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A B S T R A C T   

Background: Residential greenness has been associated with health benefits, but its biological mechanism is 
largely unknown. Investigation of greenness-related DNA methylation profiles can contribute to mechanistic 
understanding of the health benefits of residential greenness. 
Objective: To identify DNA methylation profiles associated with greenness in the immediate surroundings of the 
residence. 
Methods: We analyzed genome-wide DNA methylation in 1938 blood samples (982 participants) from the Swiss 
Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We estimated residential 
greenness based on normalized difference vegetation index at 30 × 30 m cell (green30) and 500 m buffer 
(green500) around the residential address. We conducted epigenome-wide association study (EWAS) to identify 
differentially methylated CpGs and regions, and enrichment tests by comparing to the CpGs that previous EWAS 
identified as associated with allergy, physical activity, and allostatic load-relevant biomarkers. 
Results: We identified no genome-wide significant CpGs, but 163 and 56 differentially methylated regions for 
green30 and green500, respectively. Green30-related DNA methylation profiles showed enrichments in allergy, 
physical activity, and allostatic load, while green500-related methylation was enriched in allergy and allostatic 
load. 
Conclusions: Residential greenness may have health impacts through allergic sensitization, stress coping, or 
behavioral changes. Exposure to more proximal greenness may be more health-relevant.   

1. Introduction 

Residential greenness has emerged as one of the determinants of the 
environmental burden of disease, with increasing evidence on its links 
with well-being and disease states. Health benefits of green areas in 
residential surroundings have been shown for general and mental health 
(Dadvand et al. 2016; Engemann et al. 2019; McEachan et al. 2016), 
sleep duration and quality (Astell-Burt et al. 2013; Grigsby-Toussaint 

et al. 2015), cognitive function (de Keijzer et al. 2018; Zhu et al. 
2019), birth weight (Dzhambov et al. 2014), adiposity (Lovasi et al. 
2013; Sarkar 2017), and all-cause mortality (Rojas-Rueda et al. 2019; 
Vienneau et al. 2017). 

The mechanisms underlying the health benefits of greenness are not 
yet understood, but are thought to act via reduction of psychosomatic 
stress (Engemann et al. 2019; Hartig et al. 2014; Van den Berg et al. 
2015), promotion of physical activity (Bancroft et al. 2015; Hooper et al. 
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2020; James et al. 2016), improvements in immune function (Kuo 
2015), and reduced allostatic load (Egorov et al. 2017; Egorov et al. 
2020; Ribeiro et al. 2019b). Yet, our understanding of the biological 
mechanisms driving the reported associations of these environmental 
attributes to health outcomes remains limited (Dzhambov et al. 2020; 
Kuo 2015; Markevych et al. 2017). 

DNA methylation provides an essential tool in investigating the 
mechanistic linkage of environmental exposures to disease as it in-
fluences the expression of downstream molecules that drive disease 
development or progression (Keil and Lein 2016; Meehan et al. 2018). 
No study to date has investigated the association of residential greenness 
on the DNA methylome, despite the plausibility that greenness could 
influence DNA methylation and downstream health outcomes. First, 
greenness, in part, influences health via interactions with physical and 
chemical environmental factors that have been shown to influence DNA 
methylation (Alfano et al. 2018; Commodore et al. 2018; Guo et al. 
2017; Rider and Carlsten 2019). Second, neighborhood deprivation, 
which often correlates negatively with greenness in urban areas (Astell- 
Burt et al. 2014), has also been reported to influence DNA methylation in 
recent studies (Giurgescu et al. 2019; Smith et al. 2017). Third, DNA 
methylation changes have been linked to physical activity (Fernández- 
Sanlés et al. 2020), allergy (Peng et al. 2019), and immune responses 
(Mendelson et al. 2018), which constitute potential pathways linking 
greenness to health. Therefore, investigating the link of greenness to 
DNA methylation could contribute to the much-needed understanding of 
the biological mechanisms linking greenness to downstream pheno-
types, as well as identify shared or unique pathways in comparison to co- 
occurring and correlated exposures. 

In this study we aimed to identify DNA methylation profiles associ-
ated with greenness in the immediate surroundings of the residence. 
While agnostic genome-wide investigation of DNA methylation offers 
the chance to identify novel biomarkers, the biological relevance of such 
results are often not straightforward. Changes in DNA methylation may 
or may not have regulatory functions on gene expression. As an attempt 
to provide more meaningful biological interpretation of the EWAS re-
sults, we curated candidate pathways (including allergy, physical ac-
tivity and allostatic load, which capture the hypothesized greenness 
mechanisms) based on previously published EWAS, and tested enrich-
ment of our EWAS results in these pathways. 

2. Methods 

2.1. Study population 

The epigenetic analysis was conducted in SAPALDIA (Swiss Cohort 
Study on Air Pollution and Lung and Heart Diseases in Adults) in the 
context of the ALEC (Aging Lungs in European Cohorts) study. The 
protocol of SAPALDIA has been described previously (Ackermann-Lie-
brich et al. 2005; Martin et al. 1997). In brief, SAPALDIA was initiated in 
1991 recruiting 9651 adults from eight areas representing diverse ge-
ography, meteorology, and urbanization in Switzerland. Out of the 9651 
participants, 8047 and 6088 were followed-up in 2001–2003 (SAPAL-
DIA2) and 2010–2011 (SAPALDIA3), respectively. Blood samples were 
collected and biobanked (− 80 ◦C) at SAPALDIA2 and SAPALDIA3. In the 
context of the ALEC study, repeated blood samples at SAPALDIA2 and 
SAPALDIA3 from 987 representative participants (contributing 1974 
samples) were analyzed for genome-wide DNA methylation (Imboden 
et al. 2019). This study investigated 982 participants (contributing 1938 
samples) with full information on greenness and all covariates as well as 
DNA methylome available either at SAPALDIA2 or SAPALDIA3 or at 
both. Table 1 summarizes the study sample characteristics. SAPALDIA 
study protocol was approved by the Swiss Academy of Medical Sciences 
and the regional committees of the participating cantons. All partici-
pants provided written informed consent at enrolment. 

2.2. DNA methylation 

Genome-wide DNA methylation was measured in the repeated pe-
ripheral blood samples, using Illumina Infinium HumanMethylation450 
BeadChip (Illumina, San Diego, CA, USA) following manufacturer’s 
protocol. Repeated blood samples were arranged across the arrays to 
minimize batch effect. DNA methylation data were processed using R 
package “minfi” (Aryee et al. 2014). Samples with sex mismatch were 
excluded. After background and dye-bias was corrected using Noob 
(normal-exponential out-of-band) procedure (Triche et al. 2013), 
β–values were computed as the ratio of methylated intensity over total 
intensity with offset 100. β–values with detection p > 10− 16 were set to 
missing. Probes with call rate < 0.95 were excluded. Samples with call 
rate < 0.95 were prespecified to be excluded but none of the samples had 
a call rate < 0.95. Illumina probe design bias was corrected by applying 
beta-mixture quantile normalization (BMIQ) (Teschendorff et al. 2013). 
The probes previously reported as non-specific or targeting polymorphic 
sites were excluded (Chen et al. 2013). We only used autosomal chro-
mosome probes in this study. 433,741 CpGs were examined in this 
study. 

2.3. Greenness estimates 

Normalized difference vegetation index (NDVI) during summer was 
calculated from cloud- and snow-free satellite images covering the entire 
surface of Switzerland in 2014 (Vienneau et al. 2017). Residential 
greenness was assessed in two different metrics to represent immediate 
surrounding and local neighborhood separately. “Green30” was defined 
as the mean NDVI of the 30 × 30 m cell in which the participant’s home 
address was located. “Green500” was defined as the mean NDVI of 500 
m circular “buffer” (using focal functions in ArcGIS) around partici-
pant’s home address with the 30 × 30 m cell at the center excluded 
(donut-shaped), to ensure independence of the two residential greenness 
metrics. 

Table 1 
Study sample characteristics.   

SAPALDIA2 SAPALDIA3 

N 972 966 
Age [years] 50.2 (17.8) 58.5 (17.6) 
Female 521 (53.6) 518 (53.6) 
Education    

Low 54 (5.6) 54 (5.6)  
Middle 634 (65.2) 634 (65.6)  
High 284 (29.2) 278 (28.8) 

Neighborhood SEP index [%] 64.4 (13.2) 64.4 (13.2) 
Smoking status    

Never 402 (41.4) 394 (40.8)  
Former 294 (30.2) 355 (36.7)  
Current 276 (28.4) 217 (22.5) 

Pack-years smoked 2.0 (18.4) 2.5 (21.1) 
Second-hand smoking 257 (26.4) 136 (14.1) 
Green30 0.583 (0.292) 0.592 (0.275) 
Green500 0.588 (0.161) 0.594 (0.161) 
Pearson correlation between Green30 and 

Green500 
0.64 0.62 

PM2.5 [μg/m3] 14.4 (4.7) 14.5 (1.5) 
NO2 [μg/m3] 20.4 (14.3) 16.7 (8.9) 
Aircraft Lden [dB] 30.0 (9.7) 30.5 (8.3) 
Railway Lden [dB] 30.4 (11.0) 30.0 (7.2) 
Road traffic Lden [dB] 53.8 (10.9) 54.0 (11.0) 

Data are presented as count (%) or median (interquartile range). Green30: mean 
normalized difference vegetation index (NDVI) of the 30 × 30 m cell in which 
participant’s home address was located; Green500: mean NDVI of 500 m circular 
buffer around participant’s home address with the 30 × 30 m cell at the center 
excluded; NO2: nitrogen dioxide; PM2.5: particulate matter with aerodynamic 
diameter < 2.5 μm; SEP: socio-economic position. 
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2.4. Covariates 

We a priori considered a set of covariates as confounders of the as-
sociation between greenness and DNA methylation. These included age 
(years), sex (male/female), study area (Basel/Wald/Davos/Lugano/ 
Montana/Payerne/Aarau/Geneva), education level (primary school 
(“low”); secondary/middle school or apprenticeship (“middle”); college 
or university (“high”)), neighborhood index of socio-economic position 
(SEP) (%) (derived from a principal component analysis of education, 
occupation, and housing variables from Switzerland census in 2000 
(Panczak et al. 2012)), smoking status (never/former/current), pack- 
years smoked (calculated from self-reported information on cigarettes 
smoked per day and smoking history), second-hand smoke exposure 
(yes/no), residential exposure to particulate matter with aerodynamic 
diameter < 2.5 μm (PM2.5) (annual mean exposure derived from Pol-
luMap, national air pollution dispersion models for Switzerland in 2000 
and 2010 (FOEN 2013)), residential exposure to nitrogen dioxide (NO2) 
(annual mean exposure derived from land use regression models in 2000 
(Liu et al. 2012) and biennial mean exposure derived from land use 
regression models in 2010–2011 (Eeftens et al. 2016)), residential 
exposure to transportation noise (annual average day-evening-night 
noise from aircraft, railway, or road traffic (Karipidis et al. 2014)), 
and season of the blood draw (Spring/Summer/Autumn/Winter). In 
addition, leukocyte composition (B cells, CD4+ T cells, CD8+ T cells, 
monocytes, natural killer cells, neutrophils, and eosinophils) estimated 
from DNA methylation using “estimateCellcounts” function imple-
mented in the “minfi” package (Aryee et al. 2014) was included to 
prevent EWAS findings from capturing leukocyte composition changes 
instead of greenness-induced DNA methylation changes. 

2.5. Statistical analysis 

Fig. 1 describes the analysis scheme. Genome-wide DNA methylation 
data was measured in SAPALDIA. Data from the public repository of 
EWAS results (EWAS Atlas) (Li et al. 2019) and expression quantitative 
trait methylation (eQTM) data identified from the biobank-based inte-
grative omics studies (BIOS) (Bonder et al. 2016) was used to interpret 
the findings from the SAPALDIA DNA methylome analysis. 

2.5.1. EWAS 
β-values were first regressed on 30 principal components derived 

from principal component analysis on 220 control probes incorporated 
on the Illumina 450 k array (Lehne et al. 2015). The residuals, pre-
sumably free from technical bias, were used as the DNA methylation 
values throughout the EWAS and referred to as DNAme in this manu-
script. To minimize the effect of extreme values of DNAme (defined as 3 
interquartile range (IQR) above or below the IQR for each probe) on the 
linear regressions, we identified these extreme values and replaced them 
with the corresponding threshold values for each probe. For 95% of all 
CpGs, we identified and replaced extreme values from less than 5% of 
the 1938 samples. DNAme was then regressed on both green30 and 
green500, after adjustment for the covariates listed above. We applied 
mixed models to address repeated measurement with a random inter-
cept assigned to each participant. CpGs for which DNAme showed an 
association with greenness with Benjamini-Hochberg corrected p-value 
< 0.05 were declared genome-wide significant. 

2.5.2. Differentially methylated regions (DMRs) 
Given that DNA methylation patterns on neighboring CpGs often 

reflect regional changes in epigenetic state, we searched for DMRs using 
“DMRcate” R package (Peters et al. 2015). Gaussian kernel was used to 
transform z-statistics from EWAS into smoothed estimates. P-values 
were computed by comparing each point to the null distribution of the 
smoothed estimates. The regions containing at least one CpG with 
Benjamini-Hochberg corrected p-value < 0.05 defined DMRs. 

2.5.3. Pathway enrichment tests of EWAS results 
EWAS results are often translated at gene level by annotating CpGs to 

the nearest gene, which in turn are compared to pathway databases. 
However, DNA methylation does not always act through regulating 
nearest genes. In order to avoid this bias and to make the best use of the 
increasing EWAS literature, we curated pathways based on previously 
published EWAS (using data from the EWAS Atlas (Li et al. 2019)), and 
made direct comparison to our EWAS results. As most relevant for 
greenness exposure, we a priori considered allergy, physical activity, 
and allostatic load-related pathways. Search terms used to identify 
relevant EWAS results include: “rhinitis”, “hay fever”, “respiratory al-
lergies”, “atopy”, “skin prick test”, “allergic sensitization”, “eczema”, 
and “IgE” for allergy; “physical activity” and “exercise” for physical 

Fig. 1. Analysis scheme. BIOS: biobank-based integrative omics studies; DAVID: Database for annotation, visualization, and integrated discovery; DMRs: Differ-
entially Methylated Regions; eQTM: expression quantitative trait methylation; EWAS: Epigenome-Wide Association Study; SAPALDIA: Swiss Cohort Study on Air 
Pollution and Lung and Heart Diseases in Adults; WKS: Weighted Kolmogorov-Smirnov test. 
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activity. We included EWAS results regardless of the tissue and the array 
used in the study, except we excluded one study on sperm. Allostatic 
load pathway was curated in a recent SAPALDIA study (Eze et al. 2020), 
where it proved to be relevant to traffic noise-related changes in DNA 
methylation profiles. We retrieved the CpGs with a p-value threshold <
1.1e-5 except for CRP-related CpGs which were identified with p-value 
< 1.15e-7 by additional literature search. Finally, “Allergy” pathway 
was curated as 3736 CpGs reported as associated with atopy or allergic 
sensitization. “Physical activity” pathway was curated as 361 CpGs re-
ported as associated with physical activity or exercise. “Allostatic load” 
pathway consisted of multiple sub-pathways reflecting either immuno-
logical (“C-reactive protein (CRP)” as 258 CpGs associated with CRP), 
metabolic (“Metabolic syndrome” as 10 CpGs associated with metabolic 
syndrome; “Lipid” as 16 CpGs associated with blood triglycerides or 
high-density lipoprotein cholesterol; “Impaired fasting glucose (IFG)” as 
9 CpGs associated with impaired fasting glucose or HbA1c; “Insulin” as 
175 CpGs associated with insulin level or insulin resistance; “Central 
obesity” as 170 CpGs associated with abdominal obesity, waist 
circumference, or visceral adipose tissue; “Body mass index (BMI)” as 
919 CpGs associated with BMI or general obesity), renal (“Kidney 
function” as 297 CpGs associated with estimated glomerular filtration 
rate or chronic kidney disease), and cardiovascular and autonomic 
nervous system (“Blood pressure” as 20 CpGs associated with systolic or 
diastolic blood pressure; “Cardiac autonomic function” as 8 CpGs asso-
ciated with cardiac autonomic responses). The entirety of the 1675 CpGs 
in the 10 sub-pathways constituted “Allostatic load” pathway. The 

candidate pathways and their curation are summarized in Table 2 and 
supplementary Table S1. We applied the Weighted Kolmogorov- 
Smirnov test (Charmpi and Ycart 2015) to examine enrichments of the 
EWAS results in the candidate pathways. This algorithm produces null 
distribution by 10,000 Monte-Carlo simulations from the genome-wide 
z-statistics and compares the set of z-statistics mapped to each 
pathway with the null distribution. The pathway was declared enriched 
if Kolmogorov-Smirnov p-value < 0.05 after permutation-based multi-
ple testing correction. 

2.5.4. Pathway enrichment tests of DMRs 
DMR analysis itself seeks a functional interpretation of the DNA 

methylation profiles, searching for a set of neighboring CpGs instead of a 
single CpG that is associated with the phenotype of interest. DMRs, 
however, do not necessarily constitute functional entities and they are 
often only annotated to the nearest genes. To derive more functional 
interpretation of the DMRs, we tested the same hypothesis in parallel to 
the EWAS results. All CpGs and DMRs were consistently annotated to 
genes with the closest transcription start site (TSS) using HOMER v4.11 
(Heinz et al. 2010) so that the enrichment of the aforementioned 
candidate pathways could be examined at gene level. We applied 
Fisher’s exact test to determine the gene-level enrichments. The 
pathway was declared enriched if Benjamini-Hochberg corrected p- 
value < 0.05. 

2.5.5. Comparison to expression quantitative trait methylation (eQTM) 
A challenge in interpretation of EWAS findings lies in the limited 

understanding of the regulatory functions of CpGs. Study of eQTMs can 
shed light on the effect of DNA methylation on gene expression. We took 
advantage of a public repository of cis-eQTM (+/– 250 kb) identified in 
the BIOS study (Bonder et al. 2016) (available from 
https://genenetwork.nl/biosqtlbrowser/) to understand the functional 
implications of greenness-related DNA methylation profiles. 12,809 cis- 
eQTMs with FDR < 0.05 were identified in whole blood samples from 
adult cohorts in BIOS by examining genome-wide DNA methylation and 
gene expression profiles from 2101 samples. First, we compared the 
CpGs in the candidate pathways with the BIOS eQTM. The genes regu-
lated by the eQTMs overlapping with the CpGs in the candidate path-
ways were further interrogated for enrichments in KEGG pathways using 
Database for annotation, visualization, and integrated discovery 
(DAVID) (Dennis et al. 2003). Second, the Weighted Kolmogorov- 
Smirnov test of the EWAS results were repeated after restriction to 
pathway CpGs that were also eQTMs in the BIOS dataset. 

2.6. Role of the funding source 

This study was funded by the European Union’s Horizon 2020 
Research and Innovation programme. The funding body has no role in 
study design, data collection, analysis, interpretation, writing of the 
manuscript, and decision to submit the paper for publication. 

3. Results 

3.1. EWAS and DMR analysis 

EWAS found no genome-wide significant associations but seven and 
nine non-overlapping suggestive signals with p < 1e-05 for green30 and 
green500 respectively. All the EWAS signals with p < 1e-04 are listed in 
the supplementary Tables S2 and S3. We identified 163 and 56 DMRs for 
green30 and green500, respectively (supplementary Tables S4 and S5). 
The DMRs for green30 and green500 largely differed with only 6 DMRs 
identified for both green30 and green500. Approximately half of the 
DMRs are located in promoter region or exon of a protein-coding gene 
(74 out of 163 DMRs for green30 and 30 out of 56 for green500). 

Table 2 
Candidate pathways compared to BIOS eQTM.  

Candidate 
pathway 

#CpGs 
a 

#eQTMb (%; 
Fisher’s exact 
test p-value) 

Top 3 KEGG pathways enriched 
for the genes annotated to the 
eQTM c 

Allergy 3736 260 (7%; 4.1e- 
41) 

Herpes simplex infection; 
Pertussis; Pathways in cancer 

Physical 
activity 

361 17 (5%; 0.021) Antigen processing and 
presentation; Phagosome; 
Herpes simplex infection 

Allostatic load 1675 231 (14%; 3.1e- 
90) 

Antigen processing and 
presentation; Phagosome; Graft- 
versus-host disease 

CRP 258 57 (22%; 1.5e- 
34) 

TNF signaling pathway; Insulin 
signaling pathway 

Metabolic 
syndrome 

10 3 (30%; 0.0021) N/A 

Lipid 16 7 (44%; 1.0e-07) Insulin resistance; AMPK 
signaling pathway 

Impaired 
fasting 
glucose 

9 4 (44%; 6.2e-05) N/A 

Insulin 175 7 (4%; 0.34) Staphylococcus aureus infection; 
Complement and coagulation 
cascades; Pertussis 

Central obesity 170 27 (16%; 2.2e- 
13) 

Antigen processing and 
presentation; Graft-versus-host 
disease; Phagosome 

BMI 919 147 (16%; 9.2e- 
67) 

Antigen processing and 
presentation; Epstein-Barr virus 
infection; Herpes simplex 
infection 

Kidney 
function 

297 38 (13%; 5.0e- 
15) 

N/A 

Blood pressure 20 6 (30%; 1.1e-05) N/A 
Cardiac 

autonomic 
function 

8 0 (0%; 1.00) N/A  

a Number of CpGs identified from EWAS catalog as associated with relevant 
phenotypes. 

b Number of CpGs associated with the phenotype that overlap with eQTM 
identified by BIOS. 

c DAVID enrichment test for the genes regulated by the eQTMs overlapping 
with the CpGs in each candidate pathway. 
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3.2. Pathway enrichments 

We tested enrichments of the candidate pathways of our own cura-
tion for both EWAS results and DMRs. Comparison was at the CpG level 
for EWAS results and at the gene level for DMRs, after both the CpGs in 
the candidate pathways and DMRs were annotated to the genes with 
nearest TSS. 

“Allergy” was consistently enriched for both green30 and green500 
in both EWAS results and DMRs. “Physical activity” was enriched for 
green30 in both EWAS and DMRs, but not for green500. “Allostatic load” 
showed enrichment for green30 DMRs and also for green500 EWAS and 
DMRs (Table 3). The sub-pathways constituting “Allostatic load” 
showed sporadic enrichment (Table S6). “CRP”, “BMI”, and “Cardiac 
autonomic function” were enriched only for green30 DMRs and 
“Metabolic syndrome” only for green30 EWAS results. “Insulin” and 
“Kidney function” were enriched only for green500 DMRs. 

3.3. Comparison to BIOS eQTM 

All the candidate pathways examined in this study showed over- 
representation of eQTM except for “Insulin” and “Cardiac autonomic 
function” (Table 2). We observed highest overlap with eQTM in “Lipid” 
(7 out of 16) and “Impaired fasting glucose” (4 out of 9). 

The genes regulated by the overlapping eQTM in the candidate 
pathways often showed over-representation in infectious diseases or 
immune related KEGG pathways (Table 2; for the full DAVID results see 
supplementary Tables S7-S14). When the pathway enrichment test of 
EWAS results was restricted to the eQTM, however, no pathway showed 
enrichment except “CRP” in green500 (Table 4 and S15). 

4. Discussion 

Green30 and green500 differ in their association with DNA methyl-
ation pattern, despite the high degree of correlation between these ex-
posures (Pearson correlation coefficient > 0.6; see Table 1). Only a small 
fraction of the associated CpGs and DMRs in the EWAS for green30 and 
green500 overlapped (1/56 CpGs and 6/163 DMRs overlapped; see 
Table S2-S5). Green30 showed stronger evidence of enrichment (smaller 
p-values) than green500 consistently across all candidate pathways, 
regardless of being tested in EWAS results or DMRs, except for “Allo-
static load” in EWAS results. 

Allergy has been associated with greenness exposure, presumably via 
sensitization to allergens produced by specific vegetation within green 
spaces (Fuertes et al. 2016). Therefore, we hypothesized that the 
greenness-related DNA methylation pattern would coincide with 
allergy-related DNA methylation pattern. Our findings confirmed this 
hypothesis, although by design this study cannot determine whether 
greenness exposure increases or decreases allergic sensitization. 
Although pollen may travel very long distance, the amount of trans-
ported pollen decreases rapidly with increasing distance (Chamecki 
et al. 2009). Our findings of “Allergy” enrichment stronger for green30 
than for green500 may attribute to proximal greenness leading to higher 
pollen load in the air. 

Greenness may have health impact through changes in physical 

activity. Greener neighborhood may invite people to be more active 
(Bancroft et al. 2015; James et al. 2016). In this study, green30 showed 
enrichment for “Physical activity” but green500 did not. Consistently, 
“BMI” was also enriched for green30 DMRs but not for green500. This 
should in principle validate the enrichment of physical activity, pro-
vided that greenness-associated physical activity led to changes in BMI. 
Bancroft and colleagues reported in their systematic review that smaller 
buffers predicted objectively measured physical activity better than 
larger buffers, although studied buffer sizes usually ranged from 100 m 
to 1000 m (Bancroft et al. 2015). Greenness in immediate surrounding 
may differ from greenness in local neighborhood in its nature and hence 
influence people’s behavior differently. However, we cannot rule out the 
possibility that our finding is due to residual confounding by socio- 
economic position, i.e. wealthier people are exposed to higher green-
ness in their proximal environment and tend to be more physically 
active. Analyzing NDVI does not inform us about access or proximity to 
green spaces, which could be more relevant to investigate physical ac-
tivity. Longitudinal studies with detailed information on use of different 
types of greenspace and on different types of physical activity and 
possibly taking moving into consideration are warranted to investigate 
which types of greenness actually motivates different types of physical 
activity and in which mechanism. 

Allostatic load conceptualizes physiological “wear and tear” from 
repeated response to stressors, which has been associated with green-
ness (Egorov et al. 2017; Egorov et al. 2020; Ribeiro et al. 2019b), so-
cioeconomic status (Johnson et al. 2017; Ribeiro et al. 2019a), and 
mortality (Castagne et al. 2018; Robertson et al. 2017). Our findings are 
in line with the hypothesis that greenness may help coping with stress. 
“Allostatic load”, but none of its sub-pathways, showed consistent 
enrichment for green30 and green500, indicating that the enrichment of 
“Allostatic load” was not driven by a specific phenotype component. A 
recent review that discussed the lack of established definition of allo-
static load concluded that despite the heterogeneity of the definition, the 
composite score of allostatic load consistently demonstrated association 
with detrimental health outcomes (Johnson et al. 2017). We recently 
demonstrated, using the same curation, that “Allostatic load” was 
enriched for traffic noise-related DNA methylation profiles (Eze et al. 
2020). 

Comparison with the BIOS eQTM demonstrated that the eQTM are 
over-represented in the CpGs of most of the candidate pathways curated 
in this study, indicating that the DNA methylation profiles reported by 
previous EWAS studies, and our curation thereof, likely have regulatory 
implications. 

When the pathway enrichment tests were limited to eQTM in the 
candidate pathways, we lost all enrichments except CPR for green500. 
Weighted Kolmogorov-Smirnov takes advantage of making use of the 
genome-wide z-statistics to create a null distribution. By limiting to the 
eQTM, the null distribution was computed based on the EWAS results on 
13 k eQTMs instead of 450 k CpGs, which may not serve as the best null 
distribution, or reduce the power, to determine the enrichment. 

As for all bioinformatics research, this study depends on the quality 
and quantity of previous research. Unlike genomics and transcriptomics, 
research of genome-wide DNA methylation has a relatively short history 
and studies conducted so far are typically smaller in number and size. 
The credibility of pathway curation based on EWAS Atlas varies across 
phenotypes. It may work better for well-studied phenotypes, e.g. BMI, 

Table 3 
Pathway enrichment p-values from Weighted Kolmogorov-Smirnov test of 
EWAS results and from Fisher’s exact test of DMRs.   

Allergy Physical activity Allostatic load 
#CpGs 3736 361 1675 

Green30 EWAS 0.00053 0.0016  0.15 
DMR 3.1e-06 4.6e-05  2.6e-05 

Green500 EWAS 0.0021 0.22  0.0069 
DMR 0.023 1.00  0.024 

Written in bold if multiple testing adjusted p < 0.05. 

Table 4 
Pathway enrichment p-values from Weighted Kolmogorov-Smirnov test of 
EWAS results restricted to eQTM.   

Allergy Physical activity Allostatic load 

#CpGs 260 17 231 
Green30 0.15 0.66 0.42 
Green500 0.10 0.52 0.76 

Written in bold if multiple testing adjusted p < 0.05. 
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than for less well-studied phenotypes, e.g. cardiac autonomic function. 
The curation of allostatic load pathway was limited to the availability of 
phenotypes whose DNA methylation pattern was studied and reported. 
“Allostatic load” pathway in this study did not include the hypothal-
amic–pituitary-adrenal axis as there has been no EWAS for relevant 
phenotypes. We attempted to explore functionality of EWAS results 
making use of BIOS eQTM, which allows more direct regulatory inter-
pretation than proximity-based gene annotation. However, BIOS only 
investigated cis-eQTMs, although these were in adult whole blood 
matching the tissue source of DNAme in SAPALDIA. Large comprehen-
sive future studies to search for trans-eQTMs are warranted. By using 
NDVI as greenness metric, we cannot distinguish different types of 
greenness, nor evaluate whether they contain potential allergens or are 
conducive to physical activity. Also, given the cross-sectional nature of 
the study we cannot decide whether the presence of greenness leads to 
the observed phenotypes or whether for example people with allergies 
and high levels of stress choose greener environments to live in. Lastly, 
we estimated the residential greenness based on the home address re-
ported at the time of surveys without taking into account time spent at 
home, secondary residential addresses, or greenness exposure at work. 
However, we believe such measurement errors are non-differential and 
therefore bias towards null. 

5. Conclusions 

In this study we explored genome-wide DNA methylation patterns 
related to residential greenness. We identified largely non-overlapping 
163 and 56 DMRs for green30 and green500 respectively. Green30 
showed consistently stronger enrichment than green500 across candi-
date pathways curated based on previously reported EWAS. Residential 
greenness may have health impacts through allergic sensitization, stress 
coping, or behavioral changes. 
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