
This article was downloaded by: [Scuola Normale Superiore]
On: 21 July 2011, At: 08:26
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Quantitative Finance
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/rquf20

When do improved covariance matrix estimators
enhance portfolio optimization? An empirical
comparative study of nine estimators
Ester Pantaleo a , Michele Tumminello b c , Fabrizio Lillo b d e & Rosario N. Mantegna b
a Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
b Dipartimento di Fisica, Università di Palermo, Viale delle Scienze, I-90128 Palermo,
Italy
c Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh, PA
15213, USA
d Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
e Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Available online: 21 Apr 2011

To cite this article: Ester Pantaleo, Michele Tumminello, Fabrizio Lillo & Rosario N. Mantegna (2011): When do improved
covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators,
Quantitative Finance, 11:7, 1067-1080

To link to this article:  http://dx.doi.org/10.1080/14697688.2010.534813

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/rquf20
http://dx.doi.org/10.1080/14697688.2010.534813
http://www.tandfonline.com/page/terms-and-conditions


Quantitative Finance, Vol. 11, No. 7, July 2011, 1067–1080

When do improved covariance matrix estimators

enhance portfolio optimization? An empirical

comparative study of nine estimators

ESTER PANTALEOy, MICHELE TUMMINELLOzx,
FABRIZIO LILLO*z{? and ROSARIO N. MANTEGNAz

yDipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
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The use of improved covariance matrix estimators as an alternative to the sample estimator is
considered an important approach for enhancing portfolio optimization. Here we empirically
compare the performance of nine improved covariance estimation procedures using daily
returns of 90 highly capitalized US stocks for the period 1997–2007. We find that the
usefulness of covariance matrix estimators strongly depends on the ratio between the
estimation period T and the number of stocks N, on the presence or absence of short selling,
and on the performance metric considered. When short selling is allowed, several estimation
methods achieve a realized risk that is significantly smaller than that obtained with the sample
covariance method. This is particularly true when T/N is close to one. Moreover, many
estimators reduce the fraction of negative portfolio weights, while little improvement is
achieved in the degree of diversification. On the contrary, when short selling is not allowed
and T4N, the considered methods are unable to outperform the sample covariance in terms
of realized risk, but can give much more diversified portfolios than that obtained with
the sample covariance. When T5N, the use of the sample covariance matrix and of the
pseudo-inverse gives portfolios with very poor performance.

Keywords: Portfolio optimization; Correlation structures; Statistical methods; Econophysics

1. Introduction

Portfolio optimization (Markowitz 1952, 1959, Elton and
Gruber 1995) is one of the main topics in quantitative
finance. Markowitz’s solution to the portfolio optimiza-
tion problem, the mean–variance efficient portfolio, relies
upon a series of assumptions and is constructed using first
and second sample moments of financial asset returns.
Although analytical and elegant, Markowitz solution to
the portfolio optimization problem turns out to be highly
sensitive to estimation errors of sample moments. For this
reason, many moment estimators have been proposed to
improve the performance of the portfolio optimization.
Furthermore, the typical outcome of the Markowitz

optimization procedure, especially for large portfolios,

is characterized by large negative weights for a certain

number of assets of the portfolio (Best and Grauer 1992,

Green and Hollifield 1992, Jagannathan and Ma 2003).

Negative portfolio weights require taking a short position

(selling an asset without owning it), which is sometimes

difficult to implement in practice, or forbidden to some

classes of investors. For this reason it is quite widespread

to constrain portfolio weights in the optimization

procedure.
In the present study, we focus on the role played in the

portfolio selection by estimation errors of the second

moments of asset returns, both when taking short selling

positions is allowed and when it is forbidden. We can

ignore estimation errors of asset expected returns by

restricting our attention to the global minimum variance*Corresponding author. Email: lillo@unipa.it
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portfolio, where asset expected returns are not involved
(Ingersoll 1987). It should be noted that this choice is not
a limiting one. In fact, the global minimum variance
portfolio is typically characterized by an out-of-sample
Sharpe ratio (the ratio between the portfolio return and
its standard deviation, a key portfolio performance
measure) that is as good as that of other efficient
portfolios (Jorion 1985, Jagannathan and Ma 2003).
Indeed, there is a consensus on the view that benefits of
diversification can be achieved from risk reduction rather
than from return maximization (Jorion 1985).
Furthermore, the determination of expected returns is
the role of the economist and of the portfolio manager,
who are asked to generate or select valuable private
information, while estimation of the covariance matrix is
the task of the quantitative analyst (Ledoit and Wolf
2003).

The simplest estimator of the covariance matrix of N
asset returns is the sample covariance estimator, which has
N� (Nþ 1)/2(�N2/2 when N is large) distinct elements.
For an estimation time horizon of length T, the number of
available data is N�T. A very common circumstance in
portfolio selection is that the number of assets N is of the
same order of magnitude as the estimation time horizon T,
for example because non-stationarity problems arise for
large T, or because the portfolio is very large. In this case,
the total number of parameters to be estimated is of the
same order of magnitude as the total size of the available
data. This unavoidable lack of data records generates large
estimation errors in the sample covariance matrix, and
thus covariance filtering methods are especially useful in
order to reduce the estimation error. Here we discuss and
compare the performance of portfolios obtained using
several estimators of the covariance matrix. We perform
the comparison of portfolio selection methods at different
time horizons T, and we consider the portfolio optimiza-
tion problem both with and without the inclusion of short
selling constraints. Specifically, we apply portfolio opti-
mization methods to 90 highly capitalized stocks traded on
the New York Stock Exchange (NYSE) during the time
period from January 1997 to December 2005. We find the
global minimum variance portfolio both with and without
short selling constraints at different time horizons. The
investment and estimation horizons are chosen to be
identical, and range from one month (approximately
T¼ 20 trading days) to two years (approximately T¼ 480
trading days). We compare the performance of 10 covari-
ance matrix estimators, namely the sample covariance
estimator used in the Markowitz optimization, three
estimators based on the spectral properties of the covari-
ance matrix (Metha 1990, Laloux et al. 1999, Plerou et al.
1999, Rosenow et al. 2002, Potters et al. 2005), three
estimators based on hierarchical clustering (Anderberg
1973, Mantegna 1999, Tumminello et al. 2007b, 2010,
Basalto et al. 2008, Tola et al. 2008), and three estimators
based on shrinking procedures (Jagannathan and Ma
2003, Ledoit and Wolf 2003, 2004a, b).

We find that the effectiveness of the last nine covari-
ance estimators with respect to the sample estimator in
portfolio optimization depends on the presence or

absence of short selling, on the performance metric
considered, and on the ratio T/N. Specifically, when
short selling is allowed, several covariance estimators are
able to give portfolios significantly less risky than the
sample covariance portfolio. This is particularly true
when T/N is close to one, in agreement with previous
observations that sample covariance portfolio optimiza-
tion can be quite problematic and ineffective in
the T/N� 1 regime (Pafka and Kondor 2002, 2003,
Papp et al. 2005, Kondor et al. 2007). Moreover, for a
wide range of T/N, we verify that portfolios obtained
using the proposed estimation procedures have a lower
proportion of negative over positive weights (amount of
short selling) (Jagannathan and Ma 2003) than the sample
covariance portfolio, especially when T/N� 1. However,
the degree of effective diversification of the portfolio is
similar for different methods (including sample
covariance).

The situation is significantly different when short
selling is forbidden. When T4N, the realized risk of the
sample covariance portfolio becomes comparable to that
of the other portfolios. In this respect, the tested
estimators are not able to give portfolios significantly
less risky than the sample covariance portfolio and all the
tested estimators have very similar risk. However, the
portfolios obtained with these estimators are significantly
more diversified than the sample covariance portfolio.

When T5N, the inverse of the sample covariance
matrix does not exist because it has zero eigenvalues.
It has been proposed to use the pseudo-inverse to
extend the Markowitz optimization to the case T5N.
We find that portfolios obtained with the pseudo-inverse
are more risky and less diversified than the other
portfolios.

By comparing portfolios with and without short selling
we also verify and generalize the observation that
including constraints (such as the no short selling
constraint) in the portfolio optimization procedure is
similar to performing an unconstrained optimization with
a filtered covariance matrix (see Jagannathan and
Ma (2003) and Schäfer et al. (2010) for shrinkage
estimators).

The paper is organized as follows. In section 2 we
discuss basic aspects of the Markowitz portfolio optimi-
zation procedure and set the notation. In section 3
we describe the investigated covariance matrix estimators.
Section 4 presents the data set, the methodologies used
to compare the different portfolios, and the empirical
results. Section 5 concludes.

2. Markowitz portfolio optimization

In this section we briefly discuss some basic aspects of
portfolio optimization in the Markowitz framework.
This is also useful for setting the notation and stating
the assumptions made and the methods used.

Given N stocks, at time t0 an investor selects his/her
portfolio of stocks by choosing a fraction of wealth
wi to invest in stock i, with i¼ 1, . . . ,N, in order
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to have maximum profit and minimum risk from

his/her investment at a fixed time t0þT in the future.

The N-dimensional column vector of the weights w is

normalized as w>1N¼ 1, where 1N is the N-dimensional

column vector of ones. The average return and the variance

of the portfolio are

rp ¼ w>m, �2p ¼ w>�w, ð1Þ

respectively, where m and � are the N-dimensional

column vector of the mean returns and the N�N

covariance matrix of the stocks, respectively.

The Markowitz optimization problem consists of finding

the vector w that minimizes �p for a given value of rp.

The choice of using the standard deviation as a measure

of risk is based on the assumption that returns follow a

Gaussian distribution. If one does not set any constraint

on the value of the weights, allowing them to be either

positive or negative, the Markowitz solution to the

optimization problem (Markowitz 1959) is

w� ¼ ���11N þ ���1m, ð2Þ

where

� ¼
C� rpB

D
, � ¼

rpA� B

D
,

A ¼ 1TN��11N, B ¼ 1TN��1m,

C ¼ mT��1m, D ¼ AC� B2:

The inverse of the parameter � is usually referred to as the

risk aversion.
When �¼ 0 (infinite risk aversion), the optimal port-

folio is the global minimum variance portfolio and it does

not depend on the expected returns. Since in this paper we

aim to investigate the role of estimation risk of the

covariance matrix, we focus on the global minimum

variance portfolio, as done by Jorion (1985), Jagannathan

and Ma (2003) and Ledoit and Wolf (2003), which

obviously does not depend on the estimation error of the

mean returns. Markowitz optimization typically gives

both positive and negative portfolio weights and, espe-

cially for large portfolios, it usually gives large negative

weights for a certain number of assets (Best and Grauer

1992, Green and Hollifield 1992, Jagannathan and

Ma 2003). A negative weight corresponds to a short

selling position (selling an asset without owning it) and it

is sometimes difficult to implement in practice, or forbid-

den. For this reason, it is common practice to impose

constraints on the portfolio weights in the optimization

procedure. When one adds constraints on the range of

variation of wi, the optimization problem cannot be

solved analytically, and quadratic programming must be

used. Quadratic programming algorithms are imple-

mented in most numerical programs, such as Matlab

and R. In the following we will consider the portfolio

optimization problem both with and without the no short

selling constraint wi� 0, 8i¼ 1, . . . ,N.

3. Covariance matrix estimators

One of the main problems of portfolio optimization is the
estimation of the mean returns vector m and covariance
matrix �. For the global minimum variance portfolio the
investor needs only to estimate �. In what follows we
estimate the covariance matrix using past return data.
Specifically, at time t0 we estimate the sample covariance
matrix of daily returns in the T trading days preceding t0.
We then apply the different estimators and calculate the
optimal portfolio. This portfolio is held until time t0þT
when we evaluate its performance. Note that our estima-
tion and investment time horizons are chosen to be the
same. In section 4 we will also comment on how the
results change when we use a fixed evaluation period
length and we vary the length of the estimation period.
We consider three classes of estimators: (i) spectral
estimators, (ii) hierarchical clustering estimators, and
(iii) shrinkage estimators.

3.1. Sample covariance estimator

Let us first point out some aspects associated with the
sample covariance direct optimization. In this case, the
estimator of the covariance matrix at time t0 is the sample
covariance matrix estimated on the preceding T days.
The input to the global minimum variance optimization
problem is the inverse of the sample covariance matrix.
When T5N, the inverse of the sample covariance matrix
does not exist because of the presence of null eigenvalues.
As suggested in the literature (for example, Ledoit and
Wolf (2003)) in the optimization problem we use the
pseudo-inverse, also called the generalized inverse
(Mardia et al. 1979), of the covariance matrix.
Replacing the inverse of the covariance matrix with the
pseudo-inverse in the optimization problem allows one to
obtain a unique combination of portfolio weights.
It should be noted that, when T5N, the optimization
problem remains undetermined and the pseudo-inverse
solution is just a natural choice among the infinite
undetermined solutions to the portfolio optimization
problem.

In the same regime T5N, this problem does not arise
for the other covariance estimators, because they typically
give positive definite covariance matrices for any value of
T/N, including T/N51.

3.2. Spectral estimators

The first class of methods includes three different
estimators of the covariance matrix, which make use of
the spectral properties of the correlation matrix.
The fundamental idea behind these methods is that the
eigenvalues of the sample covariance matrix carry differ-
ent economic information depending on their value.

The first method we consider is the single index model
(see, for instance, Campbell et al. (1997) and Ledoit and
Wolf (2003, 2004b)). In this model, stock returns ri(t) are
described by the set of linear equations ri(t)¼ �iþ
�i f(t)þ "i(t), i¼ 1, . . . ,N, where returns are therefore

When do improved covariance matrix estimators enhance portfolio optimization? 1069
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given by the linear combination of a single random
variable, the index f(t), and of an idiosyncratic stochastic

term "i(t). The parameters �i can be estimated by linear

regression of stock return time series on the index return.
The covariance matrix associated with the model is

S(SI)
¼ �00bb>þD, where �00 is the variance of the

index, b is the vector of parameters �i, and D is the
diagonal matrix of variances of "i. We denote this method

hereafter as SI. It can be shown that this method gives an
estimated covariance matrix very similar to that obtained

with the method RMT-0 (see below) when only the largest

eigenvalue of the sample covariance is assumed to carry
reliable economic information.

The other two spectral methods make use of

the Random Matrix Theory (RMT) (Metha 1990,
Laloux et al. 1999, Plerou et al. 1999). Specifically, if

the N variables of the system are i.i.d. with finite variance

�2, then in the limit T, N!1, with a fixed ratio T/N, the
eigenvalues of the sample covariance matrix are bounded

from above by the value

�max ¼ �
2ð1þN=Tþ 2

ffiffiffiffiffiffiffiffiffiffi
N=T

p
Þ, ð3Þ

where �2¼ 1 for correlation matrices. In most practical

cases, one finds that the largest eigenvalue �1 of the
sample correlation matrix of stocks is definitely inconsis-

tent with RMT, i.e. �1� �max. In fact, the largest
eigenvector is typically identified with the market mode.

To cope with this evidence, Laloux et al. (1999) proposes

modifying the null hypothesis of RMT so that system
correlations can be described in terms of a one-factor

model instead of a pure random model. Under such a less-

restrictive null hypothesis, the value of �max is still given
by equation (3), but now �2¼ 1� �1/N. Here we consider

two different procedures that apply RMT to the covari-
ance estimation problem.

The first procedure was proposed by Rosenow et al.

(2002) and works as follows. One diagonalizes the sample

correlation matrix and replaces all the eigenvalues smaller
than �max by 0. One then transforms back the modified

diagonal matrix in the standard basis, obtaining the
matrix H(RMT�0). The filtered correlation matrix

C(RMT�0) is obtained by simply forcing to 1 the diagonal

elements of H(RMT�0). Finally, the filtered covariance
matrix S(RMT�0) is the matrix of elements

�ðRMT�0Þ
ij ¼ c

ðRMT�0Þ
ij

ffiffiffiffiffiffiffiffiffiffi
�ii�jj
p

, where c
ðRMT�0Þ
ij are the entries

of C(RMT�0) and �ii and �jj are the sample variances of
variables i and j, respectively. In the following we will

refer to this method as the RMT-0 method.
The second way to reduce the impact of eigenvalues

smaller than �max on the estimate of portfolio weights was

proposed by Potters et al. (2005). In this case, one

diagonalizes the sample correlation matrix and replaces
all the eigenvalues smaller than �max by their average

value. Then one transforms back the modified diagonal
matrix in the original basis, obtaining the matrix

H(RMT�M) of elements h
ðRMT�MÞ
ij . It should be noted

that replacing the eigenvalues smaller than �max by their
average value preserves the trace of the matrix. Finally,

the filtered correlation matrix C(RMT�M ) is the matrix of

elements c
ðRMT�MÞ
ij ¼ h

ðRMT�MÞ
ij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
ðRMT�MÞ
ii h

ðRMT�MÞ
jj

q
. The

covariance matrix S(RMT�M) to be used in the portfolio

optimization is the matrix of elements �ðRMT�MÞ
ij ¼

c
ðRMT�MÞ
ij

ffiffiffiffiffiffiffiffiffiffi
�ii�jj
p

, where �ii and �jj are again the sample
variances of variables i and j, respectively. We will refer to
this method as the RMT-M method.

3.3. Agglomerative hierarchical clustering estimators

The second class of methods comprises three different
estimators of the covariance matrix based on agglomer-
ative hierarchical clustering (Anderberg 1973).
Agglomerative hierarchical clustering methods are clus-
tering procedures based on pair grouping where elements
are iteratively merged together in clusters of increasing
size according to their degree of similarity. Hierarchical
clustering procedures therefore depend on the chosen
similarity measure between elements of the system. In the
present study we consider the correlation as a measure of
similarity between two elements in the system.
Hierarchical clustering algorithms work as follows.
Given a data set of N time series, at the beginning each
element defines a cluster. The similarity between two
clusters is defined as the correlation coefficient between
the corresponding two time series. Then the two clusters
with the largest correlation are merged together in a single
cluster. At the second iteration, one has to tackle the
subtler problem of defining the similarity between clus-
ters. Different similarities between clusters can be defined,
each one characterizing a specific hierarchical clustering
procedure. Once the similarity between two clusters is
consistently defined, then the two clusters with the largest
similarity are merged together, and the procedure is
iterated until, after N� 1 iterations, all the elements are
grouped together in one cluster, corresponding to the
whole data set.

We consider here three hierarchical clustering proce-
dures that differ in the definition of similarity between
clusters. In the unweighted pair group method with
arithmetic mean (UPGMA), if a new cluster L is formed
from clusters A and B, then the similarity between cluster
L and any other cluster F is given by

�L,F ¼
NA�A,F þNB�B,F

NA þNB
, ð4Þ

where NA and NB are the number of elements in cluster A
and B, respectively. Within this rule, the similarity
between cluster L and cluster F is given by the arithmetic
mean of the set {�ij, 8i2L, and 8j2F}. In the weighted
pair group method with arithmetic mean (WPGMA), the
average is weighted in such a way to get rid of the possibly
different sizes of A and B:

�L,F ¼
�A,F þ �B,F

2
: ð5Þ

Finally, in the Hausdorff linkage cluster analysis (Basalto
et al. 2008), the similarity between cluster L and cluster F

1070 E. Pantaleo et al.

D
ow

nl
oa

de
d 

by
 [

Sc
uo

la
 N

or
m

al
e 

Su
pe

ri
or

e]
 a

t 0
8:

26
 2

1 
Ju

ly
 2

01
1 



is obtained in terms of the Hausdorff distance between the
two clusters:

�L,F ¼ min min
i2L

max
j2F

�ij, max
i2L

min
j2F

�ij

� �
: ð6Þ

The output of any hierarchical clustering procedure is a
dendrogram where each node �k is associated with the
similarity ��k between the two clusters of elements
merging together in the node �k. One can therefore
construct a filtered similarity matrix C5 associated with a
specific dendrogram as follows. Each entry �5

ij of C5 is
set to ��k , where �k is the node of the dendrogram
corresponding to the smallest cluster in which the
elements i and j merge together. The matrix C

5 is positive
definite provided that its entries are non-negative num-
bers (Tumminello et al. 2007b) and that the dendrogram
does not show reversals (Anderberg 1973). The first
condition is typically observed in the financial case, while
the latter condition is always satisfied by the UPGMA
and the WPGMA, while it could be violated in the
Hausdorff method. When reversals are present in the
dendrogram associated with the Hausdorff method,
we remove such reversals using the minimum spanning
tree associated with the hierarchical clustering procedure
(Tumminello et al. 2007a). Since our procedure generates
positive definite matrices, they can be interpreted as
correlation matrices. Once C5 is constructed, we obtain
an estimate of the covariance matrix by multiplying the
entries of C5 by the sample standard deviations.
Hierarchical clustering procedures have been shown to
be effective in extracting financial information from the
correlation matrix of stock returns (Mantegna 1999).
Finally, it should be noted that hierarchical clustering
methods have already been considered in portfolio
optimization (Tola et al. 2008).

3.4. Shrinkage estimators

The last class of estimators comprises linear shrinkage
methods. Linear shrinkage is a well-established technique
in high-dimensional inference problems, when the size of
the data is small compared with the number of unknown
parameters in the model. In such cases, the sample
covariance matrix is the best estimator in terms of actual
fit to the data, but it is suboptimal because the number of
parameters to be fitted is larger than the amount of data
available (Stein 1956). The idea is to construct a more
robust estimate Q of the covariance matrix by shrinking
the sample covariance matrix S(S) to a target matrix T,
which is typically positive definite and has a lower
variance. The shrinking is obtained by computing

Q ¼ �Tþ ð1� �ÞSðSÞ, ð7Þ

where � is a parameter called the shrinkage intensity. We
consider three different shrinkage estimates of the covari-
ance matrix, each characterized by a specific target matrix.

The shrinkage to a single index uses the target matrix
T¼S(SI)

¼ �00bb>þD, i.e. the single index covariance
matrix previously discussed. This target was first proposed

in the context of portfolio optimization by Ledoit and
Wolf (2003). The second method is called shrinkage to
common covariance. The target T is a matrix where the
diagonal elements are all equal to the average of the sample
variances, while non-diagonal elements are equal to the
average of the sample covariances. In the shrinkage to
common covariance, the heterogeneity of stock variances
and of stock covariances is therefore minimized. The
method has been proposed for the analysis of bioinfor-
matic data (Schäfer and Stimmer 2005) and, to the best of
our knowledge, it has never been used in the context of
financial data analysis. The third method, termed shrink-
age to constant correlation, has a more structured target
and was used by Ledoit andWolf (2004b). The estimator is
obtained by first shrinking the correlation matrix to a
target called the constant correlation, and thenmultiplying
the shrunk correlation matrix by the sample standard
deviations. The constant correlation target is a matrix with
diagonal elements equal to one, and off-diagonal elements
equal to the average sample correlation between the
elements of the system. As � (the shrinkage intensity) we
use the unbiased estimate calculated analytically by
Schäfer and Stimmer (2005).

In conclusion, we consider 10 covariance matrix
estimators that we label: sample covariance, SI, RMT-0,
RMT-M, UPGMA, WPGMA, Hausdorff, shrinkage to
SI, shrinkage to common covariance, and shrinkage to
constant correlation.

4. Optimization process: Empirical results

In this section we present repeated portfolio optimizations
performed using the covariance estimators discussed in
the previous section. A set of highly liquid stocks traded
on the NYSE is used.

4.1. Data

Our dataset consists of the daily returns of N¼ 90 highly
capitalized stocks traded on the NYSE and included in the
NYSE US 100 Index. For these stocks the closure prices
are available in the 11-year period from 1 January 1997 to
31 December 2007.y The ticker symbols of the investigated
stocks are AA, ABT, AIG, ALL, APA, AXP, BA, BAC,
BAX, BEN, BK, BMY, BNI, BRK-B, BUD, C, CAT,
CCL, CL, COP, CVS, CVX, D, DD, DE, DIS, DNA,
DOW, DVN, EMC, EMR, EXC, FCX, FDX, FNM, GD,
GE, GLW, HAL, HD, HIG, HON, HPQ, IBM, ITW,
JNJ, JPM, KMB, KO, LEH, LLY, LMT, LOW, MCD,
MDT, MER, MMM, MO, MOT, MRK, MRO, MS,
NWS-A, OXY, PCU, PEP, PFE, PG, RIG, S, SGP, SLB,
SO, T, TGT, TRV, TWX, TXN, UNH, UNP, USB, UTX,
VLO, VZ, WAG, WB, WFC, WMT, WYE, XOM. As
reference index in the SI model and in the shrinkage to a
single index we use the Standard & Poor’s 500 index, which
is a widely used broadly based market index.

yThe data, already preprocessed, were downloaded from Yahoo Finance.
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At time t0 the portfolio is selected by choosing the
optimal weights that solve the global minimum vari-
ance problem with or without short selling constraints.
The input to the optimization problem is the covariance
matrix estimator S( f ) calculated using the T days preced-
ing t0 and obtained with one of the methods
(i.e. f2 {sample covariance (S), SI, RMT-0, RMT-M,
UPGMA, WPGMA, Hausdorff, shrinkage to SI, shrink-
age to common covariance, shrinkage to constant corre-
lation}. We call S( f ) the estimated covariance matrix.
The output of the optimization problem is

wð f Þ ¼ argmin
w

w>Sð f Þw, ð8Þ

with the appropriate constraints. The ex post covariance
matrix Ŝ is defined as the sample covariance matrix
calculated using the T days following t0. The predicted
portfolio risk is

sð f Þp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð f Þ>Sð f Þwð f Þ

p
, ð9Þ

and the realized portfolio risk is

ŝð f Þp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wð f Þ>Ŝwð f Þ

q
: ð10Þ

Thus both sð f Þp and ŝð f Þp are estimated using a time window
of length T. The time window T is varied over a wide
range. In our empirical study, we use seven different time
windows T of 1, 2, 3, 6, 9, 12, and 24 months. In other
words, we select the portfolio monthly (T’ 20),
bimonthly (T’ 40), quarterly (T’ 60), six-monthly
(T’ 125), nine-monthly (T’ 187), yearly (T’ 250), and
biannually (T’ 500). Since the total number of trading
days is 2761, we consider 131, 65, 43, 13, 21, 10, and 8
portfolio optimizations for the time horizon T equal to 1,
2, 3, 6, 9, 12, and 24 months, respectively (for the 24
month case, in order to improve the statistics, we repeated
the optimization process starting from 1 January 1998).
In order to compare risk levels at different time horizons,
we report annualized risks in all figures and tables.

4.2. Performance estimators

To evaluate the performance of different covariance
estimators we compare portfolio realized risk, portfolio
reliability (i.e. the agreement between realized and
predicted risk), and effective portfolio diversification of
the portfolios w( f ). From now on we will drop the
superscripts ( f ). Clearly a portfolio is less risky than
another when its realized risk is smaller. Therefore, our
first performance metric is the realized risk. Moreover, it
is important that the portfolio is reliable, i.e. the ex-ante
prediction is close to the ex-post observation of the
portfolio risk. We consider both an absolute measure,
jŝp� spj and a relative measure, jŝp� spj/ŝp, of reliability.
Note that, in the relative measure, we normalize with

respect to the realized risk instead of the predicted risk
because the predicted risk can be very small or even zero
when T5N. A third aspect for evaluating the perfor-
mance of a portfolio is a high level of diversification
across stocks of the portfolio. Thus we measure the
effective portfolio diversification of the different covari-
ance estimator methods. Following Bouchaud and Potters
(2003), the effective number Neff of stocks with a
significant amount of money invested is defined as

Neff ¼
1PN

i¼1 w
2
i

: ð11Þ

This quantity is 1 when all the wealth is invested in one
stock, whereas it is N when the wealth is equally divided
among the N stocks, i.e. wi¼ 1/N. When all weights are
positive, i.e. when short selling is not allowed, the
quantity Neff has a clear meaning. On the other hand,
when short selling is allowed there might be some
ambiguity in the interpretation of Neff.y For this reason,
we introduce another measure of portfolio diversification.
Specifically, we consider the absolute value of the weights
and we compute the smallest number of stocks for which
the sum of absolute weights is larger than a given
percentage q of the sum of the absolute value of all the
weights. In other words, we define

Nq ¼ argmin
l

Xl
i¼1

jwij � q
XN
i¼1

jwij: ð12Þ

In the following we consider q¼ 0.9 and we denote this
indicator N90. N90 is the minimum number of stocks in the
portfolio such that their absolute weight accumulates to
90% of the total of asset absolute weights.

4.3. Realized risk and reliability of different covariance
estimators

In this section we present the results obtained for repeated
portfolio optimizations performed using the covariance
estimators described in section 3. Let us first discuss the
general qualitative behavior of the realized risk for
different estimators, different time horizons T (and thus
different ratios T/N ) and different short selling condi-
tions. Later we perform more rigorous statistical tests.

Figure 1 shows the mean value of the realized risk
(averaged over different portfolio selection times t0) as a
function of the time horizon T in the case of short selling
(top panel) and no short selling (bottom panel). When
short selling is allowed (top panel), the performance of the
sample covariance portfolio is very poor and clearly
different from that of the portfolios obtained with the
other investigated covariance estimators. The sample
covariance direct optimization procedure gives the highest
realized risk at each time window T, with the exception of
T¼ 2 years. Furthermore, while the realized risk curves of

yFor instance, consider a portfolio of N¼ 2Mþ 1 stocks where M weights are equal to �x, M weights are equal to x and the
remaining one is equal to 1 with x41. The weights are normalized to one. In this limit example, the quantity in equation (11) is
equal to Neff¼ 1/(2Mx2þ 1), which can be much smaller than 1, even if the portfolio is concentrated in 2M stocks. This example
shows that Neff is a meaningful measure of portfolio diversification only when short selling is not allowed.
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the other optimization procedures are approximately
increasing functions of T (except shrinkage to common
covariance), the realized risk of the sample covariance
portfolio is non-monotonic: the realized risk is very high
at T¼ 3 and 6 and decreases around those values. The
non-monotonic behavior of the sample covariance direct
optimization method can be explained as follows. When
short selling is allowed, a high realized risk at T� 4.5
months is expected because T�N (i.e. T� 90 days¼4.5
months in our case) is the crossing point from non-
singular to singular covariance matrices. In fact, from the
work of Pafka and Kondor (2002, 2003), Papp et al.
(2005) and Kondor et al. (2007), a divergence of the
realized risk is shown to occur in the limit T!1,N!1
and T/N! 1 from the right. Here we verify this behavior
and we observe the divergence also when T/N! 1 from
the left. Note that the pseudo-inverse method sets to zero
those eigenvalues of the covariance matrix inverse corre-
sponding to the null eigenvalues of the sample covariance
matrix. Therefore, the impact of the null eigenvalues of
the sample covariance matrix on the portfolio weights is

strongly reduced by using the pseudo-inverse. When the
length T of the data series is sizably smaller than N,
the pseudo-inverse mainly retains information about the
few largest eigenvalues, which are actually the only
non-null eigenvalues. The large majority of these non-null
large eigenvalues are also retained by spectral methods.
This observation explains why spectral methods and the
pseudo-inverse method give similar results when T	N.
From the top panel of figure 1 we can also see how
spectral and hierarchical clustering methods show a
similar performance in terms of realized risk. Shrinkage
methods have a performance similar to that of the other
algorithms, but the shrinkage to common covariance
method shows a relatively poorer performance for low
values of T, while it shows one of the best performances
for high values of T.

The bottom panel of figure 1 shows the mean realized
risk as a function of the time horizon T when the no short
selling condition is imposed. Also in this case, the realized
risk of all portfolios approximately increases with T
except again for the sample covariance portfolio and the
shrinkage to common covariance method. It is worth
mentioning that the observed increase of the realized risk
for large time horizons T is related to our choice of setting
the same length for the estimation and the evaluation
period. With this choice, a longer T implies a larger
uncertainty of the future risk due to the non-stationarity
of the correlations. When we repeat the same analysis by
keeping the evaluation period length fixed and equal to
one month while still having different estimation period
lengths T, we find that realized risk is approximately
constant or decreasing when T increases. Moreover, for T
larger than N, all the methods are roughly equivalent in
terms of realized risk. For T5N, sample covariance and
shrinkage to common covariance portfolios clearly have a
high realized risk, while the other methods are again
essentially equivalent (with the possible exception of the
Hausdorff estimator for T¼ 3 months). Finally, overall,
except for the sample covariance portfolio, a comparison
of the top and bottom panels of figure 1 shows that the
realized risk of all portfolios turns out to be approxi-
mately the same both when constraints on short selling
are applied and when they are not.

In the previous analysis we considered the average
realized risk over repeated optimizations for different
time horizons T. Now, we fix T and consider the realized
risk time series to explore the role and nature of its
fluctuations in different market conditions. We compare
these time series for different values of the time horizon T.

In figure 2 we show the time series of the realized risk as
a function of the optimization time t0 for the sample
covariance portfolio and for two representative covari-
ance estimation methods (the shrinkage to common
covariance and the RMT-M) when T¼ 1, 3, 6, and 12
months and short selling is allowed. From the figure it is
evident that, for a given method, the temporal fluctua-
tions in the time series of the realized risk are typically
larger than the typical differences between the realized
risk of the different methods. The same is true if we
compare other estimators and also when short selling is

Figure 1. Mean realized (annualized) risk ŝp for portfolios
obtained with the 10 different methods as a function of
the horizon T. T¼ 1, 2, 3, 6, 9, 12, 24 months corresponding
to T/N� 0.2, 0.4, 0.7, 2.1, 2.8, 5.6, respectively. The top panel
considers portfolios where short selling is allowed and the
bottom panel considers portfolios where short selling is
forbidden.
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not allowed. The observed large fluctuations in the
realized risk indicate that, for a detailed comparison of
different portfolio performances, a comparison of the
relative differences between portfolio realized risks is
more appropriate than a comparison of the average
realized risk (averaged over different portfolio selection
times). For example, let us consider the yearly case
(bottom right panel of figure 2). The realized risks of the
sample covariance (black circles) and shrinkage to
common covariance (red circles) portfolios averaged
over the 11-year time period are 13.6
 1.3% and
12.1
 1.1%, respectively, where errors are standard
errors. From these numbers, one would conclude that
the two methods are equivalent in terms of realized risk.
On the contrary, from the time series in the bottom right
panel of figure 2, one concludes that the realized risk of
the shrinkage to common covariance portfolio is system-
atically smaller than that of the sample covariance
portfolio. In fact, our results show that, for a yearly
investment horizon when short selling is allowed, the
shrinkage to common covariance method outperforms all
of the other methods.

For these reasons we measure portfolio performances
relative to the sample covariance portfolio by means of
quantity 1� ŝp=ŝ

ðSÞ
p , where ŝp is the realized risk of the

investigated portfolio and ŝðSÞp is the realized risk for the
sample covariance portfolio in the same period and
conditions. This quantity measures how the investigated
portfolio outperforms the sample covariance portfolio
(in percentage) in terms of realized risk. To assess the
statistical robustness of the difference observed between a
result obtained with a given covariance estimator and the
sample covariance estimator, we perform a t-test to
evaluate whether the difference ŝðSÞp � ŝp has mean value
equal to zero. Similarly, in order to test whether a given
portfolio is more reliable than the sample covariance
portfolio we perform a t-test to evaluate whether the

difference jŝðSÞp � sðSÞp j � jŝp � spj is different from zero.
Here sp and sðSÞp are the predicted risk for the investigated
and the sample covariance portfolio, respectively.

A quantitative comparison of all the covariance
estimator methods is provided in tables 1, 2, and 3 for
the cases T¼ 1 year, 6 months, and 1 month, respectively,
for both the case when short selling is allowed and when it
is not. Since N¼ 90, in the first two cases we have T4N,
while in the third case it is T5N.

Let us discuss first the case in which short selling is
allowed. Comparing the mean values of 1� ŝp=ŝ

ðSÞ
p (third

column in the tables) and the results of the t-tests, we
conclude that relative portfolio performances depend on
the investment horizon T. For a yearly horizon, all
methods except SI and UPGMA outperform the sample
covariance portfolio and the best method is shrinkage to
common covariance (as already noted above), which has
a realized risk 11% smaller, on average, than the sample
covariance portfolio. Note that when T is equal to one
year, RMT-M also performs similarly well. In fact, the
average realized risk for this method is 10.4% smaller
than the sample covariance method. However, for shorter
time horizons a different pattern emerges. When T¼ 6
months (table 2), all portfolios perform equally well
compared with the sample covariance portfolio, being
roughly 33% less risky than the sample covariance
portfolio. When T¼ 1 month (see table 3), all methods
except shrinkage to common covariance outperform
sample covariance. The spectral methods SI, RMT-0,
and RMT-M perform the best and equally well. Among
the shrinkage methods, shrinkage to SI and shrinkage to
constant correlation perform almost as well as the
spectral methods, while the shrinkage to common covari-
ance portfolio is the worst, having a realized risk that is
statistically indistinguishable from the sample covariance
portfolio. By considering the reliability, which is given in
the last column of the tables, we conclude that all the
methods outperform the sample covariance estimator
with a single exception observed for the SI covariance
estimator when T¼ 1 year. Again, the degree of improve-
ment is enhanced when T¼ 6 months.

We now consider the no short selling case. As antic-
ipated in the previous discussion, for T4N all portfolios
have similar realized risks and the observed values are
quite close to those observed in the absence of the no
short selling constraint. This is confirmed by the results
shown in the bottom part of tables 1 and 2. For
T¼ 1 year, the quantity 1� ŝp=ŝ

ðSÞ
p is statistically consis-

tent with zero for all portfolios. When T¼ 6 months, only
the shrinkage to single index estimator performs slightly
better than the sample covariance estimator at the 5%
confidence level. For T¼ 1 month (table 3), a different
result emerges. In fact, all portfolios have a significantly
smaller realized risk than the sample covariance portfolio.
The only notable exception is the shrinkage to common
covariance portfolio, which presents the same (bad)
performance as the sample covariance portfolio.
The best results for the realized risk are observed for
hierarchical clustering methods and for the shrinkage to
constant correlation method. Moreover, the spectral

Figure 2. Time series of the realized risk ŝp over the 11 years of
the sample covariance, the RMT-M, and the shrinkage to
common covariance portfolios for a portfolio horizon T equal to
1 (top left panel), 3 (top right panel), 6 (bottom left panel), and
12 (bottom right panel) months. In these optimizations, short
selling is allowed.
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Table 1. Different portfolio performance measures that combine (annual-
ized) predicted sp and realized ŝp risks. Ten different methods are compared
for an horizon of T¼ 1 year. The numbers are averages over the different
portfolios and the errors are standard errors. For ŝp and jŝp� spj we report
the result of a t-test evaluating whether the difference of each quantity and
the corresponding quantity for the sample covariance portfolio has mean
value equal to zero. ��The p-value of the null hypothesis is below the 1%
threshold. �The p-value of the null hypothesis is below the 5% threshold.

sp ŝp 1�
ŝp

ŝðSÞp
jŝp� spj

Year—s.s.
Sample 6.97
 0.63 13.6
 1.3 0
 0 6.7
 1.1
SI 5.94
 0.41 13.2
 1.3 2.7
 5.0 7.2
 1.2
RMT-0 7.18
 0.67 12.4
 1.2�� 9.5
 2.5 5.2
 1.1��

RMT-M 7.24
 0.68 12.2
 1.2�� 10.4
 2.4 5.1
 1.0��

UPGMA 8.23
 0.88 13.0
 1.3 5.0
 2.3 4.8
 1.1��

WPGMA 7.88
 0.82 12.6
 1.3� 7.6
 2.6 4.8
 1.1��

Hausdorff 7.57
 0.80 12.3
 1.2� 9.3
 3.0 4.75
 0.99��

Shr. to SI 7.59
 0.70 12.3
 1.1�� 9.09
 0.90 4.76
 0.98��

Shr. c. cov. 10.54
 0.91 12.1
 1.1�� 11.0
 1.7 2.57
 0.69��

Shr. c. corr. 8.33
 0.81 12.8
 1.2�� 6.3
 1.0 4.5
 1.0��

Year—no s.s.
Sample 9.46
 0.88 12.7
 1.2 0
 0 4.06
 0.93
SI 7.90
 0.64 12.9
 1.2 � 2.2
 3.0 5.5
 1.2
RMT-0 9.18
 0.84 12.8
 1.2 � 0.34
 0.97 4.33
 0.98
RMT-M 9.08
 0.83 12.8
 1.2 0.07
 0.95 4.33
 0.98
UPGMA 9.9
 1.0 12.9
 1.3 � 0.70
 0.98 3.93
 0.97
WPGMA 9.01
 0.89 12.7
 1.2 0.2
 1.5 4.11
 0.98
Hausdorff 8.68
 0.91 12.5
 1.1 1.7
 2.1 4.14
 0.95
Shr. to SI 9.35
 0.85 12.6
 1.1 0.75
 0.42 4.01
 0.93
Shr. c. cov. 11.7
 1.0 12.2
 1.1 3.4
 1.9 2.40
 0.72
Shr. c. corr. 10.05
 0.98 12.8
 1.2 � 0.43
 0.90 3.92
 0.92

Table 2. Different portfolio performance measures that combine (annualized) pre-
dicted sp and realized ŝp risks. Ten different methods are compared for an horizon of
T¼ 6 months. The numbers are averages over the different portfolios and the errors are
standard errors. For ŝp and jŝp� spj we report the result of a t-test evaluating whether
the difference of each quantity and the corresponding quantity for the sample
covariance portfolio has mean value equal to zero. ��The p-value of the null hypothesis
is below the 1% threshold. �The p-value of the null hypothesis is below the 5%

threshold.

sp ŝp 1�
ŝp

ŝ
ðSÞ
p

jŝp� spj

6 months—s.s.
Sample 4.23
 0.30 18.1
 1.5 0
 0 13.9
 1.4
SI 5.52
 0.33 12.05
 0.92�� 31.3
 3.0 6.53
 0.83��

RMT-0 6.10
 0.42 11.91
 0.96�� 32.4
 3.3 5.81
 0.82��

RMT-M 6.17
 0.43 11.80
 0.95�� 33.0
 3.2 5.63
 0.82��

UPGMA 7.46
 0.57 12.12
 0.91�� 31.1
 3.1 4.66
 0.76��

WPGMA 7.22
 0.56 11.86
 0.86�� 32.3
 3.1 4.65
 0.74��

Hausdorff 6.48
 0.55 11.82
 0.82�� 32.4
 3.0 5.34
 0.77��

Shr. to SI 6.41
 0.43 11.72
 0.82�� 33.4
 2.4 5.30
 0.65��

Shr. c. cov. 10.77
 0.76 11.73
 0.80�� 33.2
 2.4 2.82
 0.55��

Shr. c. corr. 7.51
 0.53 12.05
 0.88�� 31.7
 2.7 4.54
 0.67��

6 months—no s.s.
Sample 8.57
 0.63 11.85
 0.87 0
 0 3.94
 0.69
SI 7.40
 0.52 11.98
 0.86 �1.7
 1.5 4.92
 0.78�

RMT-0 8.27
 0.62 11.83
 0.86 �0.1
 1.0 4.17
 0.72
RMT-M 8.20
 0.61 11.81
 0.86 0.1
 1.0 4.21
 0.72
UPGMA 9.19
 0.72 11.83
 0.89 0.26
 0.96 3.57
 0.72
WPGMA 8.42
 0.67 11.79
 0.87 0.4
 1.0 3.75
 0.78
Hausdorff 7.45
 0.67 12.04
 0.82 �2.5
 1.5 4.88
 0.83�

Shr. to SI 8.48
 0.61 11.69
 0.87� 1.31
 0.51 3.87
 0.71
Shr. c. cov. 11.79
 0.84 11.84
 0.85 �0.6
 2.2 3.30
 0.63
Shr. c. corr 9.48
 0.71 11.86
 0.93 0.5
 1.1 3.42
 0.73�
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methods perform slightly worse than the others with
respect to risk forecasting.

Note that when T/N� 1, the bad performance of the
sample covariance portfolio, observed when short selling
constraints are not imposed, is no longer present. The no
short selling constraint makes the Markowitz optimiza-
tion procedure essentially equivalent to an optimization
procedure that has been performed with more robust
covariance estimators. Again, this observation is in
agreement with the conclusion that imposing the no
short selling constraint on the portfolio optimization
procedure is somehow equivalent to minimizing estima-
tion errors in the input to the optimization problem
(Jagannathan and Ma 2003).

4.4. Portfolio diversification

One further aspect to investigate concerns the degree of
diversification of the portfolios. As for the realized risk,
for the sample covariance estimator and for any given
covariance estimator, we observe large fluctuations of the
participation ratio as the portfolio estimation time t0
varies. We therefore consider both the mean and the
standard error of Neff for each method across time and the
mean value of Neff=N

ðSÞ
eff � 1 in percentage, where N

ðSÞ
eff is

the participation ratio for the sample covariance portfo-
lio. This variable is a relative measure that quantifies the
portfolio diversification with respect to the diversification
of the benchmark sample covariance portfolio. Also in
this case, we perform a t-test in order to evaluate whether

the observed difference N
ðSÞ
eff �Neff is compatible with a

null hypothesis assuming that its mean value is zero.
In table 4 we report the average and standard error for

Neff and Neff=N
ðSÞ
eff � 1 for the 10 optimization methods

and for T¼ 1 month, 6 months, and 1 year, together with
the related results for the t-test. The table shows different
behavior at different values of the investment time
window T. Specifically, at T¼ 1 month, all methods
present a participation ratio that is higher than that
observed for the sample covariance portfolio. When T¼ 6
months, all methods still outperform the sample covari-
ance with the exception of the shrinkage to constant
correlation. When T¼ 1 year, there are still several
methods that outperform the sample covariance, namely
SI, WPGMA, Hausdorff, shrinkage to single index and
shrinkage to common covariance. The method with the
highest participation ratio at any time horizon is the
shrinkage to common covariance. For example, when
T¼ 1 month it has a participation ratio that is 530%
higher than the sample covariance portfolio, on average.
This high diversification is not shared with the other two
shrinkage methods. This is probably due to the fact that
the target matrix of the shrinkage to common covariance
assumes that all the stocks are equivalent. SI among the
spectral methods and WPGMA among the hierarchical
clustering methods have the highest participation ratio of
the other classes of covariance estimators.

In the above discussion, we have used Neff to quantify
the portfolio diversification under no short selling
constraint. In fact, we have already stated that this

Table 3. Different portfolio performance measures that combine predicted sp
and the realized ŝp annualized risk. Ten different methods are compared for an
horizon of T¼ 1 month. The numbers are averages over the different portfolios
and the errors are standard errors. For ŝp and jŝp� spj we report the result of a
t-test evaluating whether the difference of each quantity and the corresponding
quantity for the sample covariance portfolio has mean value equal to zero. ��The
p-value of the null hypothesis is below the 1% threshold. �The p-value of the null

hypothesis is below the 5% threshold.

sp ŝp 1�
ŝp

ŝðSÞp
jŝp� spj

Month—s.s.
Sample 0
 0 12.59
 0.41 0
 0 12.59
 0.41
SI 4.15
 0.12 11.00
 0.42�� 12.1
 1.5 6.85
 0.37��

RMT-0 3.84
 0.11 10.94
 0.39�� 12.5
 1.4 7.10
 0.34��

RMT-M 3.90
 0.12 10.91
 0.39�� 12.8
 1.4 7.01
 0.34��

UPGMA 5.01
 0.17 11.66
 0.45�� 6.6
 2.1 6.65
 0.38��

WPGMA 4.74
 0.17 11.44
 0.44�� 8.3
 1.9 6.70
 0.37��

Hausdorff 4.98
 0.17 11.62
 0.45�� 7.0
 2.1 6.64
 0.37��

Shr. to SI 3.48
 0.15 11.04
 0.39�� 11.8
 1.2 7.57
 0.35��

Shr. c. cov. 13.1
 0.47 12.44
 0.42 0.5
 1.5 3.64
 0.30��

Shr. c. corr. 5.87
 0.20 11.56
 0.45�� 7.4
 1.9 5.70
 0.37��

Month—no s.s.
Sample 4.38
 0.24 13.09
 0.52 0
 0 8.73
 0.53
SI 5.60
 0.20 11.60
 0.44�� 9.3
 1.4 6.04
 0.39��

RMT-0 5.48
 0.21 11.57
 0.42�� 9.5
 1.2 6.11
 0.38��

RMT-M 5.49
 0.21 11.54
 0.42�� 9.7
 1.2 6.07
 0.38��

UPGMA 7.11
 0.25 11.45
 0.44�� 10.8
 1.3 4.54
 0.37��

WPGMA 6.15
 0.22 11.48
 0.44�� 10.6
 1.2 5.39
 0.38��

Hausdorff 6.73
 0.23 11.53
 0.43�� 10.3
 1.2 4.87
 0.34��

Shr. to SI 5.72
 0.21 11.76
 0.43�� 8.64
 0.91 6.06
 0.38��

Shr. c. cov. 13.39
 0.48 12.74
 0.44 �2.6
 2.6 3.76
 0.30��

Shr. c. corr. 8.20
 0.29 11.56
 0.47�� 10.3
 1.4 3.93
 0.35��
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indicator is not meaningful when short selling is allowed.

For this reason, we now consider the second participation

ratio indicator, N90, introduced above. Table 5 reports the

mean and the standard error of N90 for each method

averaged across investment time and, as before, a relative

measure both when short selling is allowed and when it is

forbidden. We also perform a t-test to evaluate whether

the difference N
ðSÞ
90 �N90 has a mean value significantly

different from zero.

When short selling is not allowed, N90 gives results very

close to those observed for Neff. In fact, when T¼ 1

month, all the methods give a portfolio more diversified

than that obtained with the sample covariance. When

T¼ 6 months, all the methods outperform sample covari-

ance with the exception of shrinkage to constant corre-

lation and UPGMA, whereas when T¼ 1 year, only

WPGMA, Hausdorff and shrinkage to common covari-

ance still outperform sample covariance. When short

Table 4. Absolute and relative participation ratio measure Neff of the portfolios obtained
with the 10 covariance estimators for different horizons of T¼ 1, 6 and 12 months. Short
selling is not allowed. The numbers are averages over the different portfolios and the errors
are standard errors. For Neff we report the result of a t-test evaluating whether the difference
with the corresponding quantity for the sample covariance portfolio has mean value equal to
zero. ��The p-value of the null hypothesis is below the 1% threshold. �The p-value of the null

hypothesis is below the 5% threshold.

One month Six months One year

Neff
Neff

NðSÞ
eff

� 1 Neff
Neff

NðSÞ
eff

� 1 Neff
Neff

NðSÞ
eff

� 1

Sample 6.80
 0.22 0.0
 0.0 9.8
 1.0 0.0
0.0 9.9
 1.5 0.0
 0.0
SI 14.91
 0.98�� 104.0
 8.4 14.0
 2.1�� 36.8
 7.5 13.8
 2.7 33.4
 9.2�

RMT-0 13.45
 0.80�� 85.4
 6.2 11.2
 1.3�� 13.4
 2.7 10.6
 1.7 6.8
 4.0
RMT-M 13.63
 0.81�� 87.9
 6.2 11.6
 1.3�� 16.9
 2.9 10.9
 1.7 10.1
 4.0
UPGMA 8.90
 0.44�� 26.5
 3.5 10.2
 1.1�� 5.1
 3.7 10.7
 1.8 6.7
 4.6
WPGMA 11.62
 0.53�� 67.6
 4.3 12.1
 1.1�� 26.3
 5.2 13.0
 1.9 30.5
 3.6��

Hausdorff 9.55
 0.34�� 42.4
 3.3 13.1
 1.4�� 36.0
 5.5 13.0
 1.8 34.9
 4.6��

Shr. to SI 11.7
 0.67�� 60.9
 5.1 11.3
 1.4�� 11.8
 2.2 10.7
 1.8 7.3
 1.8��

Shr. c. cov. 37.3
 1.4�� 530
 45 18.9
 1.5�� 159
 64 15.5
 1.8 100
 51��

Shr. c. corr. 7.64
 0.43�� 7.5
 3.8 10.1
 1.2 �0.1
 2.6 10.0
 1.7 �1.3
 2.8

Table 5. Absolute and relative participation ratio measure N90 of the portfolios obtained with the 10
covariance estimators for different horizons of T¼ 1, 6 and 12 months. Short selling is not allowed. The
numbers are averages over the different portfolios and the errors are standard errors. For N90 we report the
result of a t-test evaluating whether the difference with the corresponding quantity for the sample
covariance portfolio has mean value equal to zero. ��The p-value of the null hypothesis is below the 1%

threshold. �The p-value of the null hypothesis is below the 5% threshold.

One month Six months One year

N90
N90

N
ðSÞ
90

� 1 N90
N90

N
ðSÞ
90

� 1 N90
N90

N
ðSÞ
90

� 1

Short selling
Sample 59.41
 0.18 0.0
 0.0 56.81
 0.52 0.0
 0.0 55.3
 0.99 0.0
 0.0
SI 52.85
 0.31�� �10.95
 0.59 55.48
 0.71 �2.2
 1.4 55.1
 1.2 �0.3
 1.6
RMT-0 53.87
 0.29�� �9.23
 0.54 55.57
 0.67 �2.1
 1.2 55.1
 0.95 �0.2
 1.6
RMT-M 53.85
 0.29�� �9.26
 0.54 55.38
 0.68� �2.4
 1.2 55.1
 0.97 �0.2
 1.6
UPGMA 52.27
 0.29�� �11.91
 0.55 54.57
 0.49�� �3.8
 1.1 55.6
 0.97 0.7
 1.9
WPGMA 51.64
 0.28�� �12.96
 0.56 54.14
 0.67�� �4.6
 1.3 54.9
 1.0 �0.6
 2.0
Hausdorff 52.03
 0.26�� �12.31
 0.52 52.48
 0.70�� �7.6
 1.2 53.7
 1.1 �2.7
 2.1
Shr. to SI 53.45
 0.29�� �9.97
 0.50 54.38
 0.63�� �4.2
 1.0 55.0
 1.1 �0.5
 1.5
Shr. c. cov. 60.89
 0.35�� 2.57
 0.61 57.81
 0.49 1.9
 1.3 57.2
 1.0 3.6
 2.1
Shr. c. corr 52.97
 0.31�� �10.71
 0.62 53.95
 0.64�� �5.0
 1.1 54.6
 1.0 �1.24
 0.94

No short selling
Sample 8.40
 0.19 0.0
 0.0 12.81
 1.00 0.0
 0.0 13.4
 1.5 0.0
 0.0
SI 18.9
 1.1�� 113.3
 8.2 17.0
 2.0�� 31.1
 7.6 16.4
 2.6 18.7
 8.0
RMT-0 17.21
 0.85�� 95.9
 6.1 13.8
 1.2� 8.9
 4.0 13.4
 1.7 �0.7
 3.7
RMT-M 17.40
 0.85�� 98.3
 6.0 14.3
 1.2�� 12.5
 3.9 13.9
 1.7 3.1
 3.3
UPGMA 11.55
 0.48�� 33.3
 3.4 12.9
 1.1 �0.8
 3.6 13.2
 1.9 �4.5
 5.0
WPGMA 15.39
 0.59�� 79.8
 4.4 15.6
 1.2�� 23.5
 5.7 16.1
 1.7�� 20.5
 3.4
Hausdorff 12.61
 0.34�� 51.5
 2.9 17.4
 1.4�� 37.4
 4.9 16.4
 1.4�� 25.7
 4.9
Shr. to SI 15.24
 0.74�� 72.4
 5.2 14.6
 1.4�� 12.5
 3.0 14.4
 1.9 5.7
 2.7
Shr. c. cov. 37.4
 1.2�� 363
 20 21.3
 1.3�� 85
 22 18.8
 1.7�� 46
 10
Shr. c. corr 10.00
 0.51�� 14.3
 3.9 12.7
 1.3 �4.2
 4.0 13.5
 1.9 �1.8
 4.8
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selling is allowed, the sample covariance estimator pro-
vides portfolios characterized by a N90 value slightly
higher or statistically compatible with the value observed
for the other methods. The only exception is shrinkage to
common covariance when T¼ 1 month but, also in
this case, the difference observed, although statistically
validated, is very small.

In summary, when short selling is allowed the weights
have a similar structure independently of the method, and
the wealth (positive or negative) is roughly concentrated
in 55 stocks. When short selling is not allowed, a
large variety of behavior is observed depending on the
method and on the investment time horizon. In general,
the shrinkage to common covariance method has the
largest participation ratio.

When short selling is allowed, it is also worth analysing
the amount of short selling required by the optimization
procedures of the global minimum variance portfolio.
To quantify this aspect, in figure 3 we show, for each
method, the average value of the ratio w�/wþ, where w� is
the sum of the absolute value of all negative weights
present in the portfolio and wþ is the sum of all positive
weights. The ratio w�/wþ ranges from 0 (absence of short
selling) to about 1 (negative weights of the same size as
positive weights).

Figure 3 shows that the sample covariance estimator
gives the highest fraction of short selling positions.
This property is maximal when T/N� 1. All the
other methods present a significantly lower mean value
of w�/wþ. The specific values depend on the specific
covariance estimation method and are slightly affected by
the value of the investment horizon T. In fact, a slight
increase of w�/wþ is observed when T is increasing.
The lowest value w�/wþ� 0.28 is observed for the SI
model, whereas the highest value w�/wþ� 0.40 is
observed for the shrinkage to constant correlation
method. The region of worst performance of the sample

covariance portfolio is therefore associated with the
maximal amount of portfolio wealth allocated in stocks
that need to be sold short.

These results provide empirical support for the conclu-
sion that the sample covariance portfolio in the presence
of short selling suffers an overexposure to short selling.
This overexposure is maximal when T/N� 1 and is
progressively mitigated both when T4N and when
T5N. On the contrary, reducing the estimation errors
on the covariance matrix estimation implicitly limits the
amount of short selling positions requested in the optimal
portfolio. According to the results obtained by
Jagannathan and Ma (2003) and the empirical results
obtained in this study, we observe that the reverse is also
true. In fact, imposing no short selling conditions on the
sample covariance portfolio reduces the estimation errors
in the covariance matrix for any value of T, and especially
when T/N� 1. Finally, it has been suggested (Schäfer et
al. 2010) that the no short selling constraint acts in
a similar way as shrinkage estimators only when corre-
lations are positive (as in our investigated set). We have
performed a portfolio optimization on synthetic multi-
variate time series of returns with negative correlations.
For sample covariance portfolios, we have found that the
no short selling constraint reduces the realized risk also in
the presence of negative correlations. Moreover, in some
cases, we observe that shrinkage portfolios where short
selling is allowed have a detectably smaller realized risk
than the corresponding sample covariance portfolio
without the no short selling constraint. However, these
results depend on the specific model used to generate the
multivariate time series and on the time horizon. Further
work is needed to fully clarify this important aspect.

5. Conclusions

The portfolio optimization problem is significantly
affected by estimation errors of the covariance matrix.
For this reason, many estimators alternative to the sample
covariance matrix have been proposed in the literature. In
this respect, two important and related questions are:
(i) which aspects of the portfolio optimization can be
improved with improved covariance matrix estimators?;
and (ii) when, i.e. under which conditions, are improved
covariance estimators really useful in enhancing the
performance of the corresponding optimal portfolios?
We have investigated these questions by considering nine
different methods for estimating the covariance matrix
and we have quantitatively compared the relative effi-
ciency of the corresponding portfolios with respect to the
benchmark sample covariance portfolio on a series of
repeated investment exercises over 11 years. The portfolio
optimization has been performed under different condi-
tions: different estimation-investment horizons T, i.e.
different values of T/N (N¼ 90), and the presence/absence
of short selling constraints. Despite the realized risk and
the degree of portfolio diversification of the resulting
portfolios constructed with the different covariance
estimators show large fluctuations, the relative

Portfolio horizon (month)

W
–/

W
+

Figure 3. Mean value of the ratio w�/wþ between the sum of the
absolute value of negative weights and the sum of positive
weights for the portfolios obtained with the 10 different methods
as a function of the horizon T.
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performances of the different methods turn out to be
quite persistent over time. Under different market condi-
tions, certain persistent behavior can be observed. For a
specific choice of both the length of the estimation-
investment horizon and the presence/absence of con-
straints on short selling, an estimator might be useful in
improving a specific aspect of the optimization, but under
a different choice the same method might not lead to a
significant improvement of the same aspect.

Specifically, when T/N41, various covariance estima-
tors lead to optimal portfolios with similar realized risk
and portfolio diversification. In this regime, the sample
covariance portfolio has an overall good performance
both with and without short selling constraints. When
short selling is allowed, a portfolio less risky than the
sample covariance portfolio can be obtained using
improved covariance estimators, and, when short selling
is forbidden, the investigated estimators are not able to
reduce the risk of the portfolio with respect to the sample
covariance portfolio. In this last case, some covariance
estimators lead to higher portfolio diversification.

On the other hand, when T/N is close to 1, portfolio
performances are greatly influenced by the addition of no
short selling constraints. Specifically, when short selling is
allowed, we observe how the sample covariance portfolio
has the worst performance. This result is consistent with
the theoretical observations given by Jagannathan and
Ma (2003) and with the observation of the divergence of
estimation errors of the covariance matrix associated with
this regime (Pafka and Kondor 2002, 2003, Papp et al.
2005, Kondor et al. 2007). Under this condition, all the
investigated covariance estimators provide portfolios with
lower realized risk, greater reliability and smaller expo-
sure to short selling. Their performances are quite similar
with respect to realized risk, reliability and portfolio
diversification, but differences are observed with respect
to the degree of exposure to short selling. When no short
selling constraints are applied, we observe a different
scenario. All covariance estimators lead to portfolios with
realized risks and reliabilities that are statistically consis-
tent with those obtained for the sample covariance
portfolio. However, portfolios constructed with the
investigated methods have a higher degree of diversifica-
tion than those observed for the sample covariance one.
This result is consistent with the theoretical and empirical
conclusions reached by Jagannathan and Ma (2003),
where it was shown that adding short selling constraints
to the sample covariance portfolios can have the same
effect as using a better estimate of the covariance matrix
(using the shrinkage estimator in their case). Our results
suggest that, indeed, this conclusion successfully applies
also to other covariance estimators such as the methods
investigated in this paper.

When T/N is less than one, the worst performance with
respect to realized risk is obtained for the sample
covariance and shrinkage to common covariance portfo-
lios. This result indicates that one should not use the
sample covariance matrix in this regime (with or without
short selling). Also, the use of the pseudo-inverse gives
portfolios with very poor performance. All the other

methods lead to portfolios with better performances with
respect to realized risk and reliability in realized risk
forecasts both in the presence and in the absence of short
selling. When the no short selling constraint is imposed,
portfolio diversification is better achieved when filtered
covariance estimators are used. This last observation is
also true for the shrinkage to common covariance
estimator both when short selling is allowed and when it
is forbidden. Indeed, this method presents the highest
degree of portfolio diversification. It is therefore worth
noting that the observation that the sample covariance
and shrinkage to common covariance portfolios are
characterized by similar values of the realized risk does
not imply that they have a similar composition. In fact,
the portfolio obtained with the shrinkage to common
covariance method is systematically more diversified. The
conclusion reached by Jagannathan and Ma (2003) and
empirically observed by the present authors when T/N� 1
does not seem to hold when T/N is less than one. In fact,
portfolios obtained with the sample covariance estimator
are characterized by realized risks, reliability of risk
forecasts and portfolio diversification that are worse than
most of other methods based on covariance estimators
also when short selling is forbidden.

In summary, the use of efficient covariance estimators
improves different aspects of the portfolio optimization
process. The degree of improvement depends on the
selected method, the value of the parameter T/N, and the
presence or absence of the no short selling constraint.
The improvements achieved refer to one or more of the
following key portfolio indicators: (i) realized risk,
(ii) reliability of realized risk predictions, (iii) degree of
portfolio diversification and (iv) fraction of short selling
when short selling is allowed.
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