating system,
shown in Fig.4.4(c,f), and the rhombic planform patterned solution obtained ana-
lytically from (4.19),(4.23), depicted in Fig.4.5. The resulting satisfying agreement
allows to definitively prove the correctness of the proposed theoretical approach and
to address further investigations on the properties exhibited by the hyperbolic model
during transient regime.

One interesting feature involves the possibility of nullifying hyperbolicity effects
when the inertial times associated to the two species fully compensate each other,
i.e. τu = τw. According to (4.26),(4.27), inertial effects are related to the difference
τu − τw, so that it is expected that, under this constraint, the time evolution of the
pattern amplitudes becomes independent of inertial times, independently of their
values [76]. Numerical results carried out close to the parabolic limit (τu = 10−5 and



4. Stationary patterns in 2D hyperbolic RT systems 80

Figure 4.3: Time evolution of pattern amplitudes arising from the integration of
Stuart-Landau system (4.26), for different τw and initial data. Dynamics illustrated
in panels (a),(b) converge towards the fixed points P∗

1,2, whereas those in (c),(d)
and (e),(f) towards P∗

3,4 and Q∗
1,2,3,4, respectively. Fixed parameters are: d = 500,

τu = 10−5 and A = 2.8. For all panels, the different lines correspond to: τw = 50
(solid blue), τw = 25 (dashed red), τw = 10 (dotted green) and τw = 0.5 (dash-
dotted magenta).
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τw = 5 × 10−3) and far from it (τu = τw = 1) confirm our prediction, as depicted in
Fig.4.6.

4.2.2 Hexagonal planform analysis

Let us now analyze the case of hexagonal patterns by looking for solutions of system
(4.20) at the first perturbative order in the form

U1 = X(x) + Z(ζ) + Ξ(ξ) (4.29)

where ζ = 1
2x+

√
3

2 y and ξ = 1
2x−

√
3

2 y. Note that these variables can be deduced from
(4.22) for ϕ = π/3 and ϕ = −π/3, respectively. Then, by using the same strategy
adopted in the previous section, the solution can be expressed as

U1 = Ω1



r1 cos(kcx)

r2 cos(kcx)

kcr1 sin(kcx)

0

kcdr2 sin(kcx)

0


+ Ω2

2



r1
(

cos(kcζ) + cos(kcξ)
)

r2
(

cos(kcζ) + cos(kcξ)
)

1
2kcr1

(
sin(kcζ) + sin(kcξ)

)
√

3
2 kcr1

(
sin(kcζ) − sin(kcξ)

)
1
2kcdr2

(
sin(kcζ) + sin(kcξ)

)
√

3
2 kcdr2

(
sin(kcζ) − sin(kcξ)

)



(4.30)

Inserting (4.30) into the nonhomogeous linear system (4.20) at the second pertur-
bative order, the requirement that resonant terms vanish leads to∂Ω1

∂T1
= B1σΩ1 − L

4 Ω2
2

∂Ω2
∂T1

= B1σΩ2 − LΩ1Ω2
(4.31)

being
L = − (r1+dr2)

(
Bcr1+2r2u2

Sc

)
r2uSc [d−1+dk2

c (τw−τu)] (4.32)

and the solution reads

U2(x, ζ, ξ, T1, T2) = Ω1Ũ10 + Ω2Ũ01 + Ω1Ω2Ũ11 + Ω2
1Ũ20 + Ω2

2Ũ02 (4.33)

where the vectors Ũ10(x), Ũ01(ζ, ξ), Ũ11(x, ζ, ξ), Ũ20(x) and Ũ02(x, ζ, ξ) are defined
in Appendix F.

Note that, system (4.31) does not admit stable equilibria, so that WNA has to
be pushed to the next perturbative order. Therefore, substituting (4.30),(4.33) into
(4.20) at the third perturbative order, the elimination of secular terms leads to the
following cubic SL equations for the amplitudes:

∂Ω1
∂T2

= σ̃Ω1 + ψΩ2
2 − L1Ω3

1 + L̃Ω1Ω2
2

∂Ω2
∂T2

= σ̃Ω2 + 1
4

(
2L̃− L1

)
Ω3

2 + 4ψΩ1Ω2 + 2L̃Ω2
1Ω2

(4.34)
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Figure 4.4: Snapshots of vegetation dynamics obtained by integrating numerically
the governing system by using the same initial condition and considering different
inertial times: (a)-(c) τw = 5 × 10−3, (d)-(f) τw = 50. The different time evolutions
can be appreciated by comparing vertically the panels: (a),(d) t = 200, (b),(e) t = 500
and (c),(f) t = 1000. The common parameters are: d = 500, τu = 10−5, A = 2.8 and
B = 0.445.

Figure 4.5: (a) Rhombic planform patterned solution obtained analytically from
(4.19),(4.23) and (b) its contour plot. Parameters as in Fig.4.4.
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Figure 4.6: Time evolution of pattern amplitudes arising from the integration of
Stuart-Landau system (4.26) when the inertial times are equal to each other, i.e.
τu = τw. Symbols denote the theoretical amplitudes in the parabolic limit (τu = 10−5

and τw = 5 × 10−3), whereas lines show the behaviour far from it (τu = τw = 1).
Other common parameters: d = 500 and A = 2.8.

where
σ̃ = ã0σB

2
1 + ã1, ψ = B1

ã3 + 2ã4σ − ã0L

4 , L̃ = ã2 − ã4L

2
and the coefficients ãi (i = 0, ..., 4) are defined in Appendix F.

Finally, by adding (4.31) to (4.34), the system that rules the pattern amplitudes
reads: 

∂Ω1
∂T = σ̄Ω1 + ψ̄Ω2

2 − L̄1Ω3
1 + L̄Ω1Ω2

2

∂Ω2
∂T = σ̄Ω2 + 1

4

(
2L̄− L̄1

)
Ω3

2 + 4ψ̄Ω1Ω2 + 2L̄Ω2
1Ω2

(4.35)

where

∂

∂T
= ∂

∂T1
+ ϵ

∂

∂T2
σ̄ = B1σ + ϵσ̃, ψ̄ = −L

4 + ϵψ, L̄1 = ϵL1, L̄ = ϵL̃.

System (4.35) admits, apart from the trivial equilibrium P∗
0 = (0, 0), the following

fixed points (Ω∗
1,Ω∗

2):

P∗
1,2 =

(
±
√

σ̄
L̄1
, 0
)

Q∗
1,2 =

− 4ψ̄
2L̄+L̄1

,± 2
|2L̄+L̄1|

√
σ̄(2L̄+L̄1)2−16ψ̄2L̄1

L̄1−2L̄



Q∗
3,4 =

2ψ̄+
√

4ψ̄2+(L̄1−4L̄)σ̄
L̄1−4L̄ ,±

2
[

2ψ̄+
√

4ψ̄2+(L̄1−4L̄)σ̄
]

L̄1−4L̄



Q∗
5,6 =

2ψ̄−
√

4ψ̄2+(L̄1−4L̄)σ̄
L̄1−4L̄ ,±

2
[

2ψ̄−
√

4ψ̄2+(L̄1−4L̄)σ̄
]

L̄1−4L̄



(4.36)
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Existence condition Stability condition

P∗
0 always never

P∗
1,2 L̄1 > 0 σ̄ ± 4ψ̄

√
σ̄
L̄1

+ 2 L̄σ̄
L̄1

< 0

Q∗
1,2

σ̄(2L̄+L̄1)2−16ψ̄2L̄1

(L̄1−2L̄) ≥ 0


σ̄(L̄1+2L̄)(6L̄−L̄1)−16ψ̄2L̄1

(L̄1−2L̄)(L̄1+2L̄) < 0

σ̄
(
L̄1 + 2L̄

)3
+ 32ψ̄2

(
2L̄2 − L̄L̄1 − L̄2

1
)
< 0

Q∗
3,4,5,6 4ψ̄2 +

(
L̄1 − 4L̄

)
σ̄ ≥ 0


σ̄ +

(
8L̄− 5L̄1

)
Ω∗2

1 < 0

3
(
2L̄− L̄1

) (
4L̄− L̄1

)
Ω∗2

1 +
(
10L̄− L̄1

)
σ̄ − 16ψ̄2 > 0

Table 4.1: Existence and stability conditions for the fixed points (4.36) of the Stuart-
Landau system (4.35).

whose existence and stability conditions are schematically reported in Table 4.1.
In Table 4.1 it has been taken into account that σ̄ > 0 being B1 > 0, σ > 0 and ϵσ̃

is a first order correction. The nontrivial fixed points are representative of different
patterned configurations. In detail, P∗

1,2 denote stripes that are perpendicular to the
x-axis, whereas the points Q∗

1,..,6 correspond to hexagonal planform patterns.
Due to the nonlinear and nontrivial dependence of the coefficients appearing in

(4.35) on inertial times, numerical investigations are carried out to elucidate how
inertia affects the existence and the stability conditions as well as pattern transient
dynamics.

The behavior of stripes P∗
1,2 will be here not discussed, as it has been addressed in

the previous section. The existence condition associated to the hexagonal patterns
Q∗

1,2 and Q∗
3,..,6 is depicted in Figs.4.7 in panels (a) and (b), respectively. The analysis

is here carried out by considering the following setup: d = 500, τu = 10−5 and
different values of τw. The control parameter is swept in the range of values generally
assumed for plant loss Bc ∈ (0.04, 0.46), whereas the rainfall parameter is varied
at the bifurcation threshold (4.17) accordingly, keeping it in the range A ∈ (0, 3).
Our inspection reveals that, in such a setup, the existence condition for Q∗

1,2 is
never met, while the one for Q∗

3,..,6 is always fulfilled. Therefore, let us focus on
the stability of these latter, which is depicted in panels (c,d) for Q∗

3,4 and in (e,f)
for Q∗

5,6. Results suggest that the former are unstable (both conditions violated)
whereas the latter are stable (both conditions satisfied). As a consequence of that,
the only hexagonal patterns that may be observed, using the above set of parameters,
correspond to Q∗

5,6. The subsequent investigations will be thus focused on these states
with particular emphasis on the time evolution of the pattern amplitudes Ω1 and Ω2
that arise from the integration of SL system (4.35) for different values of τw. Results
depicted in Fig.4.8 provide a twofold information. First, inertial effects dictate the
time scale along which transient regime takes place and, indeed, the larger the τw
the shorter the transition from the uniform state toward the patterned state. Second,
the theoretically-predicted values of stationary amplitudes depend on inertial times.
This apparent contradiction has to be treated as an artifact of the weakly nonlinear
expansion, as such inertial dependencies of stationary solutions are not expected
to take place. Notice that an analogous result was obtained in our previous work
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Figure 4.7: Panels (a) and (b) depict the existence conditions (namely, the quantities
at left-hand side reported in the second column of Table 4.1) for Q∗

1,2 and Q∗
3,4,5,6,

respectively. Panels (c) and (d) enclose the stability conditions (third column of Table
4.1) for Q∗

3,4, whereas panels (e) and (f) those for Q∗
5,6. The used parameters are:

d = 500, τu = 10−5. For all panels, the different lines correspond to: τw = 50 (solid
blue), τw = 25 (dashed red), τw = 10 (dotted green) and τw = 0.5 (dash-dotted
magenta).
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Figure 4.8: Time evolution of pattern amplitudes arising from the integration of
Stuart-Landau system (4.35), for different values of τw (lines as in Fig.4.7). Fixed
parameters are: d = 500, τu = 10−5 and A = 2.8.

about the stationary pattern amplitude in the subcritical regime [76]. To investigate
this issue in more detail, let us integrate numerically the governing system for two
different inertial times, τw = 5 × 10−3 and τw = 50, and by using, in both cases, the
same small perturbation of the steady state U∗

S as initial condition. The sequences
of snapshots represented in shown in Fig.4.9 provide a confirmation of our previous
statements. In fact, panels (a)-(c), representing the solution obtained at different
time instants for τw = 5 × 10−3, describe a much faster transition from the uniform
state toward the hexagonal patterned state than the one depicted in panels (d)-(f),
that is associated to τw = 50, i.e. a system with larger inertia. However, as it can
be appreciated from the scale appearing in the colorbar on the right of the panels,
the final state is the same for both configurations, so confirming that the stationary
amplitudes do not depend on inertia.

Then, to further prove the validity of the theoretical approach, let us build in
Fig.4.10 the hexagonal solution obtained by substituting the pattern amplitudes Ω1
and Ω2 into (4.30) and (4.19). By comparing the final states obtained numerically
(Fig.4.9) and analytically (Fig.4.10), a more than satisfying agreement is achieved as
no appreciable differences arise between them (note, once again, the same scale on
the colorbar).

Finally, let us address wether the possibility of nullifying hyperbolicity effects via
compensation of the inertial times takes also place for the hexagonal geometry. As
it can be noticed from (4.35),(4.36),(F.8),(F.10), the quantities here involved don’t
exhibit the simple dependence (τu− τw) on the inertial times. By checking it numer-
ically, it is found that the equality between inertial times away from the parabolic
limit allows the system to follow the same transient dynamics observed close to it,
see Fig.4.11. The above mentioned nontrivial dependence on inertial times only leads
to a slightly difference in the stationary amplitudes, in line with what observed in
Fig.4.8.
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Figure 4.9: Snapshots of vegetation dynamics obtained by integrating numerically
the governing system by using the same initial condition and considering different
inertial times: (a)-(c) τw = 5 × 10−3, (d)-(f) τw = 50. The different time evolutions
can be appreciated by comparing vertically the panels: (a),(d) t = 600, (b),(e) t = 800
and (c),(f) t = 1000. The common parameters are: d = 500, τu = 10−5, A = 2.8 and
B = 0.445.

Figure 4.10: (a) Hexagonals planform patterned solution obtained analytically from
(4.19),(4.30) and (b) its contour plot. Parameters as in Fig.4.9.
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Figure 4.11: Time evolution of pattern amplitudes arising from the integration of
Stuart-Landau system (4.35) when the inertial times are equal to each other, i.e.
τu = τw. Symbols denote the theoretical amplitudes in the parabolic limit (τu = 10−5

and τw = 5 × 10−3), whereas lines show the behaviour far from it (τu = τw = 1).
Other common parameters: d = 500, B = 0.445 and A = 2.8.

4.3 Concluding remarks
This chapter describes how the formation of bidimensional vegetation patterns in
dryland areas may be tackled through a hyperbolic RT system. The proposed frame-
work encloses the inertial effects that any physical system possesses, so allowing a
more suitable description of transient dynamics, as the ones involved in the transi-
tions between a spatially-homogeneous steady state (representative of a uniformly
vegetated area) towards a patterned configuration (such as stripes, spots, holes and
other geometries).

To achieve this goal, exploiting the guidelines of the ET theory, a 2D version of
the two-species hyperbolic RT model is deduced. Then, linear stability analysis on
the uniform steady states is addressed to deduce the conditions for the occurrence of
Turing instability. It reveals that hyperbolicity does not affect the bifurcation thresh-
old and the wavenumber of the stationary patterns, but introduces an upper bound
to the range of the inertial time associated to vegetation. Next, a multiple-scale
WNA is performed to determine the SL equations ruling the time evolution of the
pattern amplitudes close to onset. In particular, this analysis characterizes two spe-
cific planform geometries: rhombs and hexagons. The satisfying agreement achieved,
for both geometries, between theoretically-predicted and numerically-computed so-
lutions is also insightful to clarify the role of inertial times in dictating the timescales
involved during transient regimes. Indeed, it is found that hyperbolicity does not
affect the stationary amplitude of the emerging patterns, as confirmed by numerical
simulations. Nevertheless, hexagonal analysis reveals a dependence of the stationary
amplitude on inertial times, which has to be thus attributed to an artifact arising
from the weakly nonlinear expansion.

Once the robustness of the proposed theoretical framework has been proved, an
interesting property appearing in transient dynamics is here highlighted. It is in-
deed found that hyperbolicity may be nullified if the inertial times associated to the
two species fully compensate each other. Under this constraint, the system evolves
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through the same transient states as in parabolic models. This property is observed
to hold for both rhombic and hexagonal geometries.

From the ecological viewpoint, some intriguing issues need still to be addressed.
One of the most striking one is the possibility to describe how inertial effects in the
vegetation response (in particular for the woody component) affect the transitions
between different patterned states. Experimental evidences of such a phenomenon
were already given in the literature [27] and will constitute the starting point of
future theoretical investigations.



Conclusions

In this thesis, the pattern formation and stability mechanisms were studied in several
hyperbolic reaction-transport frameworks which constitute subsets of the general
class presented in (1.5)-(1.7). In particular, in each considered model, emphasis was
given to the role played by inertial effects in patterned dynamics.

In Chapter 2, the focus was given to the stationary periodic pattern arising from
the Turing instability process. In detail, the presence of EI over a large finite domain
was addressed theoretically in both supercritical and subcritical regimes. WNA was
addressed to deduce the CRGL and CQRGL equations and, then, the bifurcation
analysis was carried out to describe the existence and stability thresholds of all bifur-
cating branches. It was shown that, while the CRGL equation describes satisfactorily
well the features associated with the supercritical regime, to properly describe the
subcritical dynamics it is necessary to push WNA up to the fifth order and to work
with the CQRGL equation. In particular, it was proved that hyperbolicity affects
the expression of the linear growth rate but leaves the other quantities unchanged.
This result suggested that the hyperbolic model provides additional degrees of free-
dom that may be used to better characterize transient regimes. Moreover, through
numerical investigations, it was found that the time to phase slip can be modulated
by varying the inertial times, whereas the location to phase slip can be controlled
through a local defect in the initial data.

In Chapter 3, the presence of oscillatory periodic patterns was taken into account in
two different frameworks. First, the occurrence of non-stationary patterned dynam-
ics was investigated in two-compartment hyperbolic RT systems (1.8)-(1.9) where
both species undergo self-diffusion and only one is also ruled by an advection term
(ψ = 0). Here, LSA and WNA showed that the presence of inertia plays a manifold
role: (i) it allows to destabilize the spatially homogeneous steady state over a wider
set of model parameters by enlarging the wave instability region; (ii) it varies the key
features associated with migrating patterns, such as speed, wavelength, and angular
frequency; (iii) it affects the supercritical or subcritical nature of patterns at onset;
(iv) it takes a role not only during transient regimes but also modifies the amplitude,
the wavenumber, the angular frequency, and the stability of patterns. Then, the fo-
cus was moved to two-compartment hyperbolic systems RT (1.8)-(1.9) where both
species undergo advection and only one was also ruled by self-diffusion (d = 0). Pat-
terned dynamics were here studied through the LSA tool to depict the locus at which
the instability occurs. Insights into the migration speed of the oscillatory patterns
were extracted by means of periodic travelling waves analysis. Numerical simula-
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tions performed in the context of dryland ecology through the original kinetics of the
Klausmeier model provided a satisfying description of experimental data. Moreover,
close to the parabolic limit, the model allowed the reproduction of both uphill and
downhill patterns as a function of seed advection speed, whereas, far from it, the mi-
gration speed approached the zero value so mimicking quasi-stationary behaviours.
Analytical approximations suggested us that, from one hand, near the parabolic limit
the dynamics of stationary patterns at the onset of criticality are unaffected by hy-
perbolicity whereas, on the other hand, far from it hyperbolicity favors the presence
of uphill or quasi-stationary patterns.

In Chapter 4, the study of stationary periodic patterns in bi-dimensional hyper-
bolic RT systems (1.5)-(1.7) was addressed in the presence of diffusive character
only (ψ = ν = 0). To this aim, LSA was addressed to deduce the region in which
Turing instability can be observed and WNA was performed to determine the SL
equations ruling the evolution of the pattern amplitudes close to the criticality. The
above analyses revealed that hyperbolicity does not affect the bifurcation thresh-
old and the wavenumber of the stationary patterns, but introduces an upper bound
to the range of the inertial times. WNA was developed to characterize rhombic and
hexagons geometries and the agreement achieved between theoretically-predicted and
numerically-computed solutions showed that inertia doesn’t affect the stationary am-
plitude of the emerging patterns

Future investigations are planned as follows: (i) by studying the connections be-
tween periodic patterns near criticality and far-from-equilibrium patterns by means
of Busse balloon theory; (ii) by considering extensions of the previous frameworks,
such as the addition of cross-diffusion terms and/or the presence of oscillatory pe-
riodic patterns in bi-dimensional hyperbolic systems; (iii) by introducing the study
of the above-mentioned dynamics far from the bifurcation threshold by means of
geometrical singular perturbation technique.



Appendices

A Derivation of 2D hyperbolic RT systems
Let us consider two interacting species, whose densities are denoted by u and w,
that interact and diffuse in an environment belonging to the (x, y) plane. The spatio-
temporal evolution of such densities is generally ruled by:

∂u
∂t + ∇ · Ju − ψux = f(u,w,B),
∂w
∂t + ∇ · Jw − νwx = g(u,w,B),

(A.1)

being Ju and Jw the corresponding diffusive fluxes and f(u,w) and g(u,w) the func-
tions describing the kinetic interactions. As known, if the fluxes obey a gradient-based
constitutive equation, such as Fick’s law, the system takes the form of a classical
parabolic system, as in (1.3). On the other hand, if the dissipative fluxes are consid-
ered as additional field variables, as suggested by ET theory [38], the system can be
cast in the form of a hyperbolic model. In this framework, the dissipative fluxes have
to satisfy the following balance equations

∂Ju

∂t + ∇ · Tu = Gu,

∂Jw

∂t + ∇ · Tw = Gw,
(A.2)

where the constitutive functions T and G must be determined in terms of the whole
set of the independent variables U = [u ,w ,Ju ,Jw]T . At this step the system is
not closed because the constitutive functions T and G appearing in (A.2) are not
known. The constitutive theory established in ET allows to determine those functions
or, at least, to reduce their generality. To restrict these arbitrary functional forms, we
hypothesize firstly a linear dependence of T and G on the fluxes. Such a constraint
is equivalent to consider processes not far from the thermodynamical equilibrium,
characterized by vanishing fluxes.

Then, by assuming that the balance equations (A.2) reduce to Fick laws in the
stationary case, it can be deduced

Tu = γ (u) I, Gu = −γuJu,

Tw = µ (w) I, Gw = −µw

d Jw,
(A.3)

being I the 2 × 2 identity matrix.
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A further restriction on the constitutive functions (A.3) arises from the compati-
bility of system (1.5)-(1.7) with the well-known entropy balance law

ηt + ∇ · ϕ ≥ 0 (A.4)

where the concave entropy density η and the entropy flux ϕ have to be considered as
constitutive functions of whole set of the field variables.

By using the so-called Lagrange multipliers Λ, Γ, Π, Ξ [38, 133], the searched
compatibility is ensured if

η = η̂ (u,w) + Λ0
2 Ju · Ju + Γ0

2 Jw · Jw,

ϕ = Λ (u) Ju + Γ (w) Jw,

Λ = Λ0γ(u) + Λ̃0,

Γ = Γ0µ(w) + Γ̃0,

Π = Λ0Ju,

Ξ = Γ0Jw,

(A.5)

with
∂η̂
∂u = Λ, ∂η̂

∂w = Γ. (A.6)

Finally, the concavity condition for η with respect to the field variables yields the
further restrictions

Λ0 < 0, Γ0 < 0, γu > 0, µw > 0 (A.7)

which provide the positiveness of the relaxation times τu = 1/γu and τw = d/µw,
as expected. Notice that, if the phenomenological functions γ(u) and µ(w) depend
linearly on their arguments, the inertial times are constant.

Taking into account (A.2)-(A.7), the system of balance laws (A.2) becomes:

∂Ju

∂t + 1
τu ∇u = − 1

τu Ju,
∂Jw

∂t + d
τw ∇w = − 1

τw Jw.
(A.8)

Therefore, the two-species hyperbolic reaction-diffusion system in two spatial coor-
dinates is given by (A.1),(A.8).

We remark that the concavity condition for η with respect to the field variables
(A.6) guarantees the governing system (A.1),(A.8) to be symmetric–hyperbolic in
the sense of Friedrichs–Lax [134] when the Lagrange multipliers are chosen as field
variables. The advantage of having symmetric hyperbolic systems lies in the fact that
the Cauchy problem is well-posed for suitable smooth data, i.e. existence, uniqueness,
and continuous dependence of the solutions on the data is guaranteed [135]. We also
notice that, in the limit case τu → 0 and τw → 0, the hyperbolic model (A.1),(A.8)
reduces to the corresponding parabolic one.
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B LSA and WNA for stationary pattern in 1D hyper-
bolic RT systems

In this Appendix the expressions of the quantities involved in LSA and WNA are
provided for the specific case of the hyperbolic modified Klausmeier model (2.1),(2.2)
with kinetic terms specified in (1.2). As already mentioned, the plant mortality B
is taken as the main control parameter and the spatially-homogeneous steady states
are reported in Section (1.4).

In the model under investigation, the characteristic equation reads

ω4 +A1ω
3 +A2ω

2 +A3ω +A4 = 0 (B.1)

where

A1 = 1
τu + 1

τw − (f∗
u + g∗

w) ,

A2 =
(

1
τu + d

τw

)
k2 + τuτw − (f∗

u + g∗
w)
(

1
τu + 1

τw

)
+ f∗

ug
∗
w − f∗

wg
∗
u,

A3 =
[
(d+ 1) τuτw − f∗

u
d
τw − g∗

w
1
τu

]
k2 + (f∗

ug
∗
w − f∗

wg
∗
u)
(

1
τu + 1

τw

)
− (f∗

u + g∗
w) τuτw,

A4 = d
τuτw

[
k4 −

(
f∗
u + g∗

w
d

)
k2 + f∗

ug
∗
w−f∗

wg
∗
u

d

]
,

and the only non-zero partial derivatives of kinetic terms take the form:

f∗
u = B, f∗

w = u2
S , g∗

u = −2B, g∗
w = −

(
1 + u2

S

)
, f∗

uu = 2B/uS ,

f∗
uw = 2uS , g∗

uu = −2B/uS , g∗
uw = −2uS , f∗

uuw = 2, g∗
uuw = −2.

(B.2)

LSA reveals that the states U∗
D and U∗

L are always stable and unstable, respec-
tively. Thus, this latter one cannot gives rise to pattern formation and it will not be
further considered in our analysis. On the other hand, the state U∗

S is found to be
stable against spatially-uniform perturbations if:

B − 1 − u2
S < 0,

B
(
u2
S − 1

)
> 0,

(B.3)

that are always fulfilled since realistic values of plant loss B are in the range (0, 2)
[64] and uS > 1. By looking for the stability against non-homogeneous perturbations,
the state U∗

D is always stable, so preventing the possibility to giving rise to Turing
type patterns, whereas U∗

S is stable iff:
dB −

(
1 + u2

S

)
< 0(

dB − 1 − u2
S

)2
− 4dB

(
u2
S − 1

)
< 0

(B.4)

When conditions (B.4) are violated, Turing patterns may originate as a consequence
of destabilization of the state U∗

S . From (2.5),(2.6), the critical values of control
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parameter Bc and wavenumber kc at the onset of Turing instability read:

Bc =
3u2

Sc
− 1 + 2uSc

√
2
(
u2
Sc

− 1
)

d
, (B.5)

k2
c =

√√√√Bc
(
u2
Sc

− 1
)

d
, (B.6)

being uSc =
(
A+

√
A2 − 4B2

c

)
/ (2Bc).

Let us now focus on the results of WNA. Applying expansions
B = Bc + ϵ2B2 + ϵ4B4 +O(ϵ6),

U = ϵU1 + ϵ2U2 + ϵ3U3 + ϵ4U4 + ϵ5U5 +O(ϵ6),
(B.7)

in the governing system (2.1)-(2.2) and collecting the terms of the same orders of ϵ,
the set of linear equation (2.9) is obtained. It reads:

at order 1 ∂U1
∂x −K∗

cU1 = 0

at order 2 ∂U2
∂x −K∗

cU2 = M−1 F̃2

at order 3 ∂U3
∂x −K∗

cU3 = M−1 F̃3

at order 4 ∂U4
∂x −K∗

cU4 = M−1 F̃4

at order 5 ∂U5
∂x −K∗

cU5 = M−1 F̃5

(B.8)

where the vectors F̃j (j = 2, ..., 5) and the matrix K∗
c are defined as in (2.10) and

(2.11), respectively.
Taking into account (B.2),(B.5),(B.6), the matrix K∗

c , defined in (2.11), admits
two complex eigenvalues ∓ikc with algebraic and geometric multiplicity given by 2
and 1, respectively. By introducing the invertible transform matrix P and the Jordan
canonical form Υ of K∗

c , the general solution of (B.8)1 can be expressed as:

U1 = PeΥxP−1C1, (B.9)
being:

P =


iY1 r1 −iY1 r1
iY2 r2 −iY2 r2
Y3 ir3 Y3 −ir3
Y4 ir4 Y4 −ir4

 , Υ =


ikc 0 0 0
1 ikc 0 0
0 0 −ikc 0
0 0 1 −ikc

 , (B.10)

where the vector C1(X,T2, T4) is determined by boundary conditions and removal
of secular terms, whereas ri and Yi (i = 1, ..., 4) are the components of simple and
generalized right eigenvectors of K∗

c , given by:

r1 = 1, r2 = r1
(
k2
c −Bc

)
/u2

Sc
, r3 = −kcr1, r4 = −dkcr2,

Y1 = 2kcr1
k2

c −Bc
, Y2 = 0, Y3 = kcY1 − r1, Y4 = −dr2.

(B.11)
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The solution at the first perturbative order, satisfying zero-flux boundary condi-
tions, reads

U1 = Re{Ωreikc x}, (B.12)
being r = [r1, r2, ir3, ir4]T .

On the other hand, the general solution of nonhomogeneous equations (B.8)2-
(B.8)5 can be expressed as

Uj = PeΥxP−1Cj + PeΥx
∫
e−Υx (MP )−1 F̃jdx j = 2, ..., 5, (B.13)

being Cj the vector of arbitrary constants.
From the removal of secular terms at the third perturbative order, we get the

CRGL equation
∂Ω
∂T2

= σΩ − L|Ω|2Ω + ν
∂2Ω
∂X2 , (B.14)

where the real coefficients σ, L and ν are given by:

σ = B2[2u2
Sc

(1+u2
Sc

)r(1+dr)+Bc(1−u2
Sc

)(2+dr)]
Bcr(1−u2

Sc
)[d−1+k2

cd(τw−τu)] ,

L = − (6r+8α+4β)(1+dr)
8r[d−1+k2

cd(τw−τu)] ,

ν = 4dk2
c

(Bc−k2
c)[d−1+k2

cd(τw−τu)] ,

(B.15)

with

r = k2
c −Bc
u2
Sc

, α =

(
Bc + 2ru2

Sc

)[
ru2

Sc
+Bc

(
1 − u2

Sc

)]
Bcu2

SC

(
u2
Sc

− 1
) ,

β =

(
Bc + 2u2

Sc
r

)[
Bc(1 + 4dk2

c ) + u2
Sc

(
r −Bc − 4k2

c (1 − dr)
)]

9Bcu2
Sc

(
u2
Sc

− 1
) .

(B.16)

After that, removing secular terms at O(ϵ4), the following compatibility equation
is obtained:

k1ΩXXX + k2|Ω|2ΩX + k3ΩX = 0, (B.17)
where
k1 = 4dkcν(γul4r1 − l3µwr2) − 4dγuµw

[
kc(ω12r2 − ω22r1) + r2(ω32 + l1ν)

]
+ 4γuµwr1(ω42 + l2ν),

k2 = γuµwd[r1r2(2l1r2 + l2r1) + 4r2uSc(ω14r2 + ω24r1 − l1m2 − l2m1 + 2l1n2 + 2l2n1)+

+12r2(Ll1 − ω31) + 12kc(ω21r1 − ω11r2) + 4r2wSc(ω14r1 − l1m1 + 2l1n1)]+

+γuµw[12r1(ω41 − Ll2) + 4r1uSc(2l2n1 + 2l1n2 − l2m1 − l1m2 + ω14r2 + ω24r1)+

+4r1wSc(2l1n1 − l1m1 + r1ω14) + r2
1(l2r1 + 2l1r2)] + 12Lkcd(l3r2µw − l4r1γu),

k3 = 4γuµw{σ(l2r1 − dl1r2) + r1(ω40 + dkcω20) +B2
[
r1(2l1 + 2uScδ1l2) + dr2(l1 + 2uScδ1l2)

]
+

−dr2(ω30 + kcω10)} + 4dkcσ(γul4r1 − l3µwr2),
(B.18)
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being γu = 1/τu, µw = d/τw, wSC
= Bc/uSc , δ1 = uSc

(
1 + u2

Sc

)
/[Bc

(
1 − u2

Sc

)
] and

ω10 =
B2

{
E1(r1+2r2uScδ1)+r2

1
[
2r1kc(µw−γud)+µwY1(k2

c +γu)
]}

4k2
cr2Y1[γuµw(d−1)+dk2

c (γud−µw)] ,

ω20 =
B2(r1+2r2uScδ1)
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r1E1+2kcY 2

1
[
γuµw(r1+r2)−k2

c(γud2r2+µwr1)
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4k2
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2
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+B2
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c)
}

4k2
cY1[γuµw(d−1)+dk2

c (γud−µw)] ,

ω30 =
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1
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2kcµwY 2
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−4dk2

cγur1Y1(r2
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}
4kcr2

1Y1[γuµw(d−1)+dk2
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ω11 = (6r2
1r2+8q1+4s1)E1

32k2
cr2Y1[γuµw(d−1)+dk2

c (γud−µw)] + r1
r2
c3,
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32Y1k2
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1(µw+dγu)p42+Y1dkc(k2

cp12−γup42)(2kcY1+r1)+µwY1(kcp22−γup32)(Y 1−r1)
4Y1k2

cr1r2[γuµw(d−1)+dk2
c (γud−µw)] +

−2γur2
1(Y1kc−r1)(dkcl4−l2µw)+2µwr2dr1(γul1−l3kc)

4Y1k2
cr1r2[γuµw(d−1)+dk2

c (γud−µw)] ,

ω22 = − (2r1−Y1kc)(γudp42+µwp22)−µwY1(kcr1p22−γup32)+2γur1(Y1kc−r1)(dkcl4−l2µw)
4Y1k2

cr1[γuµw(d−1)+dk2
c (γud−µw)] +

−2µwr2dr1(γul1−l3kc)+Y1dk3
c (r1−1)p12

4Y1k2
cr1[γuµw(d−1)+dk2

c (γud−µw)] ,

ω32 = −Y1dk3
c (2kcY1−3r1)p12+µw[Y1kc(Y1−r1)+10r2

1]p22−γuµwY1(Y1−5r1)p32+10µwr2dr1(γul1−l3kc)
4Y1kcr1r2[γuµw(d−1)+dk2

c (γud−µw)] +

−10γur1(Y1kc−r1)(dkcl4−l2µw)−γud[Y 2
1 kc−5r1(2r1−Y1kc)]p42+4µwr2Y1dkcr1(l3kc−γul1)

4Y1kcr1r2[γuµw(d−1)+dk2
c (γud−µw)] ,

ω42 = −dγu(3Y1kc+2r1)p42−3Y1dk3
cp12−2γu(Y1kc+r1)(dp22+p12)+µw(Y1γu+2dr1kc)p32−µw[Y1kc+2r1(d−1)]p22

4Y1kcr1[γuµw(d−1)+dk2
c (γud−µw)] ,

ω13 = −(6r2
1r2+12s1)[dr2(r1−4Y1kc)+r2

1]
768dk3

cr2Y1
,

ω23 = −(6r2
1r2+12s1)[dr2+4Y1kc+r1]

768dk3
cY1

,

ω33 = 3kcω13,

ω43 = 3dkcω23,

ω14 = −2r1[p14(r1+dr2)−2dr2p24+2r1p34]−3Y1dkcr2(p14−2p24)
9Y1dk3

cr2
,
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ω24 = −2[p14(r1+dr2)−2dr2p24+2r1p34]+3Y1kc(p14+2p34)
9Y1dk3

c
,

ω34 = −2 (kcω14 +m1) ,

ω44 = −2d (kcω24 +m2) ,

ω35 = −2n1,

ω45 = −2dn2,

E1 = 2kcr1 (µw − γud) (r1 + dr2) + Y1
[
γuµw (r1 + r2) + µwk

2
c (r1 + dr2) + dk2

cr2 (µw − γud)
]
,

q1 =
r1
(
Bcr1+2u2

Sc
r2
)[
r2u2

Sc
+Bcr1

(
1−u2

Sc

)]
Bcu2

Sc

(
u2

Sc
−1
) ,

s1 = r1
(
Bcr1+2u2

Sc
r2
)[
Bcr1(1+4dk2

c)+u2
Sc

(r2−Bcr1−4k2
c (r1−dr2))

]
9Bcu2

Sc

(
u2

Sc
−1
) ,

p12 = γul1r2d− µwl2r1,

p22 = l4kcr1 − γul1r2,

p32 = l4r1 − l3r2,

p42 = l3r2dkc − l2µwr1,

p14 = l1r2uSc + r1 (l2uSc + l1wSc) ,

p24 = m3 + 2m1kc,

p34 = m4 + 2m2dkc.

with
n1 = r1

(
Bcr1+2u2

Sc
r2
)

2BcuSc

(
u2

Sc
−1
) , n2 = −Bcn1, m1 = 1+4dk2

c
9 n1,

m2 = −Bc+4k2
c

9 n1, m3 = 2kcm1, m4 = 2dkcm2,

l1 = − l3+r1
kc

, l2 = − r2(r1−Y1kc+l3)
kcr1

, l4 = dr2(l3−Y1kc)
r1

.

Finally, l3 and c3 are implicitly given by

8h1 (3Lk1 + νk2) + γuµwk1h0{4wSc [l1ω14 + r1ρ12 + 2r1ρ10] + l1 (l1r2 + 2l2r1) +

+4uSc

[
l1ω24 + l2ω14 + r2ρ12 + r1ρ22 + 2 (r1ρ20 + r2ρ10)

]
}+

+8γuµwk1
[
dkc (ψ11r2 − ψ21r1) + ψ41r1 − dψ31r2

]
= 0,

(4k2ν + 12Lk1)h1 − 4γuµwk1[dψ31r2 − ψ41r1 + dkc(ψ21r1 − ψ11r2)]+

−12k1ν([γuµw(dω11r2 − ω21r1) + dkc(γuω41r1 − µwω31r2)]+

+γuµwk1h0{3r1(2ω12r2 + ω22r1) + 4r1wSc(τ12 + 2τ10) + 4uSc [r1(τ22 + 2τ20)+

r2(τ12 + 2τ10)] + +4ω12uSc(m2 + 2n2) + 4(m1 + 2n1)(ω22uSc + ω12wSc)} = 0,
(B.19)

where h0 = dr2 + r1 and h1 = γuµw (dω12r2 − ω22r1) + dkc (γuω42r1 − µwr2ω32).
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Then, pushing WNA up to the fifth perturbative order, the removal of secular
terms leads to the real CQRGL equation:

∂Ω
∂T

= σΩ − L|Ω|2Ω +R|Ω|4Ω + ν
∂2Ω
∂X2 , (B.20)

where σ = σ + ϵ2σ̃, L = L+ ϵ2L̃, ν = ν + ϵ2ν̃ and R = ϵ2R̃, being the second-order
corrections given by

σ̃ = γuµw
h0[4uScδ1(B4r2+B2ω20)+B2

2δ3r2]+2(h0+r1)(ω10B2+r1B4)
2r1r2[γuµw(d−1)+dk2

c (dγu−µw)] +

+σ γuµw(dω10r2−ω20r1)+dkc(γuω40r1−µwω30r2)
r1r2[γuµw(d−1)+dk2

c (dγu−µw)] ,

L̃ = γuµw


12σ(ω21r1−dω11r2)+(r1+dr2)

[
4(2ζ10+ζ12)(r2uSc +r1wSc )+4B2[2uScδ1ω21+δ1r1(m2+2n2)]

4r1r2[γuµw(d−1)+dk2
c (dγu−µw)] +

+4[ω10wSc +B2(δ1r2+δ2r1)](m1+2n1)+4uSc (m2ω10+m1ω20)+8uSc (n2ω10+n1ω20)+3r1(2ω10r2+ω20r1)
4r1r2[γuµw(d−1)+dk2

c (dγu−µw)] +

+
4r1uSc (2ζ20+ζ22)

]
+4B2ω11(2r1+dr2)−4L(ω20r1−dω10r2)

4r1r2[γuµw(d−1)+dk2
c (dγu−µw)]

+

+Ldkc(γuω40r1−µwω30r2)−3dkcσ(γuω41r1−µwω31r2)
r1r2[γuµw(d−1)+dk2

c (dγu−µw)] ,

R̃ =
12Ldkc(ω31r2µw−ω41r1γu)−γuµw

{
12L(dω11r2−ω21r1)+4r2

1 [n2(2n1+m1)+m2(m1+n1)]+4r1r2m1n1+

4r1r2[γuµw(d−1)+dk2
c (dγu−µw)] +

+
h0

[
r2

1(ω23+3ω21)+4r1uSc (η22+2η20)+2r2(m2
1+2n2

1)+4m2uSc (ω13+ω11)+2r1r2(ω13+3ω11)

4r1r2[γuµw(d−1)+dk2
c (dγu−µw)] +

+
4m1uSc (ω21+ω23)+8uSc (n2ω11+n1ω21)+4(η12+2η10)(r2uSc +r1wSc )+4wSc [m1(ω11+ω13)+2n1ω11]

]
4r1r2[γuµw(d−1)+dk2

c (dγu−µw)] +

+
4d
[
m1r2(n1r2+m2r1)+r1r2(m1n2+m2n1+2n1n2)

]}
4r1r2[γuµw(d−1)+dk2

c (dγu−µw)] ,

ν̃ = B2γuµwk1[ω12(h0+r1)+2uScδ1ω22h0]−h1(k1σ−k3ν)
k1r1r2[γuµw(d−1)+dk2

c (dγu−µw)] +

−k1
{
νdkc[γuω40r1−µwω30r2]+µwγu[dkc(r1ρ21−r2ρ11)+ν(dω10r2−ω20r1)+dr2ρ31−r1ρ41]

}
k1r1r2[γuµw(d−1)+dk2

c (dγu−µw)] ,
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where the coefficients here appearing are given implicitly by

ω14 + ρ32 − 2kcρ12 = 0,

k1l3 + γuk1ω10 − γuk3ω12 + γuk1ρ31 + γuk1kcρ11 = 0,

3k1ω11 − 9k1ω13 − k2ω12 + k1ψ31 − 3k1ψ33 + k1kcψ11 − 9k1kcψ13 = 0,

3ω13 + ψ33 + 3kcψ13 = 0,

η34 − 4η14kc = 0,

2m3σ + γuζ32 − 2γukcζ12 = 0,

γuω14 + γuτ32 + 2m3ν − 2γukcτ12 = 0,

η32γu − 2Lm3 − 2η34γu − 2η12γukc + 8η14γukc = 0,

ρ42 + dω24 − 2dkcρ22 = 0,

dk1l4 + k1µwρ41 + dk1µwω20 − dk3µwω22 + dk1kcµwρ21 = 0,

k1ψ41 − 3k1ψ43 + 3dk1ω21 − 9dk1ω23 − dk2ω22 + dk1kcψ21 − 9dk1kcψ23 = 0,

ψ43 + 3dω23 + 3dkcψ23 = 0,

η42µw − 2η44µw − 2Ldm4 − 2dη22kcµw + 8dη24kcµw = 0,

η44 − 4dη24kc = 0,

µwζ42 + 2dm4σ − 2dkcµwζ22 = 0,

µwτ42 + 2dm4ν + dµwω24 − 2dkcµwτ22 = 0,

2ω34uSc +Bcl
2
1 − 2ρ22u3

Sc
+ 2l1l2u2

Sc
− 2Bcρ12uSc + 4kcρ32uSc = 0,

ω35uSc − ω34uSc −Bcl
2
1 − ρ20u3

Sc
+ ρ22u3

Sc
− 2l1l2u2

Sc
−Bcρ10uSc +Bcρ12uSc − 2kcρ32uSc = 0,

−k1ρ21u2
Sc

+ k1l1 + k1ω30 − k3ω32 −B2k1l1 −Bck1ρ11 − k1kcρ31 −B22uScδ1k1l2 = 0,

k1ψ23u3
Sc

− k1ψ21u3
Sc

+ 3k1ω31uSc − 3k1ω33uSc − k2ω32uSc − k1kcψ31uSc + 3k1kcψ33uSc+

+2k1l1m2u2
Sc

+ 2k1l2m1u2
Sc

− 2k1l1n2u2
Sc

− 2k1l2n1u2
Sc

+ 2Bck1l1m1 − 2Bck1l1n1+

−Bck1ψ11uSc +Bck1ψ13uSc = 0,

12ω33uSc − 4ψ23u3
Sc

− 4l1m2u2
Sc

− 4l2m1u2
Sc

− l2r2
1uSc − 4ω14r2u2

Sc
− 4ω24r1u2

Sc
− 4Bcl1m1+

−4Bcω14r1 − 4Bcψ13uSc − 12kcψ33uSc − 2l1r1r2uSc = 0,

16η34kcuSc − 4η24u3
Sc

− 4m1m2u2
Sc

−m2r2
1uSc − 4ω13r2u2

Sc
− 4ω23r1u2

Sc
− 4Bcη14uSc+

−4Bcω13r1 − 2Bcm2
1 − 2m1r1r2uSc = 0,

4Bcm2
1 − 2η22u3

Sc
+ 8η24u3

Sc
+ 8m1m2u2

Sc
− 4m1n2u2

Sc
− 4m2n1u2

Sc
+m2r2

1uSc − n2r2
1uSc+

−2ω11r2u2
Sc

+ 6ω13r2u2
Sc

− 2ω21r1u2
Sc

+ 6ω23r1u2
Sc

− 2Bcη12uSc + 8Bcη14uSc − 4Bcm1n1+

−2Bcω11r1 + 6Bcω13r1 − 4Lm1uSc + 4η32kcuSc − 32η34kcuSc + 2m1r1r2uSc − 2n1r1r2uSc = 0,

η22u3
Sc

−Bcn
2
1 − η20u3

Sc
−Bcm

2
1 − η24u3

Sc
− 2m1m2u2

Sc
+ 2m1n2u2

Sc
+ 2m2n1u2

Sc
− 2n1n2u2

Sc
+

−Bcη10uSc +Bcη12uSc −Bcη14uSc + 2Bcm1n1 + 2Lm1uSc − 2Ln1uSc − 2η32kcuSc + 4η34kcuSc = 0,

4m1σuSc − 2ω10r2u2
Sc

− 2ω20r1u2
Sc

− 2Bcω10r1 − 2B2m1uSc − 2BcuScζ12 − 2u3
Sc
ζ22 + 4kcuScζ32+

−B2δ2r2
1uSc − 2B22uScδ1m2uSc − 2B2δ1r1r2uSc = 0,

B2m1 −B2n1 −Bcζ10 +Bcζ12 − 2m1σ + 2n1σ − 2kcζ32 − u2
Sc
ζ20 + u2

Sc
ζ22+

+B22uScδ1m2 −B22uScδ1n2 = 0,

ω34uSc − τ22u3
Sc

− ω12r2u2
Sc

− ω22r1u2
Sc

−Bcω12r1 −Bcτ12uSc + 2m1νuSc + 2kcτ32uSc = 0,

ω35 − ω34 −Bcτ10 +Bcτ12 − 2m1ν + 2n1ν − 2kcτ32 − τ20u2
Sc

+ τ22u2
Sc

= 0,
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2ω44uSc + 2ρ22uSc −Bcl
2
1 + 2ρ22u3

Sc
− 2l1l2u2

Sc
+ 4Bcρ12uSc + 4kcρ42uSc = 0,

ω45uSc − ω44uSc + ρ20uSc − ρ22uSc +Bcl
2
1 + ρ20u3

Sc
− ρ22u3

Sc
+ 2l1l2u2

Sc
+ 2Bcρ10uSc+

−2Bcρ12uSc − 2kcρ42uSc = 0,

k1ρ21u2
Sc

+ k1l2 + k1ω40 − k3ω42 + k1ρ21 + 2B2k1l1 + 2Bck1ρ11 − k1kcρ41 +B22uScδ1k1l2 = 0,

k1ψ21u3
Sc

− k1ψ23u3
Sc

+ 3k1ω41uSc − 3k1ω43uSc − k2ω42uSc + k1ψ21uSc − k1ψ23uSc − k1kcψ41uSc+

+3k1kcψ43uSc − 2k1l1m2u2
Sc

− 2k1l2m1u2
Sc

+ 2k1l1n2u2
Sc

+ 2k1l2n1u2
Sc

− 2Bck1l1m1 + 2Bck1l1n1+

+2Bck1ψ11uSc − 2Bck1ψ13uSc = 0,

12ω43uSc + 4ψ23uSc + 4ψ23u3
Sc

+ 4l1m2u2
Sc

+ 4l2m1u2
Sc

+ l2r2
1uSc + 4ω14r2u2

Sc
+ 4ω24r1u2

Sc
+

+4Bcl1m1 + 4Bcω14r1 + 8Bcψ13uSc − 12kcψ43uSc + 2l1r1r2uSc = 0,

4η24uSc + 2Bcm2
1 + 4η24u3

Sc
+ 4m1m2u2

Sc
+m2r2

1uSc + 4ω13r2u2
Sc

+ 4ω23r1u2
Sc

+ 8Bcη14uSc+

+4Bcω13r1 + 16η44kcuSc + 2m1r1r2uSc = 0,

2η22uSc − 8η24uSc − 4Bcm2
1 + 2η22u3

Sc
− 8η24u3

Sc
− 8m1m2u2

Sc
+ 4m1n2u2

Sc
+ 4m2n1u2

Sc
+

−m2r2
1uSc + n2r2

1uSc + 2ω11r2u2
Sc

− 6ω13r2u2
Sc

+ 2ω21r1u2
Sc

− 6ω23r1u2
Sc

+ 4Bcη12uSc+

−16Bcη14uSc + 4Bcm1n1 + 2Bcω11r1 − 6Bcω13r1 − 4Lm2uSc + 4η42kcuSc − 32η44kcuSc+

−2m1r1r2uSc + 2n1r1r2uSc = 0,

η20uSc − η22uSc + η24uSc +Bcm
2
1 +Bcn

2
1 + η20u3

Sc
− η22u3

Sc
+ η24u3

Sc
+ 2m1m2u2

Sc
− 2m1n2u2

Sc
+

−2m2n1u2
Sc

+ 2n1n2u2
Sc

+ 2Bcη10uSc − 2Bcη12uSc + 2Bcη14uSc − 2Bcm1n1 + 2Lm2uSc+

−2Ln2uSc − 2η42kcuSc + 4η44kcuSc = 0,

2uScζ22 + 2u3
Sc
ζ22 + 2ω10r2u2

Sc
+ 2ω20r1u2

Sc
+ 2Bcω10r1 + 4B2m1uSc + 4BcuScζ12 + 4m2σuSc+

+4kcuScζ42 +B2δ2r2
1uSc + 2B22uScδ1m2uSc + 2B2δ1r1r2uSc = 0,

ζ20 − ζ22 − 2B2m1 + 2B2n1 + 2Bcζ10 − 2Bcζ12 − 2m2σ + 2n2σ − 2kcζ42 + u2
Sc
ζ20 − u2

Sc
ζ22+

−B22uScδ1m2 +B22uScδ1n2 = 0,

ω44uSc + τ22uSc + τ22u3
Sc

+ ω12r2u2
Sc

+ ω22r1u2
Sc

+Bcω12r1 + 2Bcτ12uSc + 2m2νuSc + 2kcτ42uSc = 0,

ω45 − ω44 + τ20 − τ22 + 2Bcτ10 − 2Bcτ12 − 2m2ν + 2n2ν − 2kcτ42 + τ20u2
Sc

− τ22u2
Sc

= 0

and δ2 = −2uSc/
(
1 − u2

Sc

)
.
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C Wave instability in parabolic RAD systems
In this Appendix some details on the occurrence of wave instability in parabolic RAD
models are given. In this framework, where diffusion occurs through Fick’s laws, i.e.
Ju = −ux and Jw = −dwx, the governing system is cast as:

Ũt + M̃Ũx +DŨxx = Ñ(Ũ, B), (C.1)

with:

Ũ =

 u

w

 , M̃ =

 0 0

0 −ν

 , D =

 −1 0

0 −d

 , Ñ
(
Ũ, B

)
=

 f(u,w,B)

g(u,w,B)

 .
(C.2)

The resulting spatially-homogeneous steady-states are denoted by Ũ∗ = (u∗, v∗) and
the dispersion relation reduces to a quadratic equation:

ω2 +
[
k2 (d+ 1) −

(
f∗
u + g∗

w

)
− ikν

]
ω + Ã0 + ikνb̂0 = 0 (C.3)

with Ã0 and b̂0 given in (3.4). Conditions (3.6) for the stability of Ũ∗ against homo-
geneous perturbations hold for both hyperbolic and parabolic models.

By applying the same procedure as the one discussed in the hyperbolic framework,
but exploiting the lower complexity of the characteristic equation (C.3) with respect
to (3.3), the locus of wave instability can be defined implicitly via the following
equation:

(4χ3
2 + 2χ0χ2 + χ1)(4χ3

2 + 2χ0χ2 − χ1) = 0 (C.4)

whereas the critical wavenumber is given by:

k2
c = −χ3

χ4
± χ2 (C.5)

and the wave speed obeys:

s = ν
(
f∗
u − k2

c

)
/
[
k2
c (d+ 1) − f∗

u − g∗
w

]
. (C.6)

The expressions of the coefficients χi (i = 0, . . . , 4) appearing in (C.4),(C.5) are given
by:

χ0 = 8χ4χ8−3χ2
3

8χ2
4

, χ1 = 8χ2
4χ9−4χ4χ3χ8+χ3

3
8χ3

4
, χ2 = 1

2

√
−2

3χ0 + 1
3χ4

(
χ5 + χ6

χ5

)
,

χ3 = dν2 − (d+ 1)2 (g∗
w + df∗

u) − 2d (d+ 1) (f∗
u + g∗

w) , χ4 = d (d+ 1)2

(C.7)
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where

χ5 = 3
√

χ7+
√
χ2

7−4χ3
6

2 , χ6 = 12χ4χ10 − 3χ3χ9 + χ2
8,

χ7 = 27χ4χ2
9 − 72χ4χ8χ10 + 27χ2

3χ10 − 9χ3χ8χ9 + 2χ3
8,

χ8 = d (f∗
u + g∗

w)2 + 2 (d+ 1)
(
f∗
u + g∗

w − ν2
)

(g∗
w + df∗

u) + (d+ 1)2 (f∗
ug

∗
w + f∗

wg
∗
u) ,

χ9 = ν2f∗
ug

∗
w − (g∗

w + df∗
u) (f∗

u + g∗
w)2 − 2 (d+ 1) (f∗

u + g∗
w) (f∗

ug
∗
w + f∗

wg
∗
u) ,

χ10 = (f∗
u + g∗

w)2 (f∗
ug

∗
w + f∗

wg
∗
u) .

(C.8)
Note that, in the parabolic case, the critical value of the control parameter Bc is

defined implicitly by the sole highly nonlinear equation (C.4), which results to be
decoupled from the others. Moreover, the sign in (C.5) has to be chosen in such a
way it gives real and positive values for Bc and kc.
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D WNA for oscillatory pattern in 1D hyperbolic RT
systems

In this Appendix the fully the procedure to deduce the CCGL equation (3.21) for
the hyperbolic reaction-advection-diffusion model (3.1)-(3.2) is described.

First of all, substituting the expansion (3.13) into the governing system (3.12)
and looking for solution Ui = Ui(z) with z = x− st, the set of ordinary differential
equations (3.15)-(3.17), to be solved sequentially, is obtained. At the first perturbative
order, the system reads:

d U1
d z = K∗

cU1 (D.1)

where the matrix K∗
c , defined in (3.18), admits four complex eigenvalues given by

λ1,2 = ∓ikc with k2
c = δ3

δ1

∣∣∣∣∣
c

(D.2)

and

λ3,4 = α∓ iβ with α = − δ1
2

∣∣∣∣∣
c

and β =

√√√√(δ1δ4
δ3

− δ2
1
4

)∣∣∣∣∣∣∣
c

(D.3)

to which there correspond the following right eigenvectors

d(± i kc) =


r1 ± i r̂1
r2 ± i r̂2
r3 ± i r̂3
r4 ± i r̂4

 , d(α±iβ) =


y1 ± i ŷ1
y2 ± i ŷ2
y3 ± i ŷ3
y4 ± i ŷ4

 . (D.4)

The general solution of the homogeneous linear system (D.1) can be expressed as:

U1 = PeQzP−1C(T2) (D.5)

where the vector C(T2) is determined by boundary conditions, whereas P and Q are,
respectively, the eigenvectors and eigenvalues matrices of K∗

c given by

P =


r1 + i r̂1 r1 − i r̂1 y1 + i ŷ1 y1 − i ŷ1
r2 + i r̂2 r2 − i r̂2 y2 + i ŷ2 y2 − i ŷ2
r3 + i r̂3 r3 − i r̂3 y3 + i ŷ3 y3 − i ŷ3
r4 + i r̂4 r4 − i r̂4 y4 + i ŷ4 y4 − i ŷ4

 ,

Q =


i kc 0 0 0
0 − i kc 0 0
0 0 α+ iβ 0
0 0 0 α− iβ

 .
(D.6)

Then, solution of (D.1) reads:

U1 = Ω(X,T2)ei kczd(i kc) + Ω(X,T2)e− i kczd(− i kc) (D.7)



105

where the complex pattern amplitude Ω remains undetermined at this stage and Ω
denotes its complex conjugate.

At the second order, the governing system is the following:

d U2
d z −K∗

cU2 = (M − sI)−1
{

1
2
(
U1 · ▽

)(2)
N|∗c −M

∂U1
∂X

}
(D.8)

whose general solution is given by

U2 = PeQzP−1C(T2) + PeQz
∫
e−Qz(MP )−1Fdz (D.9)

where F is the non-homogeneous term at the right-hand side of (D.8).
Now, taking into account (D.9) and inserting (D.7) into the non-homogeneous

linear system (D.8), the solution at the second perturbative order satisfying periodic
boundary conditions reads:

U2 = ∂Ω
∂X

ei kczg + ∂Ω
∂X

e− i kczg + Ω2e2 i kczq + Ω2
e−2 i kczq + 2q0|Ω|2 (D.10)

where the vectors:

g =


g1 + i ĝ1
g2 + i ĝ2
g3 + i ĝ3
g4 + i ĝ4

 , q =


q1 + i q̂1
q2 + i q̂2
q3 + i q̂3
q4 + i q̂4

 , q0 =


q01
q02
0
0

 (D.11)

fulfill the linear systems:[
L∗
c − i kc(M − sI)

]
g = Md(i kc)

[
L∗
c − 2 i kc(M − sI)

]
q = −1

2
(
d(i kc) · ∇

)(2)
N
∣∣∣∣∗
c

L∗
cq0 = −1

2
(
d(i kc) · ∇

) (
d(− i kc) · ∇

)
N
∣∣∣∣∗
c

(D.12)

with
lMd(i kc) = 0,

l
[
L∗
c − i kc(M − sI)

]
= 0,

(D.13)

being l the left eigenvectors whereas g and q are the complex conjugate of g and q,
respectively.

Finally, by substituting (D.7) and (D.10) into (3.17), from the removal of secular
terms, we deduce that the pattern amplitude Ω(X,T2) satisfies the CCGL equation:

∂Ω
∂T2

= (ρ1 + i ρ2) ∂
2Ω

∂X2 + (σ1 + iσ2) Ω − (L1 − iL2) Ω |Ω|2 (D.14)

where:
ρ1 + i ρ2 =

[
(n1e1 + n2e2) + i (n2e1 − n1e2)

]
/
(
e2

1 + e2
2
)

σ1 + iσ2 = B2
[
(m1e1 +m2e2) + i (m2e1 −m1e2)

]
/
(
e2

1 + e2
2
)

L1 − iL2 = (p1 − i p2) /
(
e2

1 + e2
2
) (D.15)
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with:

n1 =
[
(g4 − νg2)f∗

u − g3g∗
u

]
E1r +

[
(g4 − νg2)f∗

w − g3g∗
w

]
E2r+

+(f∗
ug

∗
w − f∗

wg
∗
u)(dg2E4r − g1E3r),

n2 =
[
(g4 − νg2)f∗

u − g3g∗
u

]
E1i +

[
(g4 − νg2)f∗

w − g3g∗
w

]
E2i+

+(f∗
ug

∗
w − f∗

wg
∗
u)(dg2E4i − g1E3i),

m1 = − (s1r1 + s2r2) (E1rf∗
u + E2rf∗

w) + (s1r̂1 + s2r̂2) (E1if∗
u + E2if∗

w) +

+ (h1r1 + h2r2) (E1rg∗
u + E2rg∗

w) − (h1r̂1 + h2r̂2) (E1ig∗
u + E2ig∗

w) ,

m2 = − (s1r1 + s2r2) (E1if∗
u + E2if∗

w) − (s1r̂1 + s2r̂2) (E1rf∗
u + E2rf∗

w) +

+ (h1r1 + h2r2) (E1ig∗
u + E2ig∗

w) + (h1r̂1 + h2r̂2) (E1rg∗
u + E2rg∗

w) ,

p1 = (b1f∗
u − a1g∗

u) (E1re1 + E1ie2) − (b2f∗
u − a2g∗

u) (E1ie1 − E1re2) +

+ (b1f∗
w − a1g∗

w) (E2re1 + E2ie2) − (b2f∗
w − a2g∗

w) (E2ie1 − E2re2) ,

p2 = (b1f∗
u − a1g∗

u) (E1ie1 − E1re2) − (b2f∗
u − a2g∗

u) (E1re1 + E1ie2) +

+ (b1f∗
w − a1g∗

w) (E2ie1 − E2re2) − (b2f∗
w − a2g∗

w) (E2re1 + E2ie2) ,

e1 = (r1g∗
u − r2f∗

u)E1r − (r̂1g∗
u − r̂2f∗

u)E1i + (r1g∗
w − r2f∗

w)E2r − (r̂1g∗
w − r̂2f∗

w)E2i+

(f∗
ug

∗
w − f∗

wg
∗
u) (τur3E3r − τwr4E4r − τur̂3E3i + τwr̂4E4i) ,

e2 = (r1g∗
u − r2f∗

u)E1i + (r̂1g∗
u − r̂2f∗

u)E1r + (r1g∗
w − r2f∗

w)E2i + (r̂1g∗
w − r̂2f∗

w)E2r+

(f∗
ug

∗
w − f∗

wg
∗
u) (τur3E3i − τwr4E4i + τur̂3E3r − τwr̂4E4r) ,

E1r + iE1i = r̂4(y1ŷ3 − y3ŷ1) + r̂3(y4ŷ1 − y1ŷ4) + r̂1(y3ŷ4 − y4ŷ3)+

i
[
r4(y1ŷ3 − y3ŷ1) + r3(y4ŷ1 − y1ŷ4) + r1(y3ŷ4 − y4ŷ3)

]
,

E2r + iE2i = r̂4(y2ŷ3 − y3ŷ2) + r̂3(y4ŷ2 − y2ŷ4) + r̂2(y3ŷ4 − y4ŷ3)+

i
[
r4(y2ŷ3 − y3ŷ2) + r3(y4ŷ2 − y2ŷ4) + r2(y3ŷ4 − y4ŷ3)

]
,

E3r + iE3i = r̂4(y2ŷ1 − y1ŷ2) + r̂2(y1ŷ4 − y4ŷ1) + r̂1(y4ŷ2 − y2ŷ4)+

i
[
r4(y2ŷ1 − y1ŷ2) + r2(y1ŷ4 − y4ŷ1) + r1(y4ŷ2 − y2ŷ4)

]
,

E4r + iE4i = r̂3(y2ŷ1 − y1ŷ2) + r̂2(y1ŷ3 − y3ŷ1) + r̂1(y3ŷ2 − y2ŷ3)+

i
[
r3(y2ŷ1 − y1ŷ2) + r2(y1ŷ3 − y3ŷ1) + r1(y3ŷ2 − y2ŷ3)

]
,

(D.16)
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and

h1 = dfu

dB |∗c , h2 = dfw

dB |∗c , s1 = dgu

dB |∗c , s2 = dgw

dB |∗c

a1 + i a2 = fuu|∗c
{
r1(2q01 + q1) + r̂1q̂1 + i

[
r̂1(2q01 − q1) + r1q̂1

]}
+

fuw|∗c
{
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1+

i
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
+

fww|∗c
{
r2(2q02 + q2) + r̂2q̂2 + i

[
r̂2(2q02 − q2) + r2q̂2

]}
+

1
2fuuu|∗c(r2

1 + r̂2
1)(r1 + i r̂1) + 1

2fwww|∗c(r2
2 + r̂2

2)(r2 + i r̂2)+

1
2fuuw|∗c

{
2r1r̂1r̂2 + r2(3r2

1 + r̂2
1) + i

[
2r1r̂1r2 + r̂2(r2

1 + 3r̂2
1)
]}

+

1
2fuww|∗c

{
2r2r̂1r̂2 + r1(3r2

2 + r̂2
2) + i

[
2r1r̂1r2 + r̂1(r2

2 + 3r̂2
2)
]}
,

b1 + i b2 = guu|∗c
{
r1(2q01 + q1) + r̂1q̂1 + i

[
r̂1(2q01 − q1) + r1q̂1

]}
+

guw|∗c
{
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1+

i
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
+

gww|∗c
{
r2(2q02 + q2) + r̂2q̂2 + i

[
r̂2(2q02 − q2) + r2q̂2

]}
+

1
2guuu|∗c(r2

1 + r̂2
1)(r1 + i r̂1) + 1

2(gwww)|∗c(r2
2 + r̂2

2)(r2 + i r̂2)+

1
2guuw|∗c

{
2r1r̂1r̂2 + r2(3r2

1 + r̂2
1) + i

[
2r1r̂1r2 + r̂2(r2

1 + 3r̂2
1)
]}

+

1
2guww|∗c

{
2r2r̂1r̂2 + r1(3r2

2 + r̂2
2) + i

[
2r1r̂1r2 + r̂1(r2

2 + 3r̂2
2)
]}
.

(D.17)
In the particular case of the hyperbolic extension of the Klausmeier model, taking

into account

f∗
u = B, f∗

w = u2
S , g∗

u = −2B, g∗
w = −

(
1 + u2

S

)
,

f∗
uu = 2B/uS , f∗

uw = 2uS , f∗
ww = 0,

g∗
uu = −2B/uS , g∗

uw = −2uS , g∗
ww = 0,

f∗
uuu = f∗

uww = f∗
www = 0, f∗

uuw = 2,

g∗
uuu = g∗

uww = g∗
www = 0, g∗

uuw = −2,

(D.18)

the components of the right eigenvectors d(± i kc) and d(α±iβ) reported in (D.4)
become:
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r1 = 1, r̂1 = 0,

r2 = k2
c −Bc−(τu)2k2

cs
2Bc

u2
Sc

[k2
cs

2(τu)2+1] , r̂2 = −kcs
[
1+k2

cτ
u(τus2−1)

]
u2

Sc
[k2

cs
2(τu)2+1] ,

r3 = k2
csτ

u

k2
cs

2(τu)2+1 , r̂3 = − kc

k2
cs

2(τu)2+1 ,

r4 = kcd(r̂2+kcsr2τw)
1+(τw)2k2

cs
2 , r̂4 = kcd(−r2+kcsr̂2τw)

1+(τw)2k2
cs

2 ,

y1 = 1, ŷ1 = 0,

y2 = (αsτu−1)l1+βsτul2
u2

Sc
[(αsτu−1)2+β2s2(τu)2] , ŷ2 = (αsτu−1)l2−βsτul1

u2
Sc

[(αsτu−1)2+β2s2(τu)2] ,

y3 = α(αsτu−1)+β2sτu

(αsτu−1)2+β2s2(τu)2 , ŷ3 = − β

(αsτu−1)2+β2s2(τu)2 ,

y4 = d
[
(αy2−βŷ2)(αsτw−1)+βsτw(βy2+αŷ2)

]
(τwαs−1)2+β2s2(τw)2 , ŷ4 = d

[
(βy2+αŷ2)(αsτw−1)+βsτw(βŷ2−αy2)

]
(τwαs−1)2+β2s2(τw)2 ,

(D.19)
where

l1 =
(
α2 − β2

) (
1 − s2τu

)
+ αs (1 −Bcτ

u) +Bc,

l2 = 2αβ
(
1 − s2τu

)
+ βs (1 − τuBc) .

(D.20)

Moreover, the coefficients occurring in (D.17) reduce to:

a1 + i a2 = 2Bc/uSc
[
r1(2q01 + q1) + r̂1q̂1

]
+ 2r1r̂1r̂2 + r2(3r2

1 + r̂2
1)+

+2uSc
[
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1

]
+

+ i
{

2Bc/uSc
[
r̂1(2q01 − q1) + r1q̂1

]
+ 2r1r̂1r2 + r̂2(r2

1 + 3r̂2
1) +

+2uSc
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
,

b1 + i b2 = − (a1 + i a2) .
(D.21)
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E Details on rhombic planform analysis in 2D hyper-
bolic RT systems.

In this Appendix, some details on the derivation of the SL equations (4.26), obtained
by performing the WNA for rhombic geometry, are given. Substituting the expansions
(4.19) into the governing system, the set of linear partial differential equations (4.20)
are obtained.

Specifically, by looking for the solution at the lowest order in the form
U1(x, z, T1, T2) = X(x, T1, T2) + Z(z, T1, T2), (E.1)

where z = x cosϕ+ y sinϕ from (4.20)1, the following compatibility conditions hold:
M(1) ∂X

∂x = L∗
cX,(

M(1) cosϕ+ M(2) sinϕ
)
∂Z
∂z = L∗

cZ.
(E.2)

As far as the system (E.2)1 is concerned, two components of X vanish, namely
X = (X1, X2, X3,0, X5, 0)T . Therefore, it is possible to analyze the reduced system

∂X̃
∂x

= K∗
c X̃ (E.3)

with

X̃ =


X1
X2
X3
X5

 K∗
c =


0 0 1 0
0 0 0 1
1
τu 0 0 0
0 d

τw 0 0


−1 

f∗
u f∗

w 0 0
g∗
u g∗

w 0 0
0 0 − 1

τu 0
0 0 0 − 1

τw

 (E.4)

Since the matrix K∗
c admits two complex eigenvalues λ1,2 = ±ikc with algebraic

and geometric multiplicity given by 2 and 1, respectively, the general solution of the
homogeneous linear system (E.3) is given by

X̃ = PeJxP−1C(Ti) (E.5)
being P the invertible transform matrix with columns consisting of the eigenvectors
of K∗

c whereas J denotes the Jordan canonical form of K∗
c

P =


iY1 r1 −iY1 r1
0 r2 0 r2
Y3 −ikcr1 Y3 ikcr1

Y4 −ikcdr2 Y4 ikcdr2

 , J =


ikc 0 0 0
1 ikc 0 0
0 0 −ikc 0
0 0 1 −ikc

 (E.6)

with (
Bc − k2

c

)
r1 + u2

Sr2 = 0

2Bcr1 +
(
u2
S + 1 + dk2

c

)
r2 = 0

Y1 = 2kcr1
k2

c −Bc

Y3 = kcY1 − r1

Y4 = −dr2

(E.7)
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Then the solution (E.2)1 satisfying zero flux boundary conditions becomes

X =Ω1 (T1, T2)



r1 cos (kcx)
r2 cos (kcx)
kcr1 sin (kcx)

0
kcdr2 sin (kcx)

0


(E.8)

About the solution of the system (E.2)2, it can be noticed that

Z = (Z1, Z2, cotϕZ4,Z4, cotϕZ6,, Z6)T , (E.9)

so that the reduced system is obtained

∂Z̃
∂z

= K̃∗
c Z̃, (E.10)

where

Z̃ =


Z1
Z2
Z4
Z6

 K̃∗
c =


0 0 1 0
0 0 0 1
1
τu 0 0 0
0 d

τw 0 0


−1 

sinϕf∗
u sinϕf∗

w 0 0
sinϕg∗

u sinϕg∗
w 0 0

0 0 − 1
τu sinϕ 0

0 0 0 − 1
τw sinϕ


(E.11)

Since the matrix K̃∗
c admits the same two complex eigenvalues λ1,2 = ±ikc of K∗

c

with algebraic and geometric multiplicity given by 2 and 1, respectively, the general
solution of the homogeneous linear system (E.10) is given by

Z̃ = P̃ eJxP̃−1C(Ti) (E.12)

with

P̃ =


iY1 r1 −iY1 r1
0 r2 0 r2

sinϕY3 −ikc sinϕr1 sinϕY3 ikc sinϕr1

sinϕY4 −ikcd sinϕr2 sinϕY4 ikcd sinϕr2

 (E.13)

Then the solution (E.2)2 satisfying zero flux boundary conditions becomes

Z = Ω2 (T1, T2)



r1 cos (kcz)
r2 cos (kcz)

kc cosϕr1 sin (kcz)
kc sinϕr1 sin (kcz)
kc cosϕdr2 sin (kcz)
kc sinϕdr2 sin (kcz)


(E.14)
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Finally, the rhombic solution (E.1) of (4.20)1 reads

U1 = Ω1 (T1, T2)



r1 cos (kcx)
r2 cos (kcx)
kcr1 sin (kcx)

0
kcdr2 sin (kcx)

0


+ Ω2 (T1, T2)



r1 cos (kcz)
r2 cos (kcz)

kc cosϕ r1 sin (kcz)
kc sinϕ r1 sin (kcz)
kc cosϕdr2 sin (kcz)
kc sinϕdr2 sin (kcz)


(E.15)

where Ω1 and Ω2 are the pattern amplitudes, which are still arbitrary at this stage.
Now, substituting (E.15) into the nonhomogeous linear system (4.20)2, and requir-

ing to eliminate resonant terms, the conditions B1 = ∂Ω1
∂T1

= ∂Ω2
∂T1

= 0 hold. Then,
by using the same procedure outlined above, the solution at the second perturbative
order U2 reads:

U2(x, z, T2) = Ω2
1U20 + Ω2

2U02 + Ω1Ω2

(
1

(1 + 2 cosϕ)2 U12 + 1
(1 − 2 cosϕ)2 U21

)
(E.16)

where the vectors U20(x), U02 (z), U12(x+ z) and U21(x− z) are given by

U20 = n1



1 + 1+4dk2
c

9 cos (2kcx)

−Bc − Bc+4k2
c

9 cos (2kcx)
2kc(1+4dk2

c)
9 sin (2kcx)

0

−2kcd(Bc+4k2
c)

9 sin (2kcx)

0



, U02 = n1



1 + 1+4dk2
c

9 cos (2kcz)

−Bc − Bc+4k2
c

9 cos (2kcz)
2kc(1+4dk2

c)
9 cosϕ sin (2kcz)

2kc(1+4dk2
c)

9 sinϕ sin (2kcz)

−2kcd(Bc+4k2
c)

9 cosϕ sin (2kcz)

−2kcd(Bc+4k2
c)

9 sinϕ sin (2kcz)



,

U12 = 2n1



(
1 + 2dk2

c + 2Bc

(
u2

Sc
−1
)

k2
c

cosϕ
)

cos
[
kc (x+ z)

]
−
(
Bc + 2k2

c + 2Bc

(
u2

Sc
−1
)

dk2
c

cosϕ
)

cos
[
kc (x+ z)

]
(1 + cosϕ)

(
kc
(
1 + 2dk2

c

)
+ 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x+ z)

]
sinϕ

(
kc
(
1 + 2dk2

c

)
+ 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x+ z)

]
− (1 + cosϕ)

(
dkc

(
Bc + 2k2

c

)
+ 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x+ z)

]
sinϕ

(
dkc

(
Bc + 2k2

c

)
+ 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x+ z)

]



,
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U21 = 2n1



(
1 + 2dk2

c − 2Bc

(
u2

Sc
−1
)

k2
c

cosϕ
)

cos
[
kc (x− z)

]
−
(
Bc + 2k2

c − 2Bc

(
u2

Sc
−1
)

dk2
c

cosϕ
)

cos
[
kc (x− z)

]
(1 − cosϕ)

(
kc
(
1 + 2dk2

c

)
− 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x− z)

]
− sinϕ

(
kc
(
1 + 2dk2

c

)
− 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x− z)

]
− (1 − cosϕ)

(
dkc

(
Bc + 2k2

c

)
− 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x− z)

]
− sinϕ

(
dkc

(
Bc + 2k2

c

)
− 2Bc

(
u2

Sc
−1
)

kc
cosϕ

)
sin
[
kc (x− z)

]


with n1 = r1

(
Bcr1+2u2

Sc
r2
)

2BcuSc

(
u2

Sc
−1
) .

Finally, taking into account (E.15) and (E.16), the elimination of secular terms of
the system (4.20)3 leads to the following two cubic SL equations for the amplitudes:

∂Ω1
∂T2

= σΩ1 − Ω1
(
L1Ω2

1 + L2Ω2
2
)

∂Ω2
∂T2

= σΩ2 − Ω2
(
L1Ω2

2 + L2Ω2
1
) (E.17)

where the growth rate σ and the Landau coefficients L1,L2 are given by

σ = B2
Bcr1(2r1+r2d)

(
1−u2

Sc

)
+2u2

Sc
r2(r1+r2d)

(
1+u2

Sc

)
Bc

(
1−u2

Sc

)
r1r2[d−1+dk2

c (τw−τu)]

L1 = − (r1+r2d)a1
r1r2[d−1+dk2

c (τw−τu)]
L2 = − (r1+r2d)a2

r1r2[d−1+dk2
c (τw−τu)]

(E.18)

with

a1 = 3
4r

2
1r2 +

[(
Bcr1+u2

Sc
r2
)

9uSc

(
19 + 4dk2

c

)
− uScr1

9

(
19Bc + 4k2

c

)]
n1,

a2 = 3
2r

2
1r2 + 2 n1

uSc

{
Bcr1 + u2

Sc
r2 −Bcr1u2

Sc
+ 2(1+4 cos2 ϕ)

(1−4 cos2 ϕ)2

[(
Bcr1 + u2

Sc
r2
) (

1 + 2dk2
c

)
+

−r1u2
Sc

(
Bc + 2k2

c

)]
− 16Bc

(
u2

Sc
−1
)

cos2 ϕ

k2
c(1−4 cos2 ϕ)2

[
Bcr1 + u2

Sc
r2 − r1

d u
2
Sc

]}
.
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F Details on hexagonal planform analysis in 2D hyper-
bolic RT systems

In this Appendix, some details on the derivation of the SL equations (4.35), obtained
by performing the WNA for hexagonal geometry, are given. Substituting the expan-
sions (4.19) into the governing system the set of linear partial differential equations
(4.20) are obtained. In this case, the solution at the lowest perturbative order appear
in the form

U1(x, ζ, ξ, T1, T2) = X(x, T1, T2) + Z(ζ, T1, T2) + Ξ(ξ, T1, T2), (F.1)

where ζ = 1
2x +

√
3

2 y and ξ = 1
2x −

√
3

2 y, and the following compatibility conditions
hold

M(1) ∂X
∂x = L∗

cX(
1
2M(1) +

√
3

2 M(2)
)
∂Z
∂ζ = L∗

cZ(
1
2M(1) −

√
3

2 M(2)
)
∂Ξ
∂ξ = L∗

cΞ

(F.2)

It is easy to see that the system (F.2)1 is the same as (E.2)1 whereas (F.2)2,3 can be
obtained from (E.2)2 for ϕ = ±π

3 . Then, by using the same strategy outlined in the
Appendix E, the solution at first perturbative order is obtained

U1 = Ω1



r1 cos(kcx)

r2 cos(kcx)

kcr1 sin(kcx)

0

kcdr2 sin(kcx)

0


+ Ω2

2



r1
(

cos(kcζ) + cos(kcξ)
)

r2
(

cos(kcζ) + cos(kcξ)
)

1
2kcr1

(
sin(kcζ) + sin(kcξ)

)
√

3
2 kcr1

(
sin(kcζ) − sin(kcξ)

)
1
2kcdr2

(
sin(kcζ) + sin(kcξ)

)
√

3
2 kcdr2

(
sin(kcζ) − sin(kcξ)

)



. (F.3)

Now, substituting (F.3) into the nonhomogeous linear system (4.20)2 and requiring
to eliminate resonant terms, the following system is obtained∂Ω1

∂T1
= B1σΩ1 − L

4 Ω2
2

∂Ω2
∂T1

= B1σΩ2 − LΩ1Ω2
(F.4)

where
L = −2Bc

(
u2

Sc
−1
)

(r1+dr2)n1

r1r2[d−1+dk2
c (τw−τu)] . (F.5)

Note that, system (F.4) does not admit stable equilibria, so that WNA has to be
pushed to the next perturbative order. Therefore, taking into account (4.19),(F.4),
the solution at the second perturbative order reads

U2(x, ζ, ξ, T1, T2) = Ω1Ũ10 + Ω2Ũ01 + Ω1Ω2Ũ11 + Ω2
1Ũ20 + Ω2

2Ũ02 (F.6)
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where the vectors Ũ10(x), Ũ01(ζ, ξ), Ũ11(x, ζ, ξ), Ũ20(x) and Ũ02(x, ζ, ξ) are given
by

Ũ10 = B1



p1 cos(kcx)

p2 cos(kcx)

p3 sin(kcx)

0

p4 sin(kcx)

0


, Ũ01 = B1

2



p1
(

cos(kcζ) + cos(kcξ)
)

p2
(

cos(kcζ) + cos(kcξ)
)

1
2p3
(

sin(kcζ) + sin(kcξ)
)

√
3

2 p3
(

sin(kcζ) − sin(kcξ)
)

1
2p4
(

sin(kcζ) + sin(kcξ)
)

√
3

2 p4
(

sin(kcζ) − sin(kcξ)
)



,

Ũ20 = n1



1 + 1+4dk2
c

9 cos(2kcx)

−Bc − Bc+4k2
c

9 cos(2kcx)
2kc(1+4dck2

c)
9 sin(2kcx)

0

−2kcd(Bc+4k2
c)

9 sin(2kcx)

0



,

Ũ02 = 1
4



q1 cos(kcx) + q̃1 cos(kc (ζ − ξ)) + n1

(
1 + 1+4dk2

c
9

)(
cos(2kcζ) + cos(2kcξ)

)
q2 cos(kcx) + q̃2 cos(kc (ζ − ξ)) − n1

(
Bc + Bc+4k2

c
9

)(
cos(2kcζ) + cos(2kcξ)

)
q3 sin(kcx) + n1

kc(1+4dck2
c)

9

(
sin(2kcζ) + sin(2kcξ)

)
√

3kcq̃1 sin(kc (ζ − ξ)) + n1

√
3kc(1+4dck2

c)
9

(
sin(2kcζ) − sin(2kcξ)

)
q4 sin(kcx) − n1

kcd(Bc+4k2
c)

9

(
sin(2kcζ) + sin(2kcξ)

)
√

3dkcq̃2 sin(kc (ζ − ξ)) + n1

√
3kcd(Bc+4k2

c)
9

(
sin(2kcζ) − sin(2kcξ)

)



,

Ũ11 = 1
2



q1
(

cos(kcζ) + cos(kcξ)
)

+ q̃1
[

cos(kc(x+ ζ)) + cos(kc(x+ ξ))
]

q2
(

cos(kcζ) + cos(kcξ)
)

+ q̃2
[

cos(kc(x+ ζ)) + cos(kc(x+ ξ))
]

1
2q3
(

sin(kcζ) + sin(kcξ)
)

+ 3
2kcq̃1

[
sin(kc(x+ ζ)) + sin(kc(x+ ξ))

]
√

3
2 q3

(
sin(kcζ) − sin(kcξ)

)
+

√
3

2 kcq̃1
[

sin(kc(x+ ζ)) − sin(kc(x+ ξ))]

1
2q4
(

sin(kcζ) + sin(kcξ)
)

+ 3
2dkcq̃2

[
sin(kc(x+ ζ)) + sin(kc(x+ ξ))

]
√

3
2 q4

(
sin(kcζ) − sin(kcξ)

)
+

√
3

2 dkcq̃2
[

sin(kc(x+ ζ)) − sin(kc(x+ ξ))]



,

(F.7)
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with

p1 = r1σ
4k2

c

[
k2

c −Bc

γu
+ d(k2

c +Bc)
µw

]
+ (3k2

c +Bc)
4r2k2

c(k2
c −Bc)

[
d−1+dk2

c

(
d

µw
− 1

γu

)] × .

×

r1

[
2r1

(
k2

c
γu

− 1
)

+ r2

(
d2k2

c
µw

− 1
)]

+ 2u2
Sc

(
1+u2

Sc

)
r2

Bc

(
1−u2

Sc

) [
r1

(
k2

c
γu

− 1
)

+ r2

(
d2k2

c
µw

− 1
)] ,

p2 = r2
r1
p1 + 1

r1(k2
c −Bc)

[
d−1+dk2

c

(
d

µw
− 1

γu

)]
r1

[
2r1

(
k2

c
γu

− 1
)

+ r2

(
d2k2

c
µw

− 1
)]

+2u2
Sc

(
1+u2

Sc

)
r2

Bc

(
1−u2

Sc

) [
r1

(
k2

c
γu

− 1
)

+ r2

(
d2k2

c
µw

− 1
)] ,

p3 = kcp1 − r1kc
γu
σ

p4 = dkcp2 − d2r2kc
µw

σ

q1 =
Bc

(
u2

Sc
−1
)
n1

{
(r1+r2d)(k2

c −Bc)
[

k2
c −Bc
γu

+
d(k2

c +Bc)
µw

]
+(3k2

c +Bc)
[
r1

(
k2

c
γu

−1
)

+r2

(
d2k2

c
µw

−1
)]}

2r2k2
c(k2

c −Bc)
[
d−1+dk2

c

(
d

µw
− 1

γu

)]

q2 = r2
r1
q1 +

2Bc

(
u2

Sc
−1
)
n1

[
r2

(
1− d2k2

c
µw

)
+r1

(
1− k2

c
γu

)]
r1(k2

c −Bc)
[
d−1+dk2

c

(
d

µw
− 1

γu

)]
q3 = kcq1 + r1kc

γu
L

q4 = dkcq2 + d2r2kc
µw

L

q̃1 =
[
r1(Bc−k2

c)+dr2(Bc+k2
c)
]
n1

2r2

q̃2 =
[
r1(Bc−3k2

c)+dr2(Bc−k2
c)
]
n1

2r1
(F.8)

where γu = 1/τu and µw = d/τw.
Then, taking into account expressions (F.3) and (F.6), elimination of the secular

terms into (4.20)3 leads to the following system


∂Ω1
∂T2

= ã0B1
∂Ω1
∂T1

− L1Ω3
1 + ã1Ω1 + ã2

2 Ω1Ω2
2 + ã3

4 B1Ω2
2 + ã4

2 Ω2
∂Ω2
∂T1

∂Ω2
∂T2

= ã0B1
∂Ω2
∂T1

− L1
4 Ω3

2 + ã1Ω2 + ã2Ω2
{

Ω2
1 + 1

4Ω2
2
}

+ ã3B1Ω1Ω2 + ã4
(
∂Ω1
∂T1

Ω2 + ∂Ω2
∂T1

Ω1
)

(F.9)
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where

ã0 =
dr2p1

(
k2

c
γu

−1
)

+r1p2

[
1− d2k2

c
µw

]
+dk2

cr1r2σ
(d2γ2

u−µ2
0)

γ2
uµ2

w

r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] ,

ã1 = (p1B2
1+r1B2)(2r1+dr2)

r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] + (r1+dr2)u2
Sc

(
1+u2

Sc

)
Bc

(
1−u2

Sc

)
r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] [2
(
p2B2

1 + r2B2
)

+ r2B2
1
(

1+6u2
Sc

−3u4
Sc

)
Bc

(
1−u2

Sc

)2

]
,

ã2 = (r1+dr2)

2r1r2uSc

[
d−1+dk2

c

(
d

µw
− 1

γu

)] [2 (r1Bc + r2u2
Sc

)
(2n1 + q1 + q̃1) + 2r1u2

Sc
(2n2 + q2 + q̃2) + 3r2

1r2uSc

]
,

ã3 = 2(r1+dr2)

r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] [ r1p1Bc

uSc
+ (r1p2 + r2p1)uSc + uSc

(
1+u2

Sc

)
Bc

(
1−u2

Sc

) (uScq2 + r1r2) + r2
1uSc(

1−u2
Sc

)]+

+ (2r1+dr2)q1

r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] ,

ã4 = −
dr2q1

[
1− k2

c
γu

]
−r1q2

[
1− d2k2

c
µw

]
+dk2

cr1r2L
µ2

w−d2γ2
u

γ2
0 µ2

w

r1r2

[
d−1+dk2

c

(
d

µw
− 1

γu

)] .

(F.10)
By taking into account expressions (F.4) and (F.7), system (F.9) can be recast as

∂Ω1
∂T2

= σ̃Ω1 + ψΩ2
2 − L1Ω3

1 + L̃Ω1Ω2
2

∂Ω2
∂T2

= σ̃Ω2 + 1
4

(
2L̃− L1

)
Ω3

2 + 4ψΩ1Ω2 + 2L̃Ω2
1Ω2

(F.11)

Finally, by adding (F.4) to (F.11), pattern amplitudes are ruled by
∂Ω1
∂T = σ̄Ω1 + ψ̄Ω2

2 − L̄1Ω3
1 + L̄Ω1Ω2

2

∂Ω2
∂T = σ̄Ω2 + 1

4

(
2L̄− L̄1

)
Ω3

2 + 4ψ̄Ω1Ω2 + 2L̄Ω2
1Ω2

(F.12)

where

∂

∂T
= ∂

∂T1
+ ϵ

∂

∂T2
σ̄ = B1σ + ϵσ̃, ψ̄ = −L

4 + ϵψ, L̄1 = ϵL1, L̄ = ϵL̃.
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